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We present an inflationary universe model which utilizes two coupled real scalar fields. The
infiaton field P experiences a first-order phase transition and its potential dominates the energy den-

sity of the Universe during the infiationary epoch. This field P is initially trapped in its metastable
minimum and must tunnel through a potential barrier to reach the true vacuum. The second auxili-

ary field li couples to the inflaton field and serves as a catalyst to provide an abrupt end to the
infiationary epoch; i.e., the P field produces a time-dependent nucleation rate for bubbles of true P
vacuum. In this model, we find that bubbles of true vacuum can indeed percolate and we argue that
thermalization of the interiors can more easily take place. The required degree of flatness (i.e., the
fine-tuning) in the potential of the l( field is comparable to that of other models which invoke slowly
rolling fields. Pseudo Nambu-Goldstone bosons may naturally provide the flat potential for the rol-
ling field.

I. INTRODUCTION

In 1981, Guth' proposed the inAationary universe
model to solve several cosmological problems, notably
the horizon problem, the flatness problem, and the mono-
pole problem. During the inflationary epoch, the energy
density of the Universe is dominated by a (nearly con-
stant) false-vacuum energy term p=p„„=const, and the
scale factor of the Universe expands exponentially:

H =8nGp/3,

R (t)=R (t, )e

(l. la)

(1.1b)

where H =R /R is the Hubble parameter, R is the scale
factor of the universe, R (to) is the scale factor at the be-
ginning of inflation, and y is defined by

y =+8n.Gp„„/3 (l. lc)

(notice that y =XI during the infiationary epoch). During
this period of exponential expansion, a small causally
connected region of the Universe inAates to a sufFiciently
large region to explain the observed homogeneity and
isotropy of the Universe today, to "inflate away" the
overdensity of monopoles to regions outside our horizon,
and to predict a Aat universe with 0=1. A successful
resolution to these cosmological problems requires at
least 70 e-folds of inAation; i.e., the scale factor must in-
crease by at least 10 (for y=const). The period of ex-
ponential expansion must be followed by a period of
thermalization, in which the vacuum energy density is
converted to radiation.

In the original inflationary model' (now known as
"old" infiation), the Universe supercools to a temperature
T ((T, during a first-order phase transition with critical
temperature T, . The nucleation rate for bubbles of true
vacuum must be slow enough that the Universe remains

g+3HQ+ I Q+ =0 . (1.2)

In the slowly rolling regime of growth, the energy density
of the Universe is dominated by the vacuum contribution
(p=p„, ))p„d) and the Universe expands exponentially.
When the field approaches the true vacuum, it oscillates
about the minimum, and the I g term gives rise to parti-
cle and entropy production. In this manner, a "graceful
exit" to inAation is achieved. Many other proposed ver-
sions of infiation (e.g. , the "chaotic" infiation model of
Linde ) utilize a slowly rolling field.

All existing versions of inAation with rolling fields tend
to overproduce density Auctuations and are thus highly
constrained by isotropy measurements of the microwave
background. These measurements indicate that the am-
plitude of the density perturbations must be less than
5 = 10 . However, inflationary models predict ' density
Auctuations with amplitudes given by

6p

hor

H (1.3)

in the metastable false vacuum long enough for at least
70 e-folds of inAation. Unfortunately, the old inflationary
scenario has been shown to fail because the interiors of
expanding spherical bubbles of true vacuum fail to
thermalize —the "graceful exit" problem. Hence this
model does not produce a universe such as our own. The
problem of ending old inAation will be discussed in
greater detail in Sec. II, where we discuss modifications
which can lead to percolation and thermalization.

Linde and Albrecht and Stienhardt proposed the
"new" inAationary scenario, in which the effective poten-
tial (or free energy) of the infiaton field becomes very fiat
(the phase transition may now be second order or only
weakly first order). As the field f "slowly rolls" down
the potential, the evolution of the field is described by
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where the right-hand side is evaluated at the time when
the Auctuation crossed outside the horizon during
inAation and where (5p!p) ~ h„ is the amplitude of a densi-
ty perturbation when it crosses back inside the horizon
after inAation. In order for sufficient inAation to take
place and for the density perturbations to be smaller than
the observational limits, the potential of the rolling field
must be very Aat. This statement can be quantified by
defining a fine-tuning parameter k through

(1.4)

epoch occurs through the nucleation of bubbles. Al-
though other inAationary models which use more than
one scalar field have been proposed, ' this present model
is different in that it achieves successful inAation through
a time-dependent nucleation rate and hence a time-
dependent nucleation efficiency P [see Eq. (2.4)]. Some of
the advantages and disadvantages of this model are dis-
cussed in Sec. IV. For example, cosmic strings can be
formed at the end of the (first-order) phase transition by
the inAaton field P.

II. BASIC MECHANISM

where b, V is the change in the total potential V(g) which
aff'ects the it field (including any interaction terms) and
b, g is the change in the field g during the slowly rolling
portion of the inAationary epoch. The parameter A. is
constrained to be small (i.e., A. 5 10 —10 ") for a gen-
eral class of inAationary scenarios which contain a slowly
rolling field.

In Sec. II we discuss the "graceful exit" problem of old
inAation and discuss a mechanism to circumvent this
problem. In old inflation, a small nucleation rate (which
is constant in time) allows for suflicient inflation, but the
phase transition can never be completed. A large nu-
cleation rate (also constant in time) would allow the
phase transition to complete, but the Universe would not
inAate sufficiently to solve the cosmological problems
stated above. The basic feature of this present scenario is
to have a time-dependent nucleation rate for bubbles of
true vacuum in a first-order transition. This time depen-
dence allows us to take advantage of the best features of
both slow and fast nucleation rates. In our scenario, the
nucleation rate is initially negligible and the Universe can
inAate; subsequently, at the same time at every point (in a
large enough region of space to encompass our Universe),
the nucleation rate suddenly becomes extremely fast and
the phase transition completes. In Sec. III, we discuss a
particular model to obtain a time-dependent nucleation
rate which can produce a fairly sudden end to the phase
transition. In this model, the old inflationary field P is
coupled to a slowly rolling field alt which evolves in a flat
potential (like in new inflation). The P field dominates
the dynamics of the Universe and gives rise to an
inflationary epoch. The purpose of the slowly rolling
field is to give the P field a time-dependent nucleation
rate. When the slowly rolling field g approaches its vacu-
um expectation value (the minimum of the potential), the
interaction between the fields catalyzes the old
inAationary field P to rapidly nucleate bubbles of true
vacuum throughout space. However, the rolling field
produces density Auctuations with the same amplitude as
in new inAationary models, and bubble interactions on
much smaller scales probably cannot erase these large-
scale Auctuations; hence, this model suffers from a fine-
tuning problem similar to that of new inAation. As dis-
cussed in Ref. 9, this fine-tuning problem is a generic
feature of inAationary models with slowly rolling fields; a
resolution (natural inflation with pseudo Nambu-
Goldstone bosons) is suggested in Ref. 19. This present
model —double-field inAation —thus provides a viable al-
ternative scenario in which the end of the inAationary

Here we review the reasons for the failure of old
inAation and discuss a possible mechanism to circumvent
these problems. In order to use a simple but illustrative
example, we consider a quantum field theory of a scalar
field with a Lagrangian of the form

Z =-,'(a„y)(a~y) —V, (y), (2.1)

where V&(P) is an asymmetric potential with metastable
minimum P and absolute minimum P+ (see Fig. 1). The
energy difference between the vacua is e. Bubbles of true
vacuum (P+) expand into a false-vacuum (P ) back-
ground.

In the zero-temperature limit, the nucleation rate I &
(per unit time per unit volume) for producing bubbles of
true vacuum in the sea of false vacuum through quantum
tunneling can be calculated" ' and has the form

1 ~(t)= Ae (2.2)

where SE is the Euclidean action corresponding to Eq.
(2. 1) and where 2 is a determinantal factor" which is
generally of oider T, (where T, is the energy scale of the
phase transition). In old inflation, this nucleation rate is
taken to be approximately constant in time throughout
the phase transition. Guth and Weinberg have shown
that the probability of a point remaininp in the false-
vacuum phase during the transition (which begins at t; ) is
given by

3

p(t)=exp —f dt'I ~(t')8 (t') f3 'R(t")

During the de Sitter phase of expansion, the exponent in
Eq. (2.3) is approximately — P4yir(t —t, ), where the di-
mensionless quantity P is defined by

(2.4)x'
The value of this nucleation e~ciency P can be calculated
from the potential and is crucial for determining the na-
ture of the phase transition.

In the limit that f3 is small compared to unity (i.e., low
nucleation efficiency), the phase transition proceeds slow-
ly and the Universe can inAate through many e-foldings.
This limit corresponds to the case of old inAation. How-
ever, when /3 is sufficiently small, the rate of filling the
Universe with the true vacuum cannot keep up with the
exponential expansion of the false vacuum and bubble
percolation never occurs, i.e., the phase transition is nev-
er completed. In addition, thermalization of individual
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v(c) be completed. As long as the time scale for /3 to evolve
from a subcritical value to a supercritical value is long
enough to allow for sufficient expansion of the Universe,
a successful inflationary epoch will arise.

For definiteness, we take the potential of the inAaton
field to be

(2.5)

To leading order, the metastable minimum is given by= —a and the absolute minimum by P+ =+a. In ad-
dition, we will take an interaction term of the form

V;„,(P) = — Y(i/)a (P —a),1
(2.6)

FIG. 1. Potential energy density of infiaton field P as a func-
tion of field strength. The energy difference e between the false
vacuum (at P = —a) and the true vacuum (at P+ =a ) provides
the vacuum energy density for inflation.

where Y is a dimensionless function which evolves in time
and is independent of the P field. In this case, the
effective energy difference between the vacua [see e in Eq.
(2.5)] is given by

e,s.=e+ Y'( i/j)a (2.7)
bubbles or groups of bubbles never occurs. Those bub-
bles which nucleate early are quite large by the time later
bubbles nucleate; hence a wide distribution of bubble
sizes is produced. Groups of bubbles are dominated by
the single largest bubble in a cluster. In any single bub-
ble, the latent heat of the phase transition (e) is entirely
converted into the kinetic energy of the bubble wall'
rather than thermalizing the interior of the bubble; in ad-
dition, collisions with much smaller bubbles cannot
thermalize the interior. As a result, the (nearly) homo-
geneous and isotropic Universe we live in today can nei-
ther arise from a single large bubble nor from clusters of
bubbles.

In the opposite limit when /3 is large compared to unity
(i.e., high nucleation efficiency), the phase transition
proceeds very rapidly. The time scale for bubbles to nu-
cleate and percolate is small compared to the expansion
time scale (which is determined by g) for the Universe.
In this limit, the phase transition is readily completed,
but the Universe does not inAate sufficiently.

A critical value /3„must exist, such that /3~/3„ im-
plies percolation (the supercritical regime) and /3 /3, „ im-
plies no percolation (the subcritical regime). The critical
value /3„lies in the range (see Ref. 2).

0.24 ~/3„~ 10

although alternate arguments' have suggested /3, „=0.03.
As discussed above, /3 must be subcritical to allow for
sufficient inflation and /3 must be supercritical to allow
for percolation and hence to allow the phase transition to
complete. Theories with constant /3 (i.e., a constant nu-
cleation rate and a constant expansion rate y) must clear-
ly fail. '

In the present model, we consider a nucleation rate
(and hence /3) which can vary with time. The nucleation
rate is initially small (so that /3(P„). The Universe
remains in the false vacuum and inmates for a long time.
As the Universe evolves, the nucleation rate grows, and
eventually /3 becomes supercritical. The bubbles of true
vacuum can then percolate and the phase transition can

Bubbles will nucleate at a rate given by Eq. (2.2). For the
potential of Eq. (2.5) and in the limit that the nondegen-
eracy of the vacua is small (i.e. , e' small), the Euclidean
action can be obtained analytically' and is given by

~2 ~la2 12

E (2.8)

The limit of small e is sometimes denoted as "the thin-
wall limit" because the validity of the analytic expression
(2.8) is limited to cases in which the wall thickness of the
nucleated bubble is small compared to the bubble radius
(see Ref. 12). If the function

exchanges

from a very small
initial value (which leads to a small nucleation rate) to a
large value at some later time tf throughout space, a
large nucleation rate will result and the phase transition
can come to completion near the time tf. If the end of
this phase transition is sufficiently abrupt, bubbles of
nearly equal size will nucleate simultaneously everywhere
in space. Thus both percolation and thermalization can
be more easily achieved. Any cluster of bubbles consists
of equal-sized bubbles which can more easily thermalize
one another than the wide variety of bubble sizes arising
in old inAation.

III. DOUBLE-FIELD INFLATION

In this section, we implement the ideas discussed in the
preceding section by presenting a particular model in
which the interaction term is given by the interaction of
the inAaton field P with a second scalar field; the potential
of this second field i/ is very Aat and gives rise to slowly
rolling behavior, just as in new inflation. The old
infiation field P, which is initially trapped in its metasta-
ble minimum and must tunnel through a potential bar-
rier, dominates the dynamics and causes the Universe to
inAate. The rolling field merely serves as a catalyst for an
abrupt end to the infiationary epoch; i.e., the i/ field pro-
duces the desired time-dependent nucleation rate for bub-
bles of true P vacuum. In this model, we find that bub-
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bles of true vacuum can indeed percolate and we argue
that thermalization of the interiors can more easily take
place.

A. The model

The total Lagrangian (for both fields) has the form

r =-,'(a„y)'+-,'(a,q)' —v...(y, y),
where the total potential can be written

Vt.t(0 e)= Vi(4)+ V2(0)+ V; t(0 e) .

(3.1)

(3.2)

For the sake of definiteness, we take V, (P) to be the po-
tential of Eq. (2.5). The potential V2(g) can be any flat
potential which leads to slow-rolling behavior of the g
field [see Eq. (1.2)]. For convenience, we take the interac-
tion term to be of the form

(3.3)

where the dimensionless parameter y determines the
strength of the interaction and where a is the minimum
of the potential V, (P). Notice that other forms for the
interaction potential are possible (e.g. , V;„,—P P ); how-
ever, the resulting behavior should be qualitatively the
same for a fairly wide variety of choices.

In the presence of the interaction term, the inAaton
field P will evolve according to the potential

demand that this term is small enough to allow the field
to roll. The Hubble parameter is determined by

2

R p 8mG=H = (p~+p~+p„~), (3.7)

where p& and p& are the false-vacuum energy densities of
the P and g fields, and where p„~ is the radiation energy
density.

Initially, the value of g is small, e,ff is small, the nu-
cleation rate of true vacuum bubbles I z(t) is small, and
the Universe remains in the false P vacuum and inflates.
As the rolling field approaches its minimum, g~gf, the
value of e,~ becomes larger, and many bubbles (with near-
ly equal sizes) of true vacuum nucleate throughout space.
Our present Universe lies within one initially causally
connected region which experiences an inflationary
epoch; the end to this inflationary period occurs when the
rolling field g approaches the minimum of its potential
and thereby signals the old inflationary field P to nucleate
rapidly. Many bubbles of true vacuum nucleate simul-
taneously inside the region in which the g field is
coherent [i.e., the entire region for which we can use a
single evolution equation such as Eq. (3.6) to describe the
behavior of the itj field]. Our own Universe must lie
within such a region of coherent g.

B. Constraints on the model

V(P)= —,'l, , lP —a )
— +yQ (P —a) . (3.4)

e,tr
=e+ 2a y itj (3.5)

Notice that we have taken the small e limit (or,
equivalently, the "thin-wall limit, " see Ref. 12) only for
the sake of obtaining analytic results; larger values for e
(and y) will lead to similar behavior.

During inflation, the equation of motion (1.2) for the
rolling field g is approximately given by

av +3y(P —a)g, (3.6a)

where we have neglected the P term in accordance with
the slow-rolling approximation. ' In the limit that P is in
the false vacuum for essentially all of inflation (at least for
purposes of determining the evolution of the P field), we
can set P = —a and find the equation of motion

3HQ=—

av3HQ= — = — —6yag =2,
ay aq

(3.6b)

where we have defined V as the sum of the two terms
above. The first term in V is positive and causes the P
field to roll down the hill; the second term, on the other
hand, is a negative frictional term, and later we will

We let the P field be trapped in the false vacuum at the
beginning of inflation. In the limit of nearly degenerate
vacua (small E) and sufficiently weak coupling (small y),
bubbles will nucleate at a rate given by Eq. (2.2), where
the effective energy difference between the vacua is given
by

In order to obtain a successful epoch of double-field
inflation, we must consider several constraints on the
model parameters. First, we want the P field to dominate
the dynamics of the Universe and be responsible for the
inflationary epoch; hence we require Vi(P) ) V2(g).
Since P = —a during inflation, this requirement becomes

e) V2(g) . (3.8a)

In particular, at the beginning of inflation when g is
small [so that V2(f) is near its peak], the constraint takes
the form

(3.8b)

where go is the value of the g field at the beginning of the
inflationary epoch. Ciiven this constraint, the Hubble pa-
rameter is given by

8~GH =
p& where p&

—-e+2yag
3

(3.9)

2@agf (3.10)

where q is a dimensionless constant; in practice we re-
quire g-10 ' or larger.

Third, the slowly rolling field must be able to roll

where we have made the assumption that P = —a during
inflation.

Second, in order for the coupling of the g field to
influence the P field and bring an end to inflation, we
need the ratio 2yag /e to be sufficiently large at the end
of inflation, i.e.,
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despite the frictional eAect provided by the interaction
term. We must have g) 0, i.e.,

3H
(3.17)

0V2

a
—6yag =V)0 . (3.11)

Fourth, we require that there be sufhcient inAation; i.e,
the total number Xz- of e-foldings must satisfy Xz ~X„
where X, is the number of e-foldings required to solve the
original cosmological problems (N, =70). For the slow-
rolling g field, we can write the number Nz. of e-foldings
in terms of an integral and the constraint of obtaining
sufhcient inAation takes the form

Nr(go~//) =3H I )N, .
~f dQ)

cy e (3.12)

Fifth, the quantum fiuctuations in the field P render its
value at any given time uncertain by the amount

(3.13)

which leads to a constraint on the initial value go, i.e.,

Ago) H/2~, (3.14)

which means that we cannot specify go to an arbitrarily
precise value.

The sixth constraint is that the density Auctuations in
the slowly rolling field [see Eq. (1.3)] are not in confiict
with the observed isotropy of the microwave background.
This requirement can be written as

3H /2~ 6, (3.15)

where 6—:6p/p ( 10 is the constraint on density pertur-
bations. We will also require all energy scales in the
theory (e.g. , the vacuum expectation values of the P and

P fields) to be below the Planck scale.

C. A simple example: The ramp potential

In this subsection, we will illustrate the model of
double-field inAation by considering the simplest possible
case for the potential of the rolling field g, i.e., we will
take %=const)0. Many of the features of this simple
case apply to any version of double-field inflation. We
have chosen to present results for this simple case as it re-
veals many aspects of the double-field model with a
minimal amount of algebra. In this model, the P field
will move through a potential V,ff(g) of the form

and the constraint that sufhcient inAation occurs

3H g/ )N, , (3.18)

where we have taken g&))fo. For this theory, the fine-
tuning parameter [as defined by Eq. (1.4)] can easily be
evaluated and is given by

(3.19)

where the subscript denotes the second field g. Combin-
ing the constraints of Eqs. (3.17) and (3.18), we obtain an
upper limit on the fine-tuning parameter:

A, ~35 /N, =10 (3.20)

where we have used 6=10 and X, =70 to obtain the
numerical value. Thus, we obtain a fine-tuning require-
ment similar to that of the standard new inAationary pic-
ture.

The fine-tuning of the potential arises in order to avoid
overproduction of density Auctuations, which are pro-
duced by the rolling g field (this statement is generally
true for models of inflation which involve slowly rolling
fields. ) One might hope that the subsequent collisions of
old inAation bubbles after the end of the inAationary
period would dominate the resultant perturbation spec-
trum, especially since more energy density is associated
with the P field than with the g field. Unfortunately,
these bubbles are tiny compared to scales of astrophysical
interest (e.g. , the scale of galaxies), which have gone out-
side the horizon well before the end of inAation and have
P-field perturbations imprinted on them. In other words,
the old inAation bubbles cannot afFect structure on scales
larger than the horizon size at the end of inAation, and
this size scale is much smaller than galactic scales. Al-
though dramatic bubble collisions can restructure the
predicted anisotropy on small scales, these collisions can-
not wipe out the unwanted large-scale perturbations pro-
duced by the rolling field.

We can now examine the remaining constraints by
writing them in terms of the parameter A, 2 (which is con-
strained to be small); we will also define a nondimensional
parameter for the vacuum energy density of the P field,
i.e.,

(3.21)

(3.16)

Notice that for g near $0 (i.e. , near the beginning of
infiation), the interaction term V;„, is small and
V2(f) —V,ff(g), which has a simple linear form. With
this choice of potential, the constraint that the field P
must be able to roll [see Eq. (3.11)] is automatically
satisfied. Given this potential, the rolling field will begin
at some initial value go an roll to a final value g& at the
end of the inAationary epoch. The two most restrictive
constraints are the density perturbation constraint

The constraint that the P field dominates the energy den-
sity of the Universe [see Eq. (3.8)] can be written

~ —V2( 40) V~ff(40) ~2'
which now takes the form

e) A,~(g//a)

(3.22a)

(3.22b)

The constraint that the coupling between fields is large
enough to produce a time-dependent nucleation rate [see
Eq. (3.10)] takes the form
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e —2y(g&/a) (3.23)

Notice that if g&-a (i.e., the vacuum expectation values
of the two fields are comparable), then e-y.

The constraint of sufficient inflation [Eq. (3.18)] can
now be written

XT mp, QI
2 2

E
8v a4

(3.24)

where mp& is the Planck mass and AT is the total number
of e-foldings (AT~X, =70). If we combine this latter
constraint with Eq. (3.23), we obtain the relation

(3.25)

Since 2VT/16~ is typically of order unity, the coupling
constant y is larger than the (small) parameter A,2 by the
factor mp&/aP&. In order to obtain e —y —1, we must
have 1(&-a and a/mp& —10 (a —10' GeV). Thus, this
model of double-field inflation can produce a reasonable
scenario, provided that the small parameter A, 2 can be
realized. Since the presence of such a small fine-tuning
parameter is generic to theories of inflation which utilize
slowly rolling fields (see Ref. 9 for a more complete dis-
cussion), this new model is comparable (in terms of fine-
tuning) to existing models.

Notice that this model is described by seven parame-
ters: the vacuum expectation value a of the potential of
the inAaton field, the heights of the potentials A. , and X2,
the energy difference e, the coupling strength y, and
finally the initial and final values go and g& of the rolling
field. Ideally one would like to explore fully the available
range of parameter space; such a presentation with seven
parameters subject to six constraints is beyond the scope
of the present paper. However, some volume in this pa-
rameter space is allowed and will lead to successful

inflation.

Many of the features of the simple %=const model de-
scribed above will hold in general for any version of
double-field inflation. (1) Double-field inflation will in-
volve the seven parameters described above (in general,
the final value P& of the rolling field corresponds to the
vacuum expectation value of the g field). (2) Large-scale
perturbations (i.e., on the scale of the present horizon
down to the scale of galaxies) will be produced in a
manner analogous to that of new inflation. These pertur-
bations will not be erased through the nucleation and
subsequent thermalization of bubbles of the P field (these
bubbles have size scales comparable to the horizon at the
end of inAation, i.e., much smaller than the scale of galax-
ies). (3) To avoid overproduction of density perturbations
on large scales, the potential of the slowly rolling field itj

must be very Aat, with a fine-tuning parameter iE-10
We have also considered more realistic choices for the

potential of the g field in double-field inflation. For ex-
ample, we have examined a potential Vz ( g) of the
Coleman-Weinberg form, ' i.e.,

Vi(f) = ~Bo+BP [ln(g/o )--——,
'. ], (3.26)

where o is the vacuum expectation value of the it field

and 8 characterizes the flatness of the potential and is
analogous to the parameter A.2 defined above. A discus-
sion of double-field inflation with a Coleman-Weinberg
potential is given in the Appendix. We find that success-
ful double-field inAation can occur with this potential, al-
though the constraints on the model are even more res-
trictive than in the simple case outlined above. In partic-
ular, the constraint that the g field can roll initially [see
Eq. (3.11)] implies that the coupling parameter y must be
much smaller than unity; the constraint of Eq. (3.23) then
implies that e must also be small for this case. For exam-
ple, if we take o. —a —m p&, we find that
B ~ 36 /SAT =10 ' and that e-y-B. Thus, fine-

tuning arises in this model. Alternatively, a model with
two diff'erent inherent mass scales (similar to the case of
schizons'7 or axions' ) may provide the necessary flat po-
tential. '

p (t) =exp — f godt'e (1+i)it )
X0

(3.27)

where SE is the Euclidean action and is given by

S~ =So(1+i)1t ) (3.28)

where we have defined it—:g/i'& and where the dimen-
sionless constant i) is given by Eq. (3.10) [notice that in
this present notation, e,it= e( 1+rlitj ) ].

Since the number of e-foldings (of the scale factor) is
the relevant time variable for inflation, we change vari-
ables according to

dr=ad dt =go(1+ i)P )' dt;
we can then write the probability as

(3.29)

p(r)=exp —ct f dre ' (I+qg )
0

where we have defined

4n
CX =

X0

(3.30)

(3.31)

which will generally be of order 1 (see Ref. 11). Equation
(3.30) can be written as a diff'erential equation,

dp —So(1+gQ )= —p(r)ae ' (I+i)i(t )
d7

(3.32)

which can be integrated numerically once we have solved
the evolution equation (3.6) for the P field. As an exam-
ple, we will consider the 9=const mode1 presented in the

D. Evolution of the probability function

Once the necessary constraints are satisfied, we can
solve for the evolution of the Universe. In particular. we
can calculate the probability of finding the inflaton field P
in its false-vacuum state. This probability can be written
[see Eq. (2.3) and Ref. 2]
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preceding subsection; for this case, the equation of
motion of the f field takes the form

3Xoity 3Xo
(3.33)

I I I
(

I I I
)

I I I
i

I I I
i

I I I
i

I I I
)

I I I
i

I

I i I i I

0 20 40
I

SO i00 120 140

FICs. 2. Probability p of a point in space being in the false
vacuum as a function of nondimensional time ~. Solid curve
shows the double-field inflation model of Sec. III; for compar-
ison, the dashed curve shows the case of constant nucleation
efficiency (as in old inflation).

where we have defined a new constant X [in the form of
Eq. (3.33), the equation of motion can be easily integrat-
ed].

With this formulation of the problem, we must specify
three parameters (So, i), and X) to determine the evolu-
tion of the probability function (we have taken a= 1).
The initial value So of the action must be large enough to
make the initial nucleation rate small, but small enough
to allow for a sufficiently rapid nucleation rate at the end
of inAation [see Eq. (3.28)]; we thus require So —10. The
interaction strength is given by g, which must be large
enough to affect the evolution of the Universe but small
enough not to dominate the dynamics; we thus require
i)=0. 1 —1. The constant X essentially determines the
number of e-foldings [see Eq. (3.33)], so we must have
X=0(1/N, ). If we choose So = 12, i) =0.4, and
X=0.02, the resulting probability evolution function
p(r) is shown in Fig. 2. By choosing parameters ap-
propriately, we can arrange to have nucleation efficiency
P [see Eq. (2.4)] subcritical initially and thereby obtain
sufficient inflation. Since P is now time dependent, we
can also have P supercritical for the latter part of the
inAationary epoch and thereby allow for percolation of
the true-vacuum bubbles. Notice also that the probabili-
ty function p(r) is much more like a step function (see
Fig. 2) than for the case of old inflation (i.e., constant nu-
cleation efficiency). This result implies that most of the
bubbles of true vacuum which are nucleated will have
sizes comparable to the horizon scale at the end of the
inAationary epoch; since this size scale is small compared

to size scales of astrophysical interest (e.g. , the scale of
galaxies), the only relevant density Auctuations produced
by this inAation will result from the rolling field g and
not from the inAaton field P if the phase transition is
infinitely sharp. Notice, however, that the end of the
phase transition is not infinitely sharp; the width of the
phase transition shown in Fig. 2 is approximately 20 e-
foldings. We have not calculated the details of the end of
this phase transition; we leave this study of the thermali-
zation for future work. Notice, however, that the nu-
cleation of the inAaton field may generate additional
large-scale structure which may explain some of the
features we observe today.

IV. DISCUSSION

We have studied inAationary scenarios which (ab)use
two coupled real scalar fields; the coupling between fields
can lead to a time-dependent nucleation rate. We thus
obtain a successful inAationary scenario which ends
through a first-order phase transition, i.e., through the
nucleation of true-vacuum bubbles in the sea of false vac-
uum. The required degrees of Aatness in the potential of
the rolling field g is comparable to that required in "new
inAation, " i.e., k-10 ' . This present model is thus
comparable in success to existing models but occurs in a
different manner and may offer some advantages. For ex-
ample, the inAationary epoch ends through the process of
nucleation and topological defects and such as cosmic
strings can form at the end of the phase transition (pro-
vided that the potential of the P field is complex).

"Extended" inAation ' also revives some of the aspects
of the "old" inAation models in that the inAation takes
place at a supercooled first-order phase transition. The
essential difference from old inAation is that gravity is de-
scribed not by general relativity, but by Brans-Dicke
theory. Extended inAation also provides a time-
dependent nucleation efficiency; however, the time depen-
dence is achieved through a time-dependent Hubble pa-
rameter [see the denominator of Eq. (2.4)] rather than
through a time-dependent nucleation rate [the numerator
of Eq. (2.4)]. Studies of bubble nucleation, collisions, and
percolation ' restrict the allowed parameters of the
model and the potential of the coupled field also must be
fine-tuned (see Ref. 9). A generalized version of extended
inflation ("hyperextended inAation" ~) utilizes more com-
plicated couplings of the rolling field to gravity to obtain
a time-dependent Hubble parameter (and hence a time-
dependent P).

The specific model of double-field inAation presented in
this paper can produce a "successful" inAationary epoch.
However, the theory must contain a very small parameter
(namely A,i-10 '

) in order to satisfy constraints on den-
sity perturbations. Although this particular (highly
simplified) model is unlikely to provide the ultimate
inAationary scenario, the concept of a time-dependent nu-
cleation rate provides a promising mechanism. Freese,
Frieman, and Olinto' proposed a model using pseudo
Nambu-Goldstone bosons tht naturally involves two
disparate mass scales and thus gives very Aat potentials
without any fine-tuning of parameters; potentials such as
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these are ideal for the rolling field in double-field
inflation.

Note added in proof A. fter the completion of this pa-
per, we discovered that A. Linde has simultaneously sug-
gested the possibility of a time-dependent nucleation rate
through the coupling of scalar fields [Report No.
CERN- TH. 5806/90, 1990 (unpublished)].
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where 1to is the initial value of the p field and where we
have defined As =48 1n(a /1(o). The condition of
suScient inflation then becomes

APPENDIX: THE COLEMAN-%EINBKRG CASK

In this appendix, we will consider a more realistic mod-
el of double-field inflation using a Coleman-Weinberg
form for the potential of the slowly rolling field; i.e., we
will take

4. 2

Vz(g) = +8/ ln
2 "~2 2

(A 1)

The potential for the P field is still described by Eq. (2.5)
with the interaction term of Eq. (3.3). The g field starts
rolling at some initial value it o

~ H /2ir and finally
reaches its stable minimum at 1(»=rr With . this choice
of potential, the equation of motion (3.6) becomes
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where we have assumed that the final value 1(& ))1(to and
where X, is the required number of e-foldings. The quan-
tum fiuctuation constraint [Eq. (3.14)] remains the same.
Finally, the constraint that the density fluctuations are
sufficiently small [see Eq. (3.15)] takes the form

3H
~B 4 (A7)

The coupled constraints of Eqs. (A6) and (A7) can be
combined to obtain a bound on the parameter A,z ..

( 36

8X,
(A8)

y ~B/40,
48x ln( 1 /x ) ~ 3y,

(A9a)

(A9b)

The numerical value of the right-hand side of Eq. (A8) is
of order 10 '; we thus obtain a "fine-tuning" require-
ment which is comparable in magnitude to that of new
infiation. Let us now saturate the constraint of Eq. (A3);
i.e., we will take e =8/2. If we then consider the specific
case a =mp~ and define x =go/a =1to/mp& (where the di-
mensionless parameter x must be less than unity), we can
write the remaining constraints in the form

3HQ= 48$ ln——6ya 1t (A2)
4', ~x ln(1/x) . (A9c)

We will consider the constraints for this potential. We
will consider the special case where o. =a and will define
e= e/a as in Eq. (3.21). With these restrictions, the re-
quirement that the P field dominate the dynamics of the
Universe and cause an inflationary epoch becomes

e ~B/2 .

In order for the coupling to the P field to infiuence the P
field we require that

y ~ e/20,

where we have taken i)=0. 1 [see Eq. (3.10)]. The third
constraint Eq. (3.11), the requirement that g) 0 in order
for the P field to enter a slow-rolling epoch, becomes

If we saturate the third constraint [Eq. (A9c)] and solve
for x we obtain x =0.064 (where we have taken X, =70).
With this value of x, the remaining two constraints [Eqs.
(A9a) and (A9b)] confine the ratio 8/y to the range

4.3~8/y ~40 . (A 10)

With these values of the parameters, the quantum fluc-
tuation constraint [Eq. (3.14)] is satisfied. Thus, there ex-
ists a region of parameter space which allows successful
inflation with two coupled scalar fields. Notice, however,
that Eq. (Ag) constrains A, ii (hence 8) to be very small.
In our specific example, e=B/2 (by assumption) and y is
within an order of magnitude of 8 [by Eq. (A10)], so that
both e and y are also very small in this case.
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