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We derive a rigorous a posteriori bound on the error in energy eigenvalues obtained using C'
finite elements, as well as several a posteriori error estimates, and test them numerically with poten-
tials of analytically-known eigenspectrum. We also obtain numerical solutions, with error bounds
and estimates, for the octic oscillator potential, illustrating the ability of the finite-element method
to resolve-nearly degenerate states with extremely narrow splitting. The incorporation of adaptive
refinement is shown to reduce the number of degrees of freedom needed to achieve a given level of

accuracy.

I. INTRODUCTION

Despite its spectacular success in many fields of en-
gineering and physics, the finite-element method (FEM)
for the numerical solution of partial differential equa-
tions! is only beginning to be used for quantum-
mechanical>® and quantum-field-theoretic* problems.
Such problems are characterized by the large number of
degrees of freedom involved. Particularly if one envisions
doing numerical quantum field theory in the Schrodinger
picture,* the only viable approach would seem to be one
based on the notion of adaptive refinement. That is, once
the numerical algorithm has obtained a relatively crude
approximate solution to a problem, it must be capable of
determining the error in this solution in each region of
the relevant configuration space. Degrees of freedom can
then be added where the error is greatest (and, if desired,
removed where it is least). By proceeding in such an
iterative manner it is possible to concentrate computa-
tional effort on those degrees of freedom which are most
important for the overall accuracy of the solution, even
if, at the outset, one has been unable to pick out these de-
grees of freedom using, e.g., physical intuition or symme-
try arguments.

Needless to say, we are interested in the accuracy of
our computations even if we do not plan on adaptive
refinement. In either case, the FEM is an ideal tool.
Since it gives an approximate solution which is defined
throughout the configuration space, rather than at isolat-
ed points, one can insert the approximate solution back
into the differential equation which is to be solved. The
resulting function, the degree to which, at a given point
in configuration space, the differential equation fails to be
satisfied, is termed the residual. From the residual, func-
tions can be obtained which bound or estimate errors in
global quantities, such as energy eigenvalues, or which
determine where to perform adaptive refinement.

If, in fact, an adaptive scheme is implemented, the use
of the FEM is advantageous in yet another regard, in that
it can easily accommodate local additions or deletions of
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degrees of freedom. We also note that the FEM can with
little difficulty incorporate nonstandard boundary condi-
tions, e.g., open boundary conditions corresponding to
systems which can lose energy to the external environ-
ment.

In the present paper, we focus on error bounds, error
estimates, and adaptive refinement in the context of
time-independent quantum mechanics in one space di-
mension, leaving for subsequent work the application to
open, time-dependent, higher-dimensional quantum-
mechanical and quantum-field-theoretic systems. After
giving a brief summary of the FEM, we derive a rigorous
a posteriori bound on the error in the energy eigenvalues,
as well as nonrigorous, though sharper, estimates of the
error. We then obtain numerical solutions to two bench-
mark one-dimensional potentials of known eigenspec-
trum, the harmonic oscillator and the Morse potential,
and compare our computed error bound and estimates
with the actual errors. As an illustration of the high de-
gree of precision attainable by the FEM with relatively
little computational effort, we solve an octic oscillator po-
tential containing pairs of nearly degenerate eigenstates.
Examples are also given of the use of adaptive refinement.

II. FINITE-ELEMENT ESSENTIALS

We will describe the FEM directly in the context of the
time-independent one-dimensional Schrodinger equation

Ay(x)=E¢(x) , 1)
where

go__1 9

H= >m axz-i—V(x). (2)

Since we are dealing with the time-independent equation
we can, without any loss of generality, choose 1(x ) to be
real. We approximate the exact solution #(x) by a
weighted sum of a finite number of shape functions N;(x):
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P(x)=1(x)= ﬁ N;(x)p; . (3)

i=1
The approximate solution ¥(x ) satisfies
(A—E)yjx)=r(x), (4)

where E is an approximation to the exact energy eigen-
value E.

In general, we cannot demand that the residual 7(x ) be
identically zero, since we only have at our disposal the m
parameters 1);. Instead, we demand that m weighted re-
siduals, integrals of the residual multiplied by weight
Sfunctions W;(x ), vanish:

[dx wior(x)=0, i=1,...,m . (5)

For several reasons, some of which we will mention
below, it is usually preferable to take the W,’s equal to
the N,’s; this is referred to as the “Galerkin FEM.” The
weighted residual equations are then

S [ [fax NGoORN, ) |9, =EF

j=1

[ dx Nj(x)N;(x) |¢; .

(6)

In all the problems with which we will deal in the present
paper, we will impose Dirichlet boundary conditions on
the solution at the ends of a finite interval x € [x;,xy ].
The most straightforward way to enforce these conditions

is to choose shape functions which satisfy them:
N,-(xL)ZN,-(xR)ZO, i:I,...,m . (7)

We can then integrate by parts in (6) to obtain the gen-
eralized algebraic eigenvalue problem

> Hiﬂ/’j:E 2 Cydy s ®
j=1 j=1
where
_ 1
Hy=~"K;+V;, ®
K. = XRd le(x) de(X) 10
ij— Xy X d_x dx ’ ( )
V,.j—fo dx N;(x)V(x)N;(x) (an
and
c,,:fo"dx N(x)N;(x) . (12)

K;; and C;; are termed the ‘“stiffness” and *““mass” ma-
trices, respectively. Once H;; and C;; are known, the ¥;’s
and E can be computed by any of several standard tech-
niques, such as the shifted inverse iteration which we em-
ploy in Sec. VI.

One computational advantage of the Galerkin ap-
proach is seen to be that the matrices which result are
symmetric. We note also that (8) would have resulted
had we taken a Rayleigh-Ritz variational approach. The
connection with the variational formulation is another
useful feature; for example, it tells us that, apart from
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roundoff error, the approximation E we obtain for the en-
ergy of an eigenstate must be above the exact energy.
These are not the only advantages of an FEM which can
be expressed variationally; see, e.g., Ref. 5.

The FEM now imposes the following key requirements
on the shape functions.

(1) They are narrow based. That is, each N;(x) van-
ishes everywhere except in a small compact region of
configuration space. For any choice of N,(x), if O(x ) is a
local operator, it will obviously be true that

LN )0 ()N, (x) =0 (13)
XL

unless either i =j, or i and j correspond to different shape
functions with overlapping support. Since a weighted
sum of N;(x)’s must be capable of approximating func-
tions defined over the entire interval x €[x,,xy ], the
left-hand side (LHS) of Eq. (13) will be zero for most pairs
i,j. So the matrices which appear in the eigenvalue prob-
lem (8) will have the computationally advantageous prop-
erty of being sparse and, if the shape functions are suit-
ably ordered, banded with relatively narrow bandwidth.

(2) The shape functions are piecewise polynomial.
This guarantees convergence to the exact solution as the
number of shape functions is increased.>®

(3) The shape functions have sufficient continuity so
that the entries in the matrices (10)—(12) are finite. The
only restriction comes from the stiffness matrix; the
N,(x)’s must be at least CY, i.e., continuous but with first
derivative not necessarily continuous.

To give a concrete illustration: divide up the interval
x €[x;,xg] into (m —1) nonoverlapping elements; ele-
ment e consists of all x €[x,,x 4], where the nodes
x,, e=1,...,m, satisfy

e’

Xp=x;<Xy< " <X, <X, =Xg . (14)
For the present example we will let the N;(x) be the so-
called standard C° shape functions; i.e., they are zero at

all but a single node:
N,»(xj )zaija

The expansion coefficients then have a straightforward
interpretation:

U =9(x;) . (16)
Finally, we implement the piecewise polynomial require-
ment by demanding that, within elements (i —1) and i,
N;(x) be a polynomial of a given degree in (x —x; )—for
the purpose of our present example, of degree one. Then
the shape functions are the “roof functions”

ij=1,...,m. (15)

X 7Xi—
D xe[xi—hxi],
Xi T Xi—1

Xit17 X
—, XE€[x;,X; 1] (17)
Xit1— X

0, in all other elements .

Convergence, as the number of elements is increased, is
faster the higher the polynomial order of the shape func-
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tions. Higher-order shape functions can be constructed
in several ways;l'7 we will describe one such construction
in Sec. IV.

III. ENERGY-ERROR BOUND

Given any candidate solution ¥(x) to the time-
independent Schrodinger equation and its associated es-
timated energy eigenvalue E, we can in a straightforward
manner put an upper bound®® on the absolute value of
the difference between E and the nearest exact eigenvalue
E,. Expanding ¥(x) in terms of the exact energy eigen-
functions

J(X):Eaﬂ/’](x) ’ (18)
I
where
I?v,b,(x)=E,¢r, s (19)

Eq. (4) becomes

S (E;—E)ayd,(x)=r(x) . (20)
I

We can always choose the ¢; to be an orthonormal set.
Squaring both sides of (20) and integrating then gives

S (B,~Ea}= [ "dx(r(x)]. @
I L

But,
S (E;—E)a}Zmin,(E;—E)?*Y a} . (22)
1 1

So, if ¥(x ) is normalized, (21) and (22) imply
min,(E;—E?< [ "dx[rx)]? . 23)
L

Equation (23) is not simply an estimate but is, rather, a
rigorous bound on the possible error in the energy eigen-
value. Furthermore, it is an a posteriori bound; that is, it
is obtained directly from the approximate solution
¥(x), E, and does not require the solution of an addition-
al linear system (compare Ref. 9).

However, it is clear that (23) is likely to be vacuous if
we insist on building ¥(x) out of shape functions with
only C° continuity. The kinetic energy operator d2/3x2,
acting on #(x ) at any point which is not at least C' will
yield, in 7(x), a 8-function singularity, making the right-
hand side of (23) infinite. To obtain a meaningful bound,
we must thus use shape functions which are C! or
smoother.

IV. HIERARCHICAL C' SHAPE FUNCTIONS

The shape functions of lowest order which retain C'!
continuity at the interelement nodes are the so-called
Hermite cubics. With each node x; are associated two
shape functions, °N;(x) and !N,(x), each with support
only in the two elements adjacent to x;, satisfying
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o dN;(x;)
Ni(x;)=———=1, (24a)
dx
d °N;(x;)
=IN,(x;)=0, (24b)
dx
d°N,(x;)
0 = e
Ni(x;) dx
. d'N;(x;)
='N;(x;)=————=0 for i#j . (24c¢)

dx

If ¥(x) is constructed out of shape functions satisfying
(24a)—(24c¢),
- n
Yx)=3 [°N;(x)%,+'N;(x) ¥, ], (25)
i=1
the discretized degrees of freedom %;, 'y; will again
have a direct interpretation:

%, =1(x;), (26a)

'Y, =d—¢d(5—d : (26b)
In detail: in element i,

ON(x)=2(y;*=3(y;?+1, (27a)

IN;()=h[(p; =2y, _)*+;]1, (270b)

ON, 11 (x)=—=2(3,+3(p;)?, (27¢)

N () =R [(n=(y1)], (27d)
where

hi =X 417 X%; (28a)
and

y=s ;ix’ (28b)
(see Fig. 1.).

1
Node e « elemente —» Node e+1

FIG. 1. C! standard shape functions in element e. The
curves !N, and !N, are for h,=1. (Note that °N,, 'N, also
have support in element e—1, and °N,,,, 'N, ., in element
e+1.)
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To increase the polynomial order of the shape func-
tions while retaining C! continuity at the interelement
boundaries, we will use the ‘“hierarchical” approach. If
we want (x ) to be a piecewise polynomial of order p > 3,
we introduce, in each element e, shape functions hN ,‘e’(x ),
r=4,...,p which are polynomials of order r in (x —x,),
vanish outside of element e and satisfy, at the boundaries
of the element,

d"N,(x;)

h = ALAMC S 29
N,(x;) ™ 0 (29)

for x;=x, or x;=x,,. This condition, of course, does
not determine uniquely the *N!¢’s. If we specify that the
coefficient of (x —x,)" is unity, then "N is fixed; for
r>5,*"N ,(e’ is fixed by imposing, in addition, orthogonali-
ty in the derivative of the hierarchical shape functions:

_ thr(e)(x) thr(’e)(x)
f dx
*e dx dx

4<r,r'<p, r¥r’" (30)
(see Fig. 2. for r=4 through 7). Alternatively, the
hN{€»s can be obtained as double integrals of Legendre
polynomials.

The requirement (30) tends to reduce the condition
number of the stiffness matrix, thereby contributing to a
decrease in roundoff error. (When attempting an accu-
rate solution, the condition number of the stiffness matrix
is more significant in determining numerical stability
than the condition number of the potential matrix, since
the entries in K;; will increase with decreasing h;, while
those of V;; will decrease.) The approximate solution
now has the form

Px)=3 [ON,(x)%,;+'N,(x) ']

i=1

’

n—1
+ 2 [i hN,(e)(x)hl,bE.e)] X (31)

e=1 |r=4

«element e — « elemente —

2 2

[ [}

-2 -2
[} 1 0 1

« elemente —» <« elemente —

FIG. 2. C! hierarchical shape functions.
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The fact that the hierarchical approach retains the in-
terpretation (26a), (26b) of the coefficients of the standard
shape functions °N;(x), 'N;(x) is often a convenience
but, of course, in no sense a necessity. More important is
the utility of the hierarchical formulation for construct-
ing local error estimators to be used in adaptive
refinement, as we will see in the next section.

V. ENERGY-ERROR ESTIMATES

The error estimates we will present are extensions, to
the case of eigenproblems, of an error estimate employed
for boundary-value problems.!®!!! They are arrived at
by considering a ‘“‘perturbative” improvement of the
FEM solution. Suppose ¢ is an approximate finite-
element solution to the equation

Ry (x)=0, (32a)
where

R,=H—-E (32b)
That is,

P(x)= 3 N;(x); . (33)

i=1

The sum in (33) is “shorthand” for an explicit expression
such as (31); that is, {5 is a weighted sum of standard C 1
shape functions °N;, !N;, and hierarchical shape func-
tions up to order p. The ©;’s are determined by the
weighted-residual conditions

fXRdx N(x)r(x)=0, i=1,...,m, (34)
XL
with
r(x)=Rzd(x) . (35)

Following Ref. 1, we consider the improved solution #(x )
obtained by including a single additional hierarchical
mode:

hN, k>p+1. (36)
So,
Flx)= ﬁl NP+ NPT (37)
with
);Rdx N(xFx)=0, i=1,...,m , (38)
S, dx gm0 =0, (39)
F(x)=Rp(x)=(H—E)xjx) . (40)

If J(x) is already a good approximation, it is reasonable
to assume that the coefficients of the first m shape func-
tions are the same in §(x ) as is ¥(x ), so we may take

Px)—P(x)="N©(x )P . (41)

Using (38) and (39), the coefficient of the additional
mode is found to be



x —1 x
i~ S ax N GORg PN ) NG (x)

—1
z——[ J ax ”N,(f’(x)RE"N,(f)(x)] J N,

(42)

where we can limit the integrals over x to the single ele-
ment e in which the support of the hierarchical mode
hNE(x ) lies.

In obtaining (42) we have, in addition to the approxi-
mation (41), taken

E~E . (43)

This is reasonable, since, for J(x) and ¥(x) close to an
exact solution, this difference is a bilinear functional of

P(x)—(x). B
The pointwise error in ¥(x ) is
elx)=1(x)—P(x) . (44)

Consistent with our assumption that (x) is already
close to ¥(x), we take as an estimate for e(x) the im-
provement in 9(x) brought about by adding the single
hierarchical mode "N {®(x ). That is, we take

Dx)=Y(x) . (45)
J

har(e) har(e) gy hayle) har(e)
[f(e)dx Nker] [f(e)dx Nkeﬁ Nk? ] lf(e)dx Nk’r]
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Equations (41), (44), and (45) then give
e(x)=P(x)—Px)="N(x)P L . (46)

We can similarly consider the improvement brought
about by adding several hierarchical modes; the same ap-
proximations as above result in

ex)= 3 T NP 47)
e k

However, if the error in the finite-element approxima-
tion to the wave function of the ith level is €;(x ), then the
magnitude of the difference between the approximate en-
ergy eigenvalue E; and the corresponding exact energy ei-
genvalue E; is bounded by®

|E,—E|< 3 [l @8)
where
lel>= [ dx e(x)He(x) . 49)

If the wave functions are reasonably accurate, (48) can
usually be replaced by

|E;—E| <|l&]* - (50)
Using (32b), (42), (43), (47), (49), and (50), we obtain

|Ef—Ef|=2 >
e

&x [ [ "NERy "N,‘j)] [ [ "NER; "N}j)]
(e) ! (e) i

=Ay . (51)

An alternative estimate can be obtained using the formula for the lowest-order error in the eigenvalue induced by an

error e(x) in the eigenfunction,®

E,—E;~ [dx e(x)(H—E)e(x) . (52)
Again using (32b), (42), and (43), we obtain, from (52),
[ J ax'Ner | ([ ax"NiRg, "N,i?)] [ J dx hN;j)r]
E—E~3Y 3 = 2 : ‘ =Ag . (53)
~ =, hN(OR_ h (e)] hN(R _ h @)]
i [f() NERg "N | [ [ NiPRg "N

Since, for small elements, the potential terms in [ ,dx "N Ry "N and [, dx "N{@H "N will be small, and since

the "N{¢ have been chosen orthogonal in the derivatives, we may also hope to get good results by taking only the diago-

nal terms in (51) and (53):

2
dx "N1© ] [ dx "N©OR hN(e)]
[f(e) * k! f(e) * k k

Ay p=3 2 Y )
~ < lf(e)hN’(‘e)REf th((e)]

o ‘ng % [j[fmdx th(ce)’]

har(e) har(e)
(e) Nk ﬁiz‘ Nk ]

(54)

(55)

Finally, the Cauchy-Schwartz inequality tells us that Az, is bounded above by

d hN(e)Z][ hpre)fy b (e)][ d 2]
f(e) x( k ) f(e)dx Nk Nk f(e) *r

Ag-p-cs=2 2
e k

= )
dx "N©R hN(e)]
“‘m Y A

(56)
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VI. APPLICATIONS

As mentioned in Sec. II, we employ shifted inverse
iteration® to obtain ; and E. Energy levels are comput-
ed successively, starting with the ground state and work-
ing upwards. At any given energy level, we start with an
arbitrary 9\, and perform the iteration

S (H;—s,Cn = zc,,zp, , (57)

J

¢£_n+1 2P11¢'("+1) (58)
where y\" is the result for 9, after n iterations, P;; is the

projection operator which prOJects out the prev1ous1y
evaluated states, and the shift s, is taken to be the expec-
tation value of ﬁ at the nth iteration.’® (The eigenfunc-
tion is, of course, unchanged by an x-independent shift in
the Hamiltonian.)

We begin by considering solutions using a fixed num-
ber of elements of equal size (that is, we do not yet imple-
ment adaptive refinement). Examining first the harmonic
oscillator (Tables I-III), we find that Ay_,_cg con-
sistently overestimates the error, but that, for a certain
number of the lowest-energy levels, the other four estima-
tors are reasonably close to the actual error. The cross-
over from reasonable accuracy to significant inaccuracy
occurs rather abruptly, near the point where Ap and
Ag _p start to go negative. This type of behavior would
be expected from the forms (51), (53), (54), (55) of the esti-
mators. Each denominator contains factors of the form
(N,(H—E) )IN;) which will go through zero as E in-
creases.

We can obtain a heuristic advance estimate for the
maximum energy below which the estimators can be reli-
ably used by looking for the smallest energy & such that

(A—6)"N{9=0 (59)

for some hierarchial shape function ”N/¢ which is used in

TABLE I. Harmonic oscillator, 30 elements of order 3, X; =
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the error estimator. Each "N vanishes outside of a sin-
gle element and at the boundaries of that element. Its
first derivative also vanishes at the boundaries of the ele-
ment, and it is, of course, a polynomial; nevertheless,
hN{€) resembles the Tth eigenfunction ¢; of the infinite
square well of width A equal to the size of the element. If
y is a local coordinate with the values O, 1 at the ends of
the element,

Uy ~¢:(y)=sin(imy /h), T=i—3=12,.... (60)

If our solution was obtained using third-order polynomi-
als, the lowest relevant state will be the square-well
ground state; if fourth-order polynomials, the first excited
state; and, in general,

_ 77'2(2 —2)?
2mh?

if we are estimating the error to a solution obtained with
pth-order polynomials.

This expression indicates the energy at which A, and
Ay _p become negative and the error estimates become
essentially useless. It can be seen that the greatest accu-
racy is achieved at levels whose energy is less than

(61)

77.2

Eo=—" _
% 2mh?

(62)

no matter what order of polynomial is used in the solu-
tion. (This is presumably due to the increasing mismatch
between the higher-level "N¢”s and @;’s.)

We note that A, _;, seems to give slightly better results
than the other estimators; and, of course, it and Ay _p
require less computational effort than either Ay or Ay.
(For each error estimator value presented, the number of
hierarchical levels included was such that the fractional
change due to the last level was less than 1%, up to a
maximum order of 20. The highest order included in an
estimator is listed under “O” in the tables.)

—20.00, Xg =20.00.

n | energy Ar O | Ar_p O | Au O | Aw_p O | Au_p-cs O | bound

0 0.500034195335 | 0.304E-04 11 | 0.305E-04 11 | 0.314E-04 11 | 0.319E-04 11 | 0.524E-03 13 | 0.433E-01
1 1.500293454586 | 0.285E-03 9 0.272E-03 9 0.315E-03 9 0.318E-03 9 0.640E-02 11 | 0.134E400
2 2.500886217776 | 0.902E-03 9 0.854E-03 9 0.107E-02 9 0.110E-02 9 0.225E-01 11 | 0.232E+400
3 3.504010617959 | 0.469E-02 7 0.441E-02 9 0.658E-02 7 0.664E-02 7 0.204E+400 | 9 0.544E+00
4 | 4.502471894751 | 0.260E-02 7 0.245E-02 7 0.374E-02 7 0.387E-02 7 0.117E+400 | 9 0.378E+00
5 5.521940842680 | 0.475E-01 7 0.334E-01 7 0.114E400 | 5 0.113E+400 | 5 0.496E+401 | 7 0.134E+01
6 6.506225483588 | 0.160E-01 9 0.109E-01 9 0.787E-01 7 0.789E-01 7 0.992E4-01 | 5 0.653E+00
7 7.546621920308 | 0.659E-01 9 0.499E-01 9 0.440E+01 | 5 0.440E+401 | 5 0.240E+403 | 5 0.201E+401
8 8.554183924713 | -0.636E-01 9 -0.120E-02 20 | 0.899E+00 | 5 0.899E+400 | 5 0.384E402 | 5 0.211E+01
9 9.564944720022 | -0.689E+00 | 7 -0.423E+400 | 5 0.138E+403 | 5 0.138E+403 | 5 0.520E4+04 | 5 0.233E+01
10 | 10.61250867836 | -0.158E+00 | 11 | -0.129E-02 20 | 0.311E+400 | 5 0.311E+400 | 5 0.233E+02 | 7 0.309E+01
11 | 11.66070850098 | -0.482E-01 17 | 0.590E-01 17 | 0.130E+01 | 5 0.130E+401 | 5 0.798E402 | 7 0.361E401
12 | 12.69802938909 | -0.164E+00 | 5 -0.505E-01 19 | 0.274E+401 | 5 0.274E+401 | 5 0.995E+402 | 7 0.391E+01
13 | 13.75435355007 | -0.151E400 | 15 | 0.568E-01 20 | 0.404E+00 | 11 | 0.395E+400 | 13 | 0.165E402 | 9 0.440E+01
14 | 14.84085296377 | -0.221E+400 | 15 | 0.642E-01 20 | 0.535E+400 | 13 | 0.478E+00 | 13 | 0.261E+402 | 9 0.504E+01
15 | 15.93572881946 | -0.269E+400 | 5 -0.265E400 | 5 0.130E+402 | 5 0.130E+02 | 5 0.114E404 | 5 0.558E+01
16 | 17.02677456337 | -0.316E+400 | 15 | 0.574E-01 20 | 0.148E+01 | 11 | 0.135E+401 | 10 | 0.529E+02 | 9 0.597E+01
17 | 18.12008919787 | -0.184E+400 | 20 | 0.133E+00 18 | 0.838E+400 | 13 | 0.789E+00 | 12 | 0.392E402 | 9 0.646E401
18 | 19.24676407535 | -0.163E+400 | 20 | 0.179E+00 18 | 0.108E+01 | 12 | 0.101E401 | 12 | 0.526E+402 | 9 0.695E401
19 | 20.34175444607 | -0.388E-01 20 | 0.267E+400 16 | 0.171E+401 | 12 | 0.153E+401 | 10 | 0.133E+404 | 7 0.784E+01
20 | 21.53070663148 | -0.119E+400 | 20 | 0.231E+400 16 | 0.223E+401 | 11 | 0.200E+401 | 10 | 0.131E+403 | 9 0.784E401
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TABLE II. Harmonic oscillator, 80 elements of order 3, X; = —20.00, X =20.00.

n | energy Agr O | Ar-p O | Ay O | Au_p O | An_p-cs O | bound

0 0.500000179470 | 0.168D-06 6 0.168D-06 6 0.169D-06 6 0.169D-06 6 0.152E-05 13 | 0.629E-02
1 1.500001552852 | 0.149E-05 8 0.149E-05 8 0.150E-05 6 0.153E-05 8 0.141E-04 13 | 0.189E-01
2 2.500006766471 | 0.653E-05 8 0.651E-05 8 0.681E-05 8 0.682E-05 8 0.660E-04 13 | 0.403E-01
3 3.500020290313 | 0.197E-04 8 0.196E-04 8 0.208E-04 8 0.209E-04 8 0.214E-03 13 | 0.716E-01
4 4.500048034047 | 0.475E-04 10 | 0.464E-04 8 0.502E-04 8 0.503E£04 8 0.547E-03 13 | 0.113E+400
5 5.500096922081 | 0.966E-04 10 | 0.953E-04 10 | 0.105E-03 10 | 0.105E-03 10 | 0.119E-02 13 | 0.164E+00
6 6.500174607494 | 0.175E-03 10 | 0.172E-03 10 | 0.192E-03 10 | 0.193E-03 10 | 0.231E-02 13 | 0.225E400
7 7.500289275735 | 0.295E-03 11 | 0.287E-03 10 | 0.325E-03 10 | 0.326E-03 10 | 0.411E-02 13 | 0.296E+4-00
8 8.500449508125 | 0.463E-03 11 | 0.447E-03 10 | 0.515E-03 10 | 0.517E-03 10 | 0.686E-02 13 | 0.377E400
9 9.500664186240 | 0.691E-03 11 | 0.668E-03 11 | 0.776E-03 10 | 0.779E-03 10 | 0.107E-01 11 | 0.466E+00
10 | 10.50094242485 | 0.991E-03 11 | 0.953E-03 11 | 0.113E-02 11 | 0.113E-02 11 | 0.162E-01 11 | 0.565E+00
45 | 45.61348908668 | 0.770E+00 7 0.453E+400 7 0.676E+401 | 5 0.676E+401 | 5 0.339E+403 | 5 0.835E+01
46 | 45.68897880866 | 0.100E+01 7 0.600E4-00 7 0.856E+401 | 5 0.856E+401 | 5 0.473E403 | 5 0.105E402
47 | 47.61770077767 | 0.268E+01 7 0.146E+401 7 0.133E+403 | 5 0.133E403 | 5 0.659E404 | 5 0.804E+4-01
48 | 48.68008492698 | 0.323E+01 5 0.323E+4-01 5 0.181E+404 | 5 0.181E404 | 5 0.894E+405 | 5 0.107E+402
49 | 49.70467421388 | 0.248E+00 7 0.205E4-00 7 0.587E+402 | 5 0.587E402 | 5 0.467TE404 | 5 0.108E+402
50 | 50.65188433621 | -0.146E+02 | 5 -0.146E+402 | 5 0.715E405 | 5 0.715E+405 | 5 0.387E407 | 5 0.941E+401
51 | 51.73005541314 | -0.126E401 | 5 -0.126E+01 | 5 0.386E+403 | 5 0.386E403 | 5 0.187E+405 | 5 0.121E+402
52 | 52.73480963272 | -0.235E400 | 7 0.116E-01 17 | 0.575E402 | 5 0.575E+402 | 5 0.390E404 | 5 0.115E+402
53 | 53.69633929665 | -0.415E401 | 7 -0.219E+401 | 5 0.161E+404 | 5 0.161E404 | 5 0.977E+405 | 5 0.108E+02
54 | 54.77379682297 | 0.224E+01 5 0.224E4-01 5 0.121E404 | 5 0.121E404 | 5 0.587E405 | 5 0.132E+402
55 | 55.78178124251 | 0.358E+00 9 0.298E4-00 9 0.389E+402 | 5 0.389E+402 | 5 0.207E+404 | 5 0.127E+402

Table IV presents results for the Morse potential'? with
four bound states:

Vy(x)=16[exp(—2x)—2exp(—x)+1]. (63)

The presence or absence of “‘edge effects” in this or other
potentials can be checked by recomputing the problem on
an array of elements coinciding with the original array,
but extending beyond it.2 (For greatest efficiency this
should also be done adaptively, doing the computation on
the second set of elements starting from the.solution on
the first set.) As an example of such a check, compare

0 and 1 no further computations need be done, while the
results for levels 2 and 3 should be checked on a still
larger interval.

The rigorous bound, while applicable to all states and
requiring less additional computation than any of the es-
timates, is seen to be conservative in the extreme. How-
ever, by increasing the polynomial order of the shape
functions used in the solution and decreasing the element
size, quite sharp bounds can be obtained. Table V
presents results for the octic oscillator potential'3

Tables IV(a) and IV(b). If we are only interested in levels Ve(x)=(x2—3)*. (64)
TABLE III. Harmonic oscillator, 40 elements of order 5, X; = —20.00, Xz =20.00.

n | energy Ar O | Ar-p O | Ay O | Au-p ] Ay_p-cs O | bound

0 0.500000000338 | 0.313E-09 13 | 0.313E-09 13 | 0.314E-09 13 | 0.315E-09 13 | 0.734E-08 19 | 0.375E-03
1 1.500000004173 | 0.389E-08 13 | 0.387E-08 13 | 0.394E-08 13 | 0.395E-08 13 | 0.980E-07 19 | 0.135E-02
2 2.500000025397 | 0.238E-07 13 | 0.236E-07 13 | 0.244E-07 13 | 0.244E-07 13 | 0.640E-06 19 | 0.343E-02
3 3.500000109892 | 0.104E-06 13 | 0.102E-06 13 | 0.107E-06 13 | 0.107E-06 13 | 0.303E-05 19 { 0.737E-02
4 4.500000322519 | 0.293E-06 11 | 0.287E-06 11 | 0.306E-06 11 | 0.307E-06 11 | 0.930E-05 19 | 0.128E-01
5 5.500001061205 | 0.970E-06 11 | 0.937E-06 11 | 0.102E-05 11 | 0.102E-05 11 | 0.342E-04 19 | 0.242E-01
6 6.500001526689 | 0.140E-05 11 | 0.136E-05 11 | 0.149E-05 11 | 0.150E-05 11 | 0.481E-04 19 | 0.286E-01
7 7.500006834740 | 0.561E-05 9 0.537E-05 9 0.608E-05 9 0.609E-05 9 0.250E-03 19 | 0.639E-01
8 8.500002299094 | 0.199E-05 9 0.195E-05 9 0.217E-05 9 0.220E-05 9 0.698E-04 19 | 0.338E-01
9 9.500030331635 | 0.252E-04 9 0.238E-04 9 0.280E-04 9 0.281E-04 9 0.121E-02 19 | 0.137E400
10 | 10.50000379459 | 0.371E-05 11 | 0.355E-05 11 | 0.402E-05 11 | 0.404E-05 11 | 0.125E-03 19 | 0.438E-01
45 | 45.65196588378 | 0.528 E+00 8 0.523E4-00 8 0.305E401 | 7 0.305E+01 | 7 0.154E+402 | 9 0.497E+401
46 | 46.60156786799 | 0.576E+400 8 0.577E+400 8 0.510E+01 | 7 0.510E401 | 7 0.244E+402 | 9 0.456E401
47 | 47.70693241061 | 0.106E+01 8 0.106E4-01 8 0.869E+01 | 7 0.869E+4-01 | 7 0.401E+402 | 9 0.580E+401
48 | 48.66498737680 | 0.960E+00 9 0.948E+4-00 8 0.115E402 | 7 0.115E402 | 7 0.543E402 | 7 0.520E+01
49 | 49.67497864864 | 0.162E+01 9 0.161E+401 8 0.241E402 | 7 0.241E+402 | 7 0.116E+403 | 7 0.564E401
50 | 50.76045157281 | 0.265E+401 7 0.265E4-01 7 0.738E+02 | 7 0.739E402 | 7 0.348E+03 | 7 0.637E+01
51 | 51.70979331430 | 0.453E+401 7 0.453E401 7 0.309E+03 | 7 0.309E+03 | 7 0.192E404 | 7 0.583E+01
52 | 52.74904470906 | -0.165E+01 | 9 -0.158E+4-01 | 8 0.622E403 | 7 0.622E403 | 7 0.679E+404 | 7 0.659E+01
53 | 53.82119567791 | -0.650E+401 | 7 -0.652E+01 | 7 0.126E+04 | 7 0.126E+404 | 7 0.644E404 | 7 0.706E401
54 | 54.77707400744 | 0.538E+-01 7 0.540E401 7 0.135E+404 | 7 0.135E404 | 7 0.600E+04 | 7 0.668E+01
55 | 55.82150180104 | 0.143E+4-00 9 0.281E4-00 8 0.182E+403 | 7 0.182E403 | 7 0.106E404 | 7 0.750E+4-01
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TABLE IV. (a) Morse potential, 80 elements of order 5, X; = —3.00, Xz =20.00. (Exact energies are 3.75, 9.75, 13.75, and 15.75.)
(b) Morse potential, 100 elements of order 5, X; = —3.75, Xz =25.00.

(a)

n | energy Ar O | Ar-p O | Ay O | Axy-p O | Ay-p-cs | O | bound
0 | 3.750000000564 | 0.516E-09 | 13 | 0.519E-09 | 13 | 0.518E-09 | 13 | 0.522E-09 | 13 | 0.116E-07 | 19 | 0.165E-02
1 | 9.750000002323 | 0.215E-08 | 13 | 0.215E-08 | 13 | 0.217E-08 | 13 | 0.218E-08 | 13 | 0.489E-07 19 | 0.337E-02
2 | 13.75000000365 | 0.339E-08 | 13 | 0.339E-08 | 13 | 0.344E-08 | 13 | 0.345E-08 | 13 | 0.784E-07 | 19 | 0.425E-02
3 | 15.75000006785 | 0.176E-08 | 13 | 0.176E-08 | 13 | 0.179E-08 | 13 | 0.180E-08 | 13 | 0.410E-07 19 | 0.307E-02
(b)
n energy AR O AR_D 0 AH O AH_D O AH—D—CS O bound
0 | 3.750000000571 | 0.523E-09 | 13 | 0.526E-09 | 13 | 0.525E-09 | 13 | 0.528E-09 | 13 | 0.118E-07 19 | 0.166E-02
1 | 9.750000002354 | 0.218E-08 | 13 | 0.218E-08 | 13 | 0.219E-08 | 13 | 0.221E-08 | 13 | 0.500E-07 | 19 | 0.340E-02
2 | 13.75000000340 | 0.343E-08 | 13 | 0.343E-08 | 13 | 0.348E-08 | 13 | 0.349E-08 | 13 | 0.799E-07 19 | 0.429E-02
3 | 15.75000000236 | 0.178E-08 | 13 | 0.178E-08 | 13 | 0.181E-08 | 13 | 0.182E-08 | 13 | 0.417E-07 | 19 | 0.309E-02
TABLE V. Octic oscillator, 40 elements of order 10, X; = —4.00, Xz =4.00.
n | energy Ar O | Ar-p O | An O | Au-p O | Ay—_p-cs | O | bound
0 | 5.275264807242 | 0.905E-19 | 13 | 0.905E-19 | 13 | 0.905E-19 | 13 | 0.906E-19 | 13 | 0.190E-17 | 20 | 0.644E-07
1 5.275266882429 | 0.905E-19 | 13 | 0.905E-19 | 13 | 0.905E-19 | 13 | 0.906E-19 | 13 | 0.190E-17 20 | 0.644E-07
2 18.35624876859 | 0.778E-18 | 13 | 0.778E-18 | 13 | 0.779E-18 | 13 | 0.779E-18 | 13 | 0.161E-16 20 | 0.187E-06
3 | 18.35632536649 | 0.778E-18 | 13 | 0.778E-18 | 13 | 0.779E-18 | 13 | 0.779E-18 | 13 | 0.161E-16 | 20 | 0.187E-06
4 | 34.55668084695 | 0.384E-17 | 13 | 0.384E-17 | 13 | 0.385E-17 | 13 | 0.385E-17 | 13 | 0.786E-16 | 20 | 0.414E-06
5 | 34.55902456256 | 0.384E-17 | 13 | 0.384E-17 | 13 | 0.385E-17 | 13 | 0.385E-17 | 13 | 0.786E-16 | 20 | 0.414E-06
6 51.67287798620 | 0.131E-16 | 13 | 0.131E-16 | 13 | 0.132E-16 | 13 | 0.132E-16 | 13 | 0.267E-15 | 20 | 0.762E-06
7 | 51.72481220404 | 0.133E-16 | 13 | 0.133E-16 | 13 | 0.133E-16 | 13 | 0.133E-16 | 13 | 0.270E-15 | 20 | 0.766E-06
8 | 68.15033320527 | 0.285E-16 | 13 | 0.286E-16 | 13 | 0.287E-16 | 13 | 0.287E-16 | 13 | 0.584E-15 | 20 | 0.113E-05
9 | 68.91305247474 | 0.331E-16 | 13 | 0.331E-16 | 13 | 0.333E-16 | 13 | 0.333E-16 | 13 | 0.677E-15 | 20 | 0.121E-05
10 | 81.48791591123 | 0.394E-16 | 13 | 0.394E-16 | 13 | 0.396E-16 | 13 | 0.396E-16 | 13 | 0.818E-15 | 20 | 0.133E-05
11 | 86.14778659438 | 0.660E-16 | 13 | 0.660E-16 | 13 | 0.664E-16 | 13 | 0.664E-16 | 13 | 0.138E-14 | 20 | 0.173E-05
12 | 95.86981079236 | 0.849E-16 | 13 | 0.849E-16 | 13 | 0.855E-16 | 13 | 0.855E-16 | 13 | 0.183E-14 | 20 | 0.200E-05
13 | 104.8775504336 | 0.129E-15 | 13 | 0.129E-15 | 13 | 0.130E-15 | 13 | 0.130E-15 | 13 | 0.291E-14 | 20 | 0.251E-05
14 | 115.2467731573 | 0.192E-15 | 13 | 0.192E-15 | 13 | 0.194E-15 | 13 | 0.194E-15 | 13 | 0.461E-14 | 20 | 0.316E-05
15 | 126.1988707088 | 0.296E-15 | 14 | 0.296E-15 | 14 | 0.299E-15 | 14 | 0.299E-15 | 14 | 0.777E-14 | 20 | 0.410E-05
16 | 137.8634667294 | 0.607E-15 | 15 | 0.607E-15 | 15 | 0.613E-15 | 15 | 0.614E-15 | 15 | 0.164E-13 | 20 | 0.594E-05
17 | 150.1574216374 | 0.195E-14 | 13 | 0.195E-14 | 13 | 0.197E-14 | 13 | 0.197E-14 | 13 | 0.479E-13 | 20 | 0.101E-04
18 | 163.0652069075 | 0.575E-14 | 13 | 0.575E-14 | 13 | 0.582E-14 | 13 | 0.582E-14 | 13 | 0.130E-12 20 | 0.167E-04
19 | 176.5638703443 | 0.123E-13 | 13 | 0.123E-13 | 13 | 0.124E-13 | 13 | 0.124E-13 | 13 | 0.269E-12 | 20 | 0.239E-04
20 | 190.6372214796 | 0.255E-13 | 13 | 0.255E-13 | 13 | 0.258E-13 | 13 | 0.258E-13 | 13 | 0.533E-12 | 20 | 0.337E-04
TABLE VI. Octic oscillator, 45 elements of order 3, X; = —4.00, Xz =4.00.
n | energy Ar O | Ar-p O | Ax O | Au-_p O | Au—p-cs O | bound
0 5.275279373898 | 0.127E-04 10 | 0.129E-04 10 | 0.128E-04 10 | 0.130E-04 10 | 0.157E-03 13 | 0.186E+00
1 5.275281444392 | 0.127E-04 10 | 0.129E-04 10 | 0.128E-04 10 | 0.130E-04 10 | 0.157E-03 13 | 0.186E+00
2 18.35640327136 | 0.142E-03 10 | 0.143E-03 10 | 0.147E-03 10 | 0.148E-03 10 | 0.171E-02 13 | 0.592E+00
3 18.35647982088 | 0.142E-03 10 | 0.143E-03 10 | 0.147E-03 10 | 0.148E-03 10 | 0.171E-02 13 | 0.592E+00
4 34.55747350507 | 0.757E-03 10 | 0.752E-03 10 | 0.802E-03 10 | 0.808E-03 10 | 0.987E-02 13 | 0.137E+01
5 34.55981755211 | 0.757E-03 10 | 0.752E-03 10 | 0.803E-03 10 | 0.808E-03 10 | 0.987E-02 13 | 0.137E+01
6 51.67540368502 | 0.249E-02 11 | 0.245E-02 11 | 0.270E-02 10 | 0.271E-02 10 | 0.361E-01 13 | 0.253E+01
7 51.72736902275 | 0.253E-02 11 | 0.248E-02 11 | 0.273E-02 10 | 0.275E-02 10 | 0.366E-01 13 | 0.254E+01
8 68.15551187789 | 0.525E-02 11 | 0.510E-02 11 | 0.583E-02 11 | 0.586E-02 11 | 0.846E-01 13 | 0.374E+401
9 68.91904926467 | 0.609E-02 11 | 0.591E-02 11 | 0.676E-02 11 | 0.680E-02 11 | 0.986E-01 13 | 0.403E401
10 | 81.49514804937 | 0.750E-02 11 | 0.721E-02 11 | 0.845E-02 11 | 0.850E-02 11 | 0.129E400 | 11 | 0.453E+401
11 | 86.16017460453 | 0.130E-01 11 | 0.124E-01 11 | 0.147E-01 11 | 0.148E-01 11 | 0.230E+4-00 | 11 | 0.597E+01
12 | 95.88663337244 | 0.174E-01 9 0.170E-01 11 | 0.201E-01 9 0.202E-01 9 0.338E+00 | 11 | 0.707E+401
13 | 104.9035465940 | 0.273E-01 9 0.265E-01 11 | 0.319E-01 9 0.321E-01 9 0.561E4+00 | 11 | 0.891E+01
14 | 115.2840729369 | 0.400E-01 9 0.385E-01 11 | 0.473E-01 9 0.476E-01 9 0.875E+4-00 | 11 | 0.108 E402
15 | 126.2522516492 | 0.585E-01 9 0.541E-01 9 0.702E-01 9 0.706 E-01 9 0.137E+01 11 | 0.132E+02
16 | 137.9382813679 | 0.841E-01 9 0.768E-01 9 0.102E+00 | 9 0.103E+400 | 9 0.212E+401 11 | 0.158E+02
17 | 150.2605679104 | 0.119E+400 | 9 0.107E+400 | 9 0.148E+400 | 9 0.149E+400 | 9 0.324E4-01 | 11 | 0.188E+02
18 | 163.2049733358 | 0.167E+00 | 9 0.148E+00 | 9 0.211E+400 | 9 0.213E+400 | 9 0.493E4-01 11 | 0.222E+402
19 | 176.7498384025 | 0.231E400 | 9 0.201E+400 | 9 0.298E400 | 9 0.300E+400 | 9 0.727E+401 | 9 0.260E+02
20 | 190.8791158656 | 0.281E+400 | 7 0.267E+400 | 9 0.393E400 | 7 0.396E+4+00 | 7 0.107E4+02 | 9 0.300E+02
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FIG. 3. Harmonic-oscillator wave functions computed adap-
tively, showing final distributions of elements; see Table VII.

The separation in energy between the two lowest-lying
states, of order 1079, is clearly seen; the error in each of
these states is bounded at a level of 1078, The values of
the estimators in Table V should be ignored, as they are
comparable to the roundoff error. (The roundoff error
can usually be taken to be equal to the limit set by the
number of bits used to represent the mantissa of a
double-precision number; on the machines employed for
the present work, this gives a maximum accuracy of
about a part in 10'°. If required, a more careful estimate
of the roundoff error could be made by using forward
iteration to compute the largest eigenvalues of the ma-
trices H and C, thus obtaining their condition num-
bers.>?) The energy levels of the octic oscillator are not
analytically known, but the results of the high-precision
computation in Table V can be taken as exact in compar-
ison with the less-precise results in Table VI. The error
estimators in Table VI are again seen to indicate well the
actual error in the energy.

To perform adaptive refinement, we evaluate a measure
of the error in each element: the contribution from a
given element to one of the A’s, or to the bound (i.e.,
J (r?). After obtaining a solution with a given set of ele-
ments, we divide in two all elements in which the estimat-
ed error is greater than or equal to some fixed fraction of
the largest error estimate in an element.!%!! (In the ex-
amples below, we take this fraction to be 0.5.) The
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FIG. 4. Morse potential wave functions computed adaptive-
ly, showing final distributions of elements; see Table VIII.

current approximation to the wave function is then
mapped by point collocation' to the augmented set of de-
grees of freedom corresponding to the increased number
of elements; this serves as a starting point for further
shifted inverse iteration, leading to a new, more accurate
solution. This process is repeated until the desired accu-
racy, as determined by one of the global error measures
(not necessarily the same one used as a refinement indica-
tor) is obtained.

The adaptively evaluated wave functions, and the final
distributions of elements for the harmonic oscillator and
Morse potential are shown, respectively, in Figs. 3 and 4.
The corresponding energy eigenvalues, global error mea-
sures, and final numbers of elements employed are shown
in Tables VII(a) and VIII. Both computations began with
ten elements of equal size; refinement was controlled by
the element contributions to Ay _p. All of the error
measures produce similar results when used as adaptive
indicators. Comparing Table VII(a) to Table VII(b), or

TABLE VII. (a) Harmonic oscillator, adaptive computation; see Fig. 3. Order=4, X; = —20.00, Xz =20.00. (b) Harmonic oscil-

lator, 80 elements of order 4, X; = —20.00, Xz =20.00.

(a)
n | energy final # of | Ar Ar-p Ay Ay_p Ap_cs-p | bound
elements
0 | 0.500000000001 52 0.871E-12 | 0.872E-12 | 0.872E-12 | 0.873E-12 | 0.888E-11 | 0.623E-04
1 [ 1.500000000001 78 0.594E-12 | 0.595E-12 | 0.596E-12 | 0.597E-12 | 0.499E-11 | 0.572E-04
2 2.500000000001 88 0.949E-12 | 0.949E-12 | 0.951E-12 | 0.952E-12 0.672E-11 0.874E-04
(b)
n energy AR AR_D AH AH_.D AH-—D—CS bound
0 | 0.500000000157 | 0.138E-09 | 0.138E-09 | 0.138E-09 | 0.138E-09 | 0.375E-08 | 0.451E-03
1 | 1.500000001759 | 0.155E-08 | 0.155E-08 | 0.156E-08 | 0.156E-08 | 0.413E-07 | 0.149E-02
2 | 2.500000009936 | 0.881E-08 | 0.880E-08 | 0.887E-08 | 0.888E-08 | 0.230E-06 | 0.351E-02
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TABLE VIII. Morse potential, adaptive computation; see Fig. 4. Order=5, X; =—3.00, Xz =20.00. (Exact energies are 3.75,

9.75, 13.75, and 15.75.)

n | energy final # of | Ar Agr_p Ay Ap_p Apy_cs-p | bound
elements

0 | 3.750000012048 20 0.774E-08 | 0.827E-08 | 0.783E-08 | 0.84E-08 0.106E-06 | 0.427E-02

1 | 9.750000002563 24 0.238E-08 | 0.238E-08 | 0.241E-08 | 0.242E-08 | 0.148E-07 | 0.340E-02

2 | 13.75000000772 24 0.704E-08 | 0.704E-08 | 0.772E-08 | 0.807E-08 | 0.282E-08 | 0.463E-02

3 | 15.75000007035 25 0.412E-08 | 0.412E-08 | 0.454E-08 | 0.469E-08 | 0.607E-07 | 0.353E-02

Table VIII to Table IV(a), the decrease in the number of
degrees of freedom needed to achieve a given accuracy,
when an adaptive procedure is used, is evident.

VII. CONCLUSIONS

When the “R-type” and “H-type” error estimators are
in agreement, they are seen to track quite closely the er-
ror in the problems we have studied; it seems reasonable
to expect that, when they agree, they may be taken with
some degree of confidence to be good indicators of the ac-
tual energy error. With greater computational effort, er-
rors can also be determined to high precision using the
rigorous error bound. Any of these quantities also pro-
vides a good measure of the local error and may be em-
ployed effectively as a guide for adaptive refinement.

The above examples show clearly the ability of the

adaptive approach to search out and find those regions of
configuration space where more degrees of freedom are
required for an accurate representation of the wave func-
tion. We anticipate that the increase in computational
efficiency which is thus achieved will be more and more
significant as the dimensionality of the problem increases,
and will therefore be of the utmost importance for nu-
merical quantum field theory.
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