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Gauge structure, anomalies, and mass generation in a three-dimensional Thirring model
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We consider a three-dimensional model of spinor fields with a Thirring-like, quadrilinear self-
interaction. Using either two- or four-component Dirac spinors, we prove that the 1/N expansion
for the model is renormalizable if a gauge structure to select physical quantities is introduced. For
certain values of the coupling, the leading 1/N approximation exhibits bound-state poles. Dynami-
cal breaking of parity or chiral symmetry is shown to occur as a cooperative eAect of di1T'erent or-
ders of 1/N, if N is smaller than the critical value N, =128/m D, where D is two or four depending
on whether the fermion field has two or four components.

I. INTRODUCTION

An important characteristic of field theory in three
space-time dimensions is the possibility for Dirac fields to
have either a two- or a four-component representation.
In the two-component representation a variety of in-
teresting effects occur. Among these is the fact that a
mass term in the Lagrangian violates parity, and then, if
the Dirac field is coupled to an external electromagnetic
field, a Chem-Simons term is induced. The breaking of
parity may have a dynamical origin as it happens in the
three-dimensional analogue of the Ciross-Neveu model or
may be present from the beginning in the Lagrangian. '

In any case, the induced Chem-Simons term is the source
of intriguing peculiarities as exotic statistics, fractional
spin, ' and a mass for the gauge field. ' These features
may be relevant to the quantized Hall effect and to high-
T, superconductivity. The presence of a Chem-Simons
term seems also to be essential to a recent conjecture on
bosonization of fermions in three dimensions.

Other classes of effects may be present if four-
component spinors are used. Indeed, for massless
theories a continuous chiral symmetry can be implement-
ed, and mechanisms for its spontaneous breaking may be
investigated. To some extent, this has been done in the
context of three-dimensional QED (QED3), where an
adequate use of the Schwinger-Dyson equations and the
1/N expansion has revealed the existence of a massive
phase.

As is well known, the Feynman amplitudes of the 1/N
expansion have a better ultraviolet behavior than those of
the usual perturbative scheme. This makes it possible to
consider more general interactions than those allowed by
the power-counting criterion of the perturbative ap-
proach. Within this extended class, quadrilinear self-
interactions of fermionic' fields are of primary interest
not only for methodological reasons, but also because
they are the basic interactions in fermionic formulations
of bosonic Chem-Simons models. "

In this work we investigate the theory of N Dirac fields
interacting via a quadrilinear, Thirring-like interaction,
specified by the Lagrangian

&=&4~4—
2~(A „0)(A'"4) .

We will study two versions of the theory associated
with (1), g having either two or four Dirac components.
For large X, in the general case where a mass term MPg
is added, we found vectorial bound states with a mass
m in the region 0&m &4M . This happens for g posi-
tive in the four-component version, whereas g must be
greater than —2m. /M if two-component fermions are
used. If g is outside these values, complex poles signaling
instabilities occur.

In analyzing the renormalization of the 1/N expansion
for this model, we will show the natural emergence of a
gauge structure providing a principle to select the physi-
cal content of the theory. Using four-component fer-
mions, we will prove that, to any finite order of 1/X, the
model does not present anomalies in the conservation of
vector or the axial-vector currents. These conservation
laws correspond to U(2) symmetry which arises as a re-
sult of the reducibility of the representation used for the
Dirac matrices. For large N the absence of anomalies
prevents the generation of a mass for the fermion field.
Mass generation may occur only at not very large values
of N, as a cooperation of different 1/N orders, and we
discuss this possibility for both two- and four-component
versions of the model.

The paper is organized as follows. In Sec. II the prop-
erties of the three-dimensional Thirring model employing
two-component Dirac fermions are discussed. A version
using four-component spinors is considered in Sec. III.
There we prove the absence of anomalies as mentioned
before. The possible occurrence of mass generation is an-
alyzed in Sec. IV, using the Schwinger-Dyson equations
as a basic tool. After some reasonable simplifications, a
solution violating either chiral or parity symmetry is
found.

II. TWO-COMPONENT REPRESENTATION

The most efFicient way to derive the 1/N expansion for
the model (1) is to use the equivalent Lagrangian
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X=ig8$™gf——"(gy"f)+
&N 2g

(2) I „,(p) =—g„,+p„(p),=1
(4)

where A„plays the role of an auxiliary vector field [clas-
sically, A„=(g/&N )Py„g and B„A"=0] and a mass
term for the fermion field has been added.

Whenever convenient, we could adopt

y =o. , y'=io', and y =io.

as an explicit realization for the Dirac matrices. Note
that the dimension of ij'j is one so that the Thirring in-
teraction has dimension four, being consequently pertur-
batively nonrenormalizable. To generate the 1/N expan-
sion, one either integrates over the g field or, equivalent-
ly, sums an infinite chain of fermion bubble graphs. In
particular, the two-point proper vertex function of the
auxiliary field is equal to

where the polarization tensor p„ is given by

p"'(p) = i — Tr y" y
"d k i i

(2ir) k' —M P+k —M

Taking into account that Tr(y"y y~)= —2ie" ~, we ob-
tain

p" (p)=2M'"I"p F(p )+~~

where F(p ) is the integral

( p)
d'k 1

(2ir)' (k —M )[(k+p) —M ]

and

(k+p)„k, +(p~v) —g„[k (k+p) —M ]
7T v= 2l

(2ir ) (k —M )[(k+p) —M ]

The first contribution to the right-hand side of (6) is a
nonlocal Chem-Simons term. This term is essential to
the large distance physics, causing transmutation of the
spin of f field. It breaks parity and time reversal, and be-
ing proportional to M, it indicates that the cause for this
breaking is the mass term in the Lagrangian (2); actually,
that is a well-known result. '

The second term on the right-hand side of (6) is (linear-
ly) divergent. Now, by its very definition, p„agrees with
the lowest-order contribution to the two-point function of
the current gy"P. It is therefore natural to enforce its
conservation by requiring that the renormalized p„be
transversal. This imposes the same restriction on ~„.
Clearly, it is convenient to use a regularization scheme
furnishing a transversal tensor. For example, one could
use, alternatively, the dimensional or Pauli-Villars regu-
larization. In any case, the final result is

[M+i2ir(4M +p )F(p )] g„„—4~ p

As happens in massive QED, ' the propagator ob-
tained by inverting I „has a longitudinal piece which
behaves as a constant when the momentum p is scaled to
infinity. However, as the auxiliary field 3„interacts with
a conserved current, this bad behavior, although affecting
Green's functions in general, does not affect S-matrix ele-
ments and observables constructed as gauge-invariant (a
gauge transformation on A„and g can be defined simi-
larly to what is made in conventional QED, although our
Lagrangian is not invariant) combinations of the basic
fields and their derivatives.

If, alternatively, we do not want to worry about what
quantities should be required to be renormalizable, we
can improve the ultraviolet behavior of all the Green's

functions by adding to the Lagrangian the term
(A, /2)(B„A") and postulating that the observables are
those quantities which are independent of A, . (This new
theory has a restricted gauge symmetry. It is easy to see
that this new Lagrangian is invariant under gauge
transformations whose parameter A satisfies
[A, 8"8„—(1/g) ]A =0. ) As in the former case, these
physical quantities coincide with gauge-invariant com-
binations of g, g, and A „.

The propagator, after the introduction of the gauge-
fixing term, is

gpv( )
'( G + /g) pv p

p (1/g+G) 4M p F — p
2 2 2 2

p p
Ap —1/g p

2MF e" p(1/g+G) —4M F
where F(p) is given in (7), and

G(p)= [M+i2m(4M +p )F(p)] .
1

4'

(10)

l p v
gpv( ) gpv p p

1/g +2G p2
l P P

kp —1/g p

(12)

For each positive g this propagator shows a bound-
state pole in the region 0 &p (4M . However, for nega-

The last term in the denominator of the transversal
part of 6", namely, 4M p F, arises as a result of the in-
duced Chem-Simons term. It is absent if four-component
spinors are employed. In that case the propagator has a
simpler form



3518 GOMES, MENDES, RIBEIRO, AND da SILVA 43

( 2)1/2

2 i yz
arctanh (13)

(
2 )1/2

for 0(p (4M . Outside the region, F(p) is obtained by
an analytic continuation of this formula.

The fact that the model is unstable for g negative can
be understood by a variant of Dyson's argument. ' For g
positive the interaction among fermions through A„has
the same form as in QED. We have then that particles
with unlike charges are attracted, whereas those with
charges of the same sign are repelled. For g negative, in-
stead, particles with charges of the same sign are attract-
ed and those with charges of different signs are repelled.
Clustering of fermions in one region of space and antifer-
mions in another is favored, and the vacuum is unstable.

The addition of the Chem-Simons term, which, in the
two-component case, is dynamically generated, stabilizes
the model even at some values of g that are forbidden in
the four-component version. The propagator (10)
presents bound-state poles in the region

F(p)=

tive g, tachyons are present, indicating the brea~down of
the I!N approximation. These conclusions are drawn
from a close examination of the denominator of the
transversal part of the propagator given above. The
function F(p) is given by

butions always involve an odd number of loop momenta
factors, and a symmetric regularization is enough to elim-
inate them. Graphs having N~ =2 and NF =0 are

linearly divergent, but, again, because of the fact that A„
couples to a conserved current, the resulting expression
must be transversal. This imposition effectively reduces
the degree of divergence by 2 so that no counterterm is
needed. Differently, in four dimensions the same type of
diagram is quadratically divergent and needs a counter-
term of the type F" F„,making the 1/N expansion un-
renormalizable.

The discussion of the observable content of the theory
is the same as in massive QED4. ' Observable fields are
those fields 6, (x;) satisfying the following two condi-
tions.

(1) Each 0, commutes with B„A". This implies that
the covariantized time-ordered function of those fields
should obey

0 TB„A"x;X 0
I

M 1+—&0,
4m. g

(14)
N

+—g b, F x —w; 1x —z.F j~gg
and complex poles are found if this relation is violated.

The Thirring-like four-fermion interaction is perturba-
tively nonrenormalizable. In the 1/N expansion, howev-
er, the quadrilinear interaction is replaced by the trilinear
interaction between the auxiliary field A„and the current
py"1(. Now, for large p, the A„propagator behaves as

PpPv 1
P~ p glx~ 2 2 1/2

p (p)
(15)

and this provides additional decaying factors, which, as
we will see shortly, turn the expansion renormalizable.

At any finite order of the 1/N expansion, Feynman
amplitudes can be constructed using the following rules:
Fermion propagator: i /(gf —M). A„propagator: b,„,
given above. Trilinear vertex: the vertex associated with
the term

Graphs containing as subgraphs the one-loop contribu-
tion to the A„propagator should be omitted since it has
been explicitly taken into consideration. With these rules
we obtain that the degree of superficial divergence associ-
ated with a proper graph y is given by

d (y) =3—NF N„— (17)

where N+ and N~ are the number of external fermion

and A„ lines, respectively. From this we see that the
1/N expansion defines a renormalizable theory. Graphs
with three external A„ lines are logarithmically diver-
gent, but as can be rapidly checked, the divergent contri-

&& o rrte, o)x,
I

(18)

where X is an arbitrary product of the fields,

I N N
X= + A, (x ) + g(w, ) + P(z„) .

i=1 j=l k=1

and X; is equal to X with the field A, (x; ) deleted.

(2) Independence of A, . This means that

(19)

0 T Q 0;X 0 =terms vanishing on shell .
I

(20)

III. FOUR-COMPONENT REPRESENTATION

Theories using a two-component fermion field have the
property that the fermionic mass term produces a viola-
tion of parity. A parity-conservating Lagrangian can be
constructed by doubling the number of fermion fields.
This leads to a four-component representation which uses
four-by-four Dirac matrices. These three Dirac matrices
can be taken as the first three Dirac matrices used in
four-dimensional calculations. For definiteness we
choose the representation

It must be stressed that our construction is solely
motivated by the bad high-momentum behavior of the
longitudinal part of the propagator of the auxiliary field.
In two dimensions the imposition of a gauge structure as
in (1) and (2) would be too restrictive since the behavior
at large momentum is highly improved and A, can be put
equal to zero from the very beginning.
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a 0

0 —o.

TABLE I. P, C, and T transformation properties of some sca-
lar bilinears.

P

0 —ia'

I o. 0

0 —io.

(21) jjf(x )

fr'r'4(x)

+ +
4—r"4(x)

+

+

and
0 I

(22)

Because the Lagrangian uses only three Dirac ma-
trices, the parity transformation, corresponding to
X)~ X),

g(x, x ', x )~P,Q(x, —x ', x ),
may be implemented by any of the operators

1+@ 1 —e
1 2 2

P2 = 1'&'Vs

(23)

(24)

(25)

depending on the parameter e, ~e~= 1. Other discrete
symmetries, such as charge conjugation and time rever-
sal, may also depend on free parameters. We have

PQC '=QC„ for charge conjugation,

'TP'7 '=B g( —xo, x) for time reversal,

(26)

(27)

where C is unitary and 7 is antiunitary. 8 and C„are
four-by-four matrices given by

In the free-field situation, the use of the above matrices
leads to Dirac equations for two-component spinors of
masses M and —M. In addition to those matrices, we
will use

0 I
—I 0

for notational simplicity, we introduced the matrix y",
defined by y =y, y '= —y', and y =y . The argu-
ments of the transformed fields are x =(x, —x ', x ), in
the case of parity, and x =( —x,x ', x ), in the case of
time reversal.

As A„couples to the current gy"g, the invariance of
the Lagrangian under P, C, and T implies that

A„(x)—+ J„(x) under P,
A„(x)~—A„(x) under C,
A„(x)~A "(x) under T,

irrespective of the values of the parameters e, q, and p.
The transformed field 3„ is defined by A0 = A0,
2) = —3), and 32= Aq.

Because of

P 'y P = —(Ree)y —(Ime)y (31)

e "0, (32)

where J is a linear combination of the matrices R =I,
y, y, and y y . These symmetries are generated by the
currents

and similar equations with P replaced by C and B, bilin-
ears involving y and y will in general mix among them-
selves. However, there is a considerable simplification if
the parameters are real. Table II illustrates this fact.

The classical massless Lagrangian is invariant under
the U(2) transformations

B
P

1+P y2 3, P 21—
2 2

(28)

I 0 1+ I1+ 1—
2 2

(29)

where p and g are unitary complex numbers. Observe
that both 8 and C are unitary matrices. Bilinears in g, g
or their derivatives, regardless of the values of the param-
eters e, g, and p, have simpler transformation properties
if they involve only the y" matrices. This happens, for
example, with the bilinears present into the Lagrangian.
Some of these bilinears are considered in Table I. There,

For the massive case the symmetries related to y and

y are explicitly broken and the corresponding currents
have divergencies 2ilI~, where J~ is given by Py f and

fy g, respectively. At the quantum level we must yet
look for possible anomalies in the conservation of the
above four currents. As we shall see shortly, they are free
from anomalies at any finite order of 1/X.

Similarly to the two-component representation con-
sidered in the previous section, the 1/X expansion may
be obtained by using the Lagrangian (2). In the present
situation no Chem-Simons term is generated, of course.
The two-point vertex function of the auxiliary field A„ is

TABLE II. Transformation properties for special values of the free parameters.

p=1
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equal to

=1I „=—g„+2~„
g

(34)

for R =I and y y, and

a„&sg & =2EM'& J, &+2A

for R =y and y, and where A& is the anomaly

(36)

a„&Jg&=o, (35)

where n is given by (8). It follows that the four-
component theory has the same ultraviolet behavior as
the two-component one. Thus renormalizability can be
achieved by introducing the gauge structure specified in
items (1) and (2) at the end of the preceding section.

The absence of anomalies in the conservation of J~ can
be proved by Fujikawa's method. ' In that method these
anomalies come from a possibly nontrivial Jacobian of
the transformation of the measure of the functional in-
tegral induced by a change of the fields. Following
Fujikawa's steps, we are led to

A~ ~ lim JN, Tr R exp [yi', y )F„„~~ oo 4m%, '

(37)

as consequence of the properties of the Dirac matrices.
More formally, another proof of the absence of

anomalies can be obtained by considering the massive
theory and using the Bog oliubov-Parasiuk-Hepp-
Zimmermann (BPHZ) procedure for subtracting diver-
gent diagrams. The formal currents in (33) are quantized
with a JV'z normal product, and as a direct application of
the BPHZ algorithm, we get'

~„&ol T~,(@y"g)XI0 &
= g [&(x ~, ) —5(x —z, ) ) & 0( TX(0 &

N

a„&O~Tu, (@y y'y'@)X~O&= g [(y y ) 6( —
)
—(y y ),'5( — )]&O~TX~O&,

j= i
(39)

where X is given by (19) and the superscript t indices the transposed matrix. The fermionic mass term breaks the con-
servation of the other currents, giving

N
~„&OIT~ (@y"y'g)xlo& =2 M&01 T~ (gy'g)xlo&+ g [(y') 5( —,)+(y'),' n( —,)]&01Txlo&

j=1
(40)

N

a„&ol T~,(pygmy'@)xlo & =2~M & ol T~,(yy'@)xlo &+ y [(y').,~(x —~, )+(y'),' ~(~ —;)] & ol Txlo & .
j=i

(41)

Note that the degree of the normal products on the
right-hand sides of these equations has increased by 1.
They can be related to minimally subtracted normal
products through the Zimmermann identities. Techni-
cally, this is the cause for the existence of anomalies.
More formally, the anomalies should have the same
quantum numbers as the terms already present in the
classical conservation laws. This puts a very strong re-
striction on the possible new terms. In fact, since A„ it-
self transforms under P, C, and T independently of the
values of the parameters e, q, and p, it immediately fol-
lows that the anomalies cannot have terms depending
only on the field 9„.Moreover, the anomalies should be
polynomials of canonical dimension 3, as follows from
general considerations on the definition of composite
fields. Since P and A„both have canonical dimensions
equal to 1, it follows from Tables I and II that the possi-
ble anomalous terms must be independent of A„alto-
gether. Thus only terms bilinear in g and g and having
one derivative at most can contribute to the anomalies.
Using Tables I and II, it is easily checked that only terms
proportional to the divergence of the currents themselves

can arise, i.e.,

W, (qy'q) =W,(qy'y)+s, W, [a„(pygmy'q) ]

and

w, (qy'q) =w, (qy'q)+s, w, [a„(pygmy'q) ],

(42)

(43)

where the coefBcients s& and sz can be computed order by
order in 1/N.

So, as claimed before, the anomalies are very mild, be-
ing possible to absorb them into the normalization of the
currents.

IV. FERMION MASS |KNERATION

Let us now consider the model (1) with I=0 and in-
vestigate if a mass can be dynamically generated, impli-
cating either parity breaking or chiral-symmetry break-
ing in the two- or four-component versions. For simplici-
ty we choose to work in Euclidean space. The
Schwinger-Dyson equations are depicted in Fig. 1. The
propagators represented by single lines are the ones read
from (2), taking N = oo. The propagators represented by
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g ~ q
PMLk I

—
I pv{q)

Lkkiiiiklj
rvvvvvvrv = N'+NWV + + WA + 0 ~

~p {p.p')

FIG. 2. Expansion of the full propagators of g and A„ in
terms of the one-particle-irreducible parts appearing in the
Sch winger-Dyson equations.

~/ ~/

gC

/ W

pwJ s ~ a a. /7
—:—(p)

3$-

FIG. 1. Fu11 set of self-coupled Schwinger-Dyson equations
for the Thirring model, as described in (1).

:-(p)=i [2 (p )gf
—X(p )],

the full fermion propagator reads

gf [1+A (p )]—X(p )

p [1+2(p )] +X (p )

(44)

(45)

For the moment we will keep ourselves from doing an
1/X expansion for X. Let us instead consider the possi-
bility of having, as the result of some cooperative effect
among different orders of 1/N, nonvanishing values for X

double lines are the complete ones, with many self-energy
insertions as indicated in Fig. 2. In the dominant order
of 1!N, I „is given by the trivial contribution y„/&N—
and the four-fermion kernel decouples from the system of
equations. The relevant Schwinger-Dyson equations
reduce to the photon and fermion self-energy parts as
shown in Fig. 3. Writing the fermion self-energy as

PPPV

1/g+Ap p
(46)

In more accurate calculations, where in the fermion loop
X is not taken as zero, a nonlocal Chem-Simons term
would also be induced if two-component spinors are used.

The simplified Schwinger-Dyson equation for the fer-
mion self-energy,

=(p) =—I b,„,(p —k)y„S (k)y, , (47)1 d k

(2~)'

with 1 „=—y„/&N, after the substitution of (46) and
after some traces are computed, gives

and A.
To proceed with the analysis, it is necessary to make

some assumptions, the validity of which may be verified
using consistency checks on the results. Specifically, we
will assume that both X(p) and A (p) are small compared
with the characteristic mass +=32/gD of the model and
also that they tend rapidly to zero for values of ~p~ above
o, . D is equal to either two or four for the two- or four-
component versions of the model.

Let us first look at the photon self-energy. Adopting
the aforementioned approximations and considering that
most of the contributions to the fermion loop come from
the region of integration ~k~ )32/gD, X and A can be
taken as zero. This is the same kind of approximation
used in QED3. The result is given by (4)—(11) with M
put equal to zero. In Euclidean space we get

&,(p) = 1 I pPv

1/g+(D/32) ~p~

2 d k X(k) 1Xp =—
(2n. )' k~[1+ g (k)]~+X~(k) 1/g+(D/32)lp —kl

1 d k X(k) 1

(2w)3 k [1+A (k) ]z+X (k) 1/g+ A(p —k)
(48)

and

p A (p)=—2 2 d k 1+2 1 (p —k).p (p —k).k
N (2~)' k2(1+ P )~+X~ 1/g+(D/32)~p —k~ (

—k)

2 dk 1+2 1

(2') k (1+A ) +X 1/ +A( —k)

Expanding A and X in powers of 1/X,

(p —k) p (p —k).k —p.k
(p —k)

(49)
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a& az a33 =ao+ + + +

0 i O'P 0'3
X=cr + + + +N'

(50)

and equating the same powers of 1/N in each side of (48) and (49), we see that ao and all o. s are zero; that is, 3 (p) can
be possibly nonvanishing only at nonleading orders, whereas a mass is not generated at any finite order of 1/N. To be
fair, these results are strictly valid only to leading 1/N order. In computing subleading contributions, one should also
consider corrections to the trilinear vertex and also to the four-fermion kernel, taking into account all four Schwinger-
Dyson equations of Fig. 1. We must stress that the results are in accord with that of Sec. III concerning the absence of
anomalies in the conservation of the currents. However, this does not preclude the possibility for X to be generated for
small N because of cooperative effects of different orders of 1/N. To explore this possibility, we put /1 (p) =0 in (48).
After the angular integrations are done, we get

x(p)=, J'—«2 2 Ip+kI —
Ip

—kI+a»16 1 kX(k) Ip
—k I+a

NDrl2 p o k'+X'(k) Ip+kI+a
1 1 k X(k) 1/g A+ (p —k)

ln
8Nkvr p o k +X (k) 1/gA, +(p+k) (51)

X(p) is a gauge-dependent quantity. However, the fact that it is not identically zero has physical consequences
(parity- or chiral-symmetry breaking), and it is therefore a gauge-invariant statement. For simplicity, we chose to work
in the unitary (A.~O) and the Landau gauge (A,~ 00 ). Moreover, we will restrict the study to the region X(p) &p & a.
Expanding the logarithms and keeping only the dominant terms in p/0. , we get

T

16 P k
k X(k) 2 ~

k
k X(k) 2 g ~dk k X(k)Xp =

ND~2, o k'+X'(k) p+a ~ k'+X'(k) k+a a o k'+X'(k) (52)

In light of the above approximations, we disregard the
contributions of k )o; to the integrals on the right-hand
side of (52). g is one or zero, respectively, for the unitary
and Landau gauge. The above integral equation is
equivalent to the differential equation

d (p+a}pdX
dp dp

(56)

near N„we must have a region in which X(p) «p &a,
and there, the linearized equation

d (p+a) pdX
dp dp

32 pX
NDn p +X

(53)
is a good approximation to (53}.

Similarly to what happens in QED4, ' (56) has the solu-
tions

subject to two boundary conditions ' that we choose to
be 1 /( +a )1/2+1/2(1 —128/ivDm).

+ (57)

2a(1+() +XI =0,dX
dp

0&XI„

(54)

(55)

Nevertheless, in our case they are real only for
N )N, =128/D~ and so do not satisfy the requirement
that N be small. Moreover, they do not satisfy (54) and
are not solutions of the integral equation (52).

For N & N„(56) has the oscillatory solutions
As we already know, mass generation does not occur

for N big enough. Thus, if it occurs for N small, there
should exist a critical value N, . For N smaller than but

X„(p)= 1

)1/2

1 128X sin —1
ND~

' 1//2

ln +nm+6p +cx
2A'

P P
7

p-k
P

k

FIG. 3. System of self-coupled Schwinger-Dyson equations
in light of the approximations of Sec. IV.

n =0, 1,2, . . . ,

where 6= —m /2 for the unitary gauge and
5 = —(128/ND~ —1)'/, for the Landau gauge. X„
satisfy (54) and so are solutions of (52). The oscillatory
character of these solutions is essential to the compatibili-
ty of the assumption that we have made before, namely,
that X tends to zero above a certain value ofp. In fact, in
the unitary gauge, the last term in (52) is a constant, in-
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dependent of p. To be consistent with our assumption,
this constant must vanish, which can be true for an oscil-
latory X(p).

Which of the solutions X„ is energetically preferred
should be inferred from an analysis of the efFective action.

It is interesting to observe that the mechanism of mass
generation in this model is more similar to the one found
in QED3 (Ref. 9) than that working on the Jona-
Lasinio —Gross —Neveu model. " The fact that mass
generation occurs as a result of contributions of terms of
different orders of 1/X could be inferred from an exarn-
ination of the identities among quartic fermionic self-
couplings listed at the end of Ref. 1. In the case D =2, as
far as X(p) is nonvanishing, a Chem-Simons term will be
induced, but it will be highly nonlocal.

To sum up, we have obtained a nonvanishing X(p) both
in the unitary and in the Landau gauges. The dift'erence
in the result for the two gauges is only due to phase 5 in
(58). The unitary gauge is known to be an ultraviolet
problematic gauge, at least peturbatively. In the
Schwin ger-Dyson self-consistent approach, the main

trouble comes from the last term in (52). But, as we saw,
a finite solution is possible because of its two characteris-
tics: (a) a rapid decay of X and A in the ultraviolet re-
gion and (b) oscillatory behavior.

The position p = —m of the pole of the propagator is
a physical quantity that must be independent of the
gauge. The restriction of the validity of the solutions (58)
to the region X(p) ((ipse does not allow one to investigate
this possibility, although it seems greatly plausible. In
any case, since X(p) is not identically zero, either parity
or chiral symmetry is dynamically broken.

Our analysis is still a bit crude, and a numerical
verification would be welcome. That is in progress.
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