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We attempt to increase the efficiency of simulations of dynamical fermions on the lattice by calcu-
lating the fermionic determinant just once for all the values of the theory's gauge coupling and
flavor number. Our proposal is based on the determination of an effective fermionic action by the
calculation of the fermionic determinant averaged over configurations at fixed gauge energy. The
feasibility of our method is justified by the observed volume dependence of the fluctuations of the
logarithm of the determinant. The algorithm we have used in order to calculate the fermionic
determinant, based on the determination of all the eigenvalues of the fermionic matrix at zero mass,
also enables us to obtain results at any fermion mass, with a single fermionic simulation. We test
the method by simulating compact lattice QED, finding good agreement with other standard calcu-
lations. New results on the phase transition of compact QED with massless fermions on 6 and 8

lattices are also presented.

I. INTRODUCTION

The last few years have seen a great refinement in the
quality of numerical results obtained by lattice-field-
theory calculations. Improvements in computer perfor-
mance, statistics, numerical techniques, and theoretical
methods, all converged to a clearer understanding of
Abelian and non-Abelian field theories, provided that a
certain simplification was imposed; namely, that of ignor-
ing either the effects of fermions (pure gauge theory) or
the effects of sea fermions (quenched field theory). In the
above framework we now have consistent results for
reasonably large lattices and nonperturbative values of
the inverse gauge field couplings P. A problem arises
when the effect of sea fermions is included in the form of
the fermionic determinant of the theory. The action then
becomes nonlocal and its simulation requires exceptional
computing resources by today's standards.

The confrontation of this problem has been the object
of considerable research efforts in the last few years,
which followed two main directions: (I) the construction
of custom-made computers which are more or less dedi-
cated to lattice field theory (see Ref. I and references
therein) and (2) the development of faster algorithms (see
Ref. 2 and references therein). The results of algorithm
development have been positive in that the earlier propo-
sals involved computational costs of O(V ), ' whereas
now we have at our disposal algorithms with a theoretical
cost of almost 0( V), such as the hybrid algorithm or hy-
brid Monte Carlo algorithm.

Impressive as this progress may sound, we are still far

from resolving the problem. The costs quoted above are
theoretical order-of-magnitude estimates of the depen-
dence of the calculation on the lattice volume V. In real-
istic calculations, the cost is augmented by several other
factors. One is critical slowing down, for which some
remedies have been proposed such as Fourier accelera-
tion and lower-upper decomposition of the fermion ma-
trix. Another problem is the number of parameters that
characterize a field theory. These are normally the fer-
mion mass m, the inverse gauge coupling P, and the num-
ber of Aavors Nf. In order to tackle a typical lattice
problem, the calculation must be repeated for, say, M
mass values, B gauge couplings, and sometimes for I'
different numbers of flavors. Thus, the real cost of the
computation is C, C2V, where C, is a factor that de-
pends on the algorithm and the theory's parameters, p is
the volume dependence already discussed above (both C,
and p include critical slowing down effects) and
C2 =M XB XF is the repetition factor (i.e., the total
number of the theory's parameters for which we have to
repeat the calculation). The considerable progress we
have sketched above involves a reduction of C& and p by
the development of fast algorithms and acceleration tech-
niques.

The object of this paper, which is a more extensive and
detailed version of a previous publication, is to propose a
method to reduce C2 which will give, in addition, good
results for C, also in that critical slowing down is con-
trolled. In other words, we seek to find ways of not hav-
ing to repeat the numerical simulation for different values
of at least one of the theory's parameters.
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At this point we wish to stress that, in exploring such
possibilities, we have implemented exact diagonalization
algorithms which are at least 0( V ). We are fully aware
that this is a weakness that has to be dealt with as we
move to larger volumes, but, at least for the physics ex-
plored so far, our method turned out to be much faster
than the fast algorithms.

We have carried out two attempts. The first consists of
expressing the determinant as a power series of the mass.
Then the partition function and any observables (we shall
mainly consider ( gi(t ) ) may be expressed as a function of
a power series in m, the coeKcients of which are
quenched averages and depend solely on /3 and the eigen-
values of the massless fermion matrix. Thus, the simula-
tion is performed once for all masses and the repetition
factor is C2 =8 XF. This method, although very promis-
ing in theory, turns out to be a disaster in the physically
interesting cases. In particular, near the critical points of
the theory, the importance sampling of the pure gauge
action misses the neighborhood of the configuration
space that contributes most and the results in the critical
region are wrong.

The second method consists of reexpressing the theory
in terms of an "averaged" determinant which is a func-
tion of the system's energy and the mass (all other depen-
dences are averaged out). This "averaged" determinant
is then calculated numerically for a wide energy range, ei-
ther at a fixed mass or by means of the determination of
all the zero-mass eigenvalues of the fermionic matrix.
Since the determinant does not depend on P, this calcula-
tion, which is the costliest, is performed only once in the
second case or once for each mass in the first case.

We then use this result in a standard simulation of the
reexpressed theory; the determinant is now a known
function of the energy and the pure gauge part is not
costly to simulate. The repetition factor is essentially re-
duced to C2 =1 or C2 =M. The number of flavors enters
trivially in this formulation and does not increase the
computational cost significantly. This method has given
results in agreement with more traditional approaches.

In order to test our proposals, we have used our
methods in order to study the compact unquenched U(1)
lattice theory and, in particular, its chiral phase transi-
tion already studied with the pseudofermion method by
Azcoiti et al. ,

' and in more detail by Dagotto and Ko-
gut"' (DK). DK have used both deterministic and sto-
chastic algorithms and comparison of their results to ours
will give evidence of the accuracy and e%ciency of the
method we propose.

The paper is divided into five sections. Sections II and
III are a presentation of the two methods we propose for
the inclusion of dynamical fermions in the theory. We
also speculate on whether these are going to work in
practice, and discuss their advantages and disadvantages.
In Sec. II we present the results obtained with the first
method (henceforth termed naive) on the chiral conden-
sate. On the face of discrepancy between our results and
those of Ref. 11, we discuss in Sec. III the reasons for
which the naive method fails. In Sec. IV we present our
results obtained with the second method on the chiral
condensate, the plaquette energy, and the specific heat for

the case N&=4 and m=0. 1, m=0.0. These are found in
excellent agreement with the results of Refs. 11 and 12 in
the m=0. 1 case. Section IV also contains results on the
same physical observables for different number of flavors.
We have performed all the above simulations on 6 lat-
tices, and present some results for the 8 case. Finally,
Sec. V contains our conclusions.

II. THE NAIVE METHOD

We consider, for simplicity, the partition function of
the Abelian case; what follows can be easily generalized
to any unitary gauge group:

Z= j[dg][dg][dU]e e~

dU detA U, m e~ (2.1)

where S& is the Kogut-Susskind fermionic action,

S&=mph(x)i(t(x)

+ —,'gi)„(x)f(x)[U„(x)g(x+p)
X~@

—U„*(x—p)g(x —p)],
i)„(x ) = (

—1) '

and S is the pure-gauge Wilson action,

S=QReU i .
pl

(2.2)

(2.3)

b ( U, m) is the lattice Dirac operator whose determinant
appears when we integrate out the fermionic Grassmann
variables.

The form of Z suggests its calculation by Monte Carlo
(MC) methods by measuring the average of detb, ( U, m ) in
pure-gauge configurations generated according to the
pure-gauge probability distribution [dU]e~ . We will
refer to this method as the "naive" one: we will show in
the following that, although in the strong- and weak-
coupling regimes it gives correct results, it is bound to
give wrong results in the physically interesting
intermediate-coupling region.

The method consists in computing the partition func-
tion Z at some fixed value of the bare coupling constant
P; thermodynamic functions such as the chiral conden-
sate (Pg) and the specific heat C =dl(dm)(gg) are
then obtained as derivatives of lnZ. To this eff'ect we can
define

dU det4 U, m e~
Z= =(detb(U, m))pG .

[dU]e~
(2.4)

It is obvious from expression (2.4) that the logarithmic
derivatives of Z with respect to m are just the same as
those of Z. Then our program is to compute numerically
the vacuum expectation value of the fermionic deter-
minant with the probability distribution of the pure-
gauge theory and subsequently to obtain the chiral con-
densate and specific heat by differentiating Z.

In order to have a better understanding of what we are
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=m +a]m +. . . +ay/2 im +ay/2,V V —2 2 (2.S)

where a, is proportional to the pure-gauge vacuum ex-
pectation value of the sum of all gauge-invariant loops of
perimeter 2; that is to say, the number of lattice links. In
general, the coefficient a, will be proportional to the vac-
uum expectation value of the sum of all combinations of

I

really computing when we calculate expression (2.4), let
us recall the properties of the lattice Dirac operator. The
fermionic determinant is a gauge-invariant operator
which only has even powers of m because of the sym-
metries of the 6 matrix. The gauge-invariance properties
of detA allow us to construct, in a simple way, the
coefficients of the polynomial given by expression
(2.4).' ' Indeed, we can write

( detA( U, m ) )po

gauge-invariant loops with total perimeter 2i which do
not touch (otherwise their contribution to the deter-
minant is zero). The sign of these sums is always positive
if we take the Kogut-Susskind phases in the correct way.
We note, in passing, that similar expansions of the deter-
minant have been used, for instance, in quantum chromo-
dynamics (QCD) finite-density simulations. '

Thus, the numerical evaluation of expression (2.4)
amounts to computing the vacuum expectation values of
all loops of a perimeter less than or equal to the lattice
volume V. It is clear that the computation of a, will
suffer, near the transition point, from large statistical er-
rors for large values of i, since in this case we are dealing
with large loops.

The P=O case can, in principle, be solved analytically'
since the vacuum expectation values of loops of the
nonzero area is zero. Then we get

a;(P)~& 0=( —,
'

)
' number of combinations of i disconnected links on the lattice .

In the following we describe in more detail how we
perform the numerical computation of (2.4). We generate
equilibrium configurations at some fixed value of P with
the probability distribution of the pure-gauge theory,
separated by 1000 MC gauge sweeps. We compute for
these configurations all the eigenvalues of the fermionic
matrix 6 at m =0. All the coefticients of the fermionic
determinant are then, in principle, known and, in fact,
they can be computed iteratively from the eigenvalues;
averaging them over the configurations, we get the nu-
merical value of expression (2.4).

The first numerical results we report concern the P=O
case. This particular value of P is interesting because we
can compare with analytic calculations. In fact, as we
mentioned before, the 13=0 case can be reduced to the
combinatorial problem of finding the number of discon-
nected link configurations we can construct in a hypercu-
bic lattice of volume V. This problem can be easily
solved in the smallest lattice (2 ). In Table I we compare
the rigorous results for the coeKcients of the partition
function (2 lattice) to the numerical results obtained ap-
plying the "naive" method to the evaluation of expression
(2.4). The agreement is excellent. In Fig. 1 we plot our
results for the chiral condensate at P=-0 and 2, 4, 6,
and 8 lattices. The top (straight) line in Fig. 1 is an ana-
lytic prediction. ' ' The agreement between the analytic
and numerical calculations is good and gets better for
lower values of the fermion mass, at larger lattice
volumes.

We have further compared our results in the deep
strong-coupling region with those obtained in Ref. 17
with the pseudofermion (PF) method. The authors of
Ref. 17 measured the fluctuations of the trace of the in-
verse fermionic matrix by the PF method and found a
peak around m=0. 11 for this quantity in the confining
phase, the height of the peak being independent of the
lattice size. We have done the same calculation using our
method and we have found that, in the 2 lattice, there is
a peak around m =0.1 in the strong-coupling phase but it

TABLE I. CoeKcients of the partition function Z at P=O in
the 2 lattice.

a; rigorous

16
100
312
516
444
182
29

1.0625

a; Monte Carlo algorithm

16.03(6)
100.4(8)

314(4)
521(8)

450(10)
185(5)
30(1)
1.08(11)

moves quickly to the left and its height increases rapidly
with increasing lattice size.

In Fig. 2 we compare the results for the normalized
fluctuations of the trace of the inverse fermionic matrix
obtained with the pseudofermion method' with those ob-
tained with our method (solid line in the figure); the peak
in this quantity is localized around m=0.002, P=O. I in
the 4 lattice in contrast with the value (m=0. 11) ob-
tained with the PF algorithm. This disagreement can
probably be attributed to convergence problems of the
pseudofermion method at small masses.

We have also done a simulation in the large-f3 region
checking that the chiral condensate approximates the
free case when P increases. Having checked that this
method is in good agreement with the analytical predic-
tions in the P~O as well as P~ ~ limits, we have per-
formed simulations at several values of II in order to com-
pare with existing standard calculations. In Fig. 3 we
plot our results for the chiral condensate as a function of
/3 at two representative values of the fermionic mass
(I=0.OS and 0.1) for a 6" lattice. At these intermediate
couplings, our results start differing from those in the
literature: for instance, the critical value f3, for the chiral
transition seems to be independent from the fermion mass
and approaches the critical value of the quenched theory
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From the discussion in the previous paragraph, the deter-
minant of the lattice Dirac operator can be written as

detb(m, U) =detb(m, S( U), S, (U)), (3.1)

= f gdE; dEN(E, E;)e~ detb(m, E,E;) (3.2)

with

N(E, E, )=f [dU]S(S(U) —E)ga(S, (U) —E, )

the density of states of fixed "energies" E,E; . Defining
then the average value of the fermionic determinant at
fixed energy E

f 'QdE; N(E, E;) det&( I, E, E)

deth(m, E)=
f gdE; N(E, E; )

j

where S ( U) is the pure gauge action and S, ( U) is the col-
lection of all other gauge-invariant operators necessary to
build up the coefficients a„(U) of the fermionic deter-
minant with n )2. Using relation (3.1), the partition
function (2.1) can be written as

Z= f [dU]5(S(U) E) —Q5(S, (U) E, )— .

XeP detb, (m, E,E, )dEgdE,

tion at a fixed P, one has large fluctuations that make its
computation, from a finite sample of points, very difticult.
On the other hand, by fixing the energy of the
configurations over which the determinant is computed, a
large part of the fluctuations disappear. This can be ex-
plained by considering that all the coefficients of the fer-
mionic determinant contain a term proportional to the
pure-gauge action with, in general, large coefficients;
moreover, fixing the energy prevents the system, near the
phase transition, from fluctuating between difT'erent va-
cua, reducing the fluctuations of larger loops. The
remaining Auctuations are associated with changes in the
gauge configuration that leave the average energy per pla-
quette (but not more complicated loops) constant.

In these circumstances the quantity of importance is
the amount of computer time needed to measure
ln detb, (m, E) with the precision necessary for the method
to lead to reasonable results. The answer to this question
is, in general, far from trivial; however, a simple analysis
of the feasibility of the method can be carried out under
some general assumptions. Figure 4 shows the probabili-
ty distribution of the logarithm of the fermionic deter-
minant at m=0. 1 and E/(6V)=0. 5103 for a 4 lattice.
As can be seen, the histogram can be very well approxi-
mated by a Gaussian (solid line).

Based on this result, let us consider a toy model in
which the probability distribution PF (x ) of the logarithm
of the fermionic determinant at energy E is described by
a Gaussian function

one gets, for the partition function,

Z= fdEN(E)e~ deth(m, E)=f [dU)e

where N(E) is the density of states at energy E:
N(E)= f gdE, 'N(E, E, )

1

= f [d U]5(S( U) E) . —

Equations (3.4) and (3.5) define an effective action

S,s = —/3S(U) —in detb, (m, S(U)) .

(3.3)

(3.4)

(3.5)

(3.6)

(x —x )

PE(x) =Ce (3.7)

ln detb, (m, E)=xo+ 1 (3.&)

240—

where C is a normalization constant and o. and xo are pa-
rameters which depend on the volume V, the energy E,
and fermion mass m. From the above distribution, one
can obtain, through an elementary calculation,

The method we propose consists in determining
ln detb, (m, E) numerically, as a function of the energy E,
and then in performing a numerical simulation of the
equivalent pure-gauge model (3.6) in order to measure
thermodynarnical quantities. The first step consists in the
generation of gauge configurations at fixed energy E with
a microcanonical process and in the determination of the
average fermionic determinant over the di6'erent
configurations generated. By repeating the procedure for
dift'erent values of E, one finally gets an expression for
ln detb, (m, E) by means of an interpolation of the points
obtained.

Since the numerical determination of the expression
(3.3) is the crucial step of our method, some discussion
about the feasibility of this computation is in order. The
nonlocal character of the fermionic determinant implies
that, computing the fermionic determinant on configura-
tions generated with the pure-gauge probability distribu-

200—

160—

80—

40—

20 22.5 25 27.5 30 32.5 35

FIG. 4. Probability distribution of the logarithm of the fer-
mionic determinant at fixed energy for a 4" lattice; superim-

posed (solid line) a Gaussian distribution.
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Since x0 is the average value of the logarithm of the
determinant at energy E, xo=ln detb, (m, E), it will, in

general, be a linear function of the volume V, thus giving
a contribution to the effective action (3.6) of the same or-
der as the pure-gauge term. The crucial point is the
dependence of a, i.e. of the width of the Gaussian (3.7) on
V. Let us assume that n ~0 as V when V~ ~ . There
are three possibilities.

(i) v) 1. Then 1/4a diverges as V and in the thermo-
dynamical limit this will be the dominant contribution to
the effective action (3.6).

(ii) v= l. Then 1/4cz is comparable to xo as well as to
the pore-gauge term.

(iii) v(1. Then the contribution of 1/4n disappears in
the thermodynamical limit.

Case (i) will certainly be surprising, since it will imply
that, in the thermodynamical limit, the physical results
do not depend on the gauge coupling constant. Case (ii)
is the most probable from a statistical point of view, but
even (iii) is not absurd, since it implies that the fluctua-
tions of the logarithm of the determinant are damped as a
consequence of the fixing of the energy of the
configurations.

In Fig. 5 we show the behavior of the fluctuations of
the logarithm of the fermionic determinant for m=0. 1

[Fig. 5(a)] and m =0.0 [Fig. 5(b)] as a function of E/6 V in
4, 6, and 8 lattices. The weak dependences of the fluc-
tuations on the volume which one observes, even at
m =0, seem to favor the behavior described in (iii); in
which case, the contribution of 1/4a to the effective ac-
tion is a pure volume effect, in the sense that it will disap-
pear in the large-volume limit. This result provides a
justification of the feasibility of the numerical computa-
tion of lndetb, (m, E). The interpretation of the results
shown in Fig. 5 in the light of the Gaussian model,
though not providing a rigorous proof, suggests that the
method proposed can be applied, with reasonable amount
of computer time, to realistic models and larger lattices.

Before going on, let us discuss in the light of our nu-
merical results for the effective fermionic action, the
feasibility of the method reported in the previous para-
graph. Figure 6 shows the numerical results obtained for
lndetb, (m, E) in 6 lattices as a function of the normal-
ized plaquette energy at typical values of the fermion
mass (m=0.01 and 0.0). The details of the numerical
simulation can be found in the next paragraph.

From the results plotted in Fig. 6, it follows that the
effective fermionic action is a smooth function of the pla-
quette energy for E &O.S and for E )0.68, and shows an
inAection in the intermediate energy region which is
deeper when the fermion mass decreases. From this dis-
cussion it follows that, in the strong- and weak-coupling
regimes, the effect of dynamical fermions can be de-
scribed in a first approximation as a renormalization of
the coupling constant /3, the shift in P being just the slope
of the curve of Fig. 6 in the relevant energy interval.
However, when we approach the critical point from the
confining or Coulomb phases, the intermediate-energy re-
gion becomes the relevant one and just in this region, the
slope of the curve of Fig. 6 changes rapidly. This effect
becomes stronger for decreasing fermion mass. Then we
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FIG. 5. Fluctuations of the logarithm of the fermionic deter-
rninant at fixed energy as a function of the normalized energy,
for 4, 6, and 8" lattices. (a) m=0. 1 and (b) I=O.O.
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FIG. 6. Numerical results for the effective fermionic action
for a 6 lattice vs the normalized plaquette energy at m =0.1 and
0.0. Statistical errors are not larger than the points.

expect that the naive method developed in Sec. II will

give good results, as it was checked, in the strong- and
weak-coupling regions, but it can be affected by strong
systematic errors near the phase-transition point.

To illustrate these concepts in a clearer way, we plot in
Fig. 7 the mean plaquette probability distribution at three



43 SIMULATING LATTICE FERMIONS BY MICROCANONICALLY. . . 3493

P values both in the quenched and unquenched cases. At
P=0.7 IFig. 7(a)j, the distributions have an overlap re-
gion showing that the fermionic determinant shifts slight-
ly the probability distribution function. This shift is ex-
pected to be smaller when P decreases since the slope of
the curves in Fig. 6 seems to be a decreasing function of
the energy E (a similar argument also applies in the
large-/3 region). However, in the intermediate-P region
the situation changes drastically as can be seen in Figs.
7(b) and 7(c), where essentially no overlap between the
two distributions is observed at P =0.885 and 0.95.
Therefore, and in the light of these results, we can under-
stand the success of the "naive" method in the strong-
and weak-coupling regimes as well as its failure in the
intermediate-coupling region.
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IV. NUMERICAL RESULTS

V/2—gA, ;=V (4.1)

We now discuss the numerical results, and give some
details on the simulations. As stated above, our simula-
tion is divided into two parts: first, we compute the aver-
age determinant as a function of the energy, by means of
a microcanonical procedure; second, the average deter-
minant gives rise to an e6'ective action which is used in a
canonical simulation.

We have used a standard overrelaxation procedure' to
implement the microcanonical simulation; energy values
have been chosen in such a way as to uniformly sample
the energy interval relevant to the canonical simulation.
For the 6 (8 ) lattice, the determinant is computed for
configurations separated by 500 (1000) overrelaxation
iterations, in order to guarantee the complete decorrela-
tion between successive configurations. In measuring the
fermionic determinant, we used the complete U(1) group,
while in the canonical simulation, the group used is the
discrete subgroup Z(256). The continuous group has
been implemented in the exact microcanonical algorithm,
which is, in general, inapplicable to discrete subgroups.
The determinant has been computed by exactly diagonal-
izing the fermionic matrix at zero mass on the chosen
configuration. The diagonalization is performed either
by means of a standard library routine (6 ), or using a
modified Lanczos algorithm (6,8 ). In both cases we
keep all the eigenvalues of all the configurations used.

This method has the obvious advantage of allowing the
computation of the average determinant and of its deriva-
tives with respect to the mass for every value of the fer-
mion mass: it is only necessary to perform the micro-
canonical simulation once in order to perform the ensu-
ing canonical simulation for every value of gauge cou-
pling constant, number of flavors and fermion mass. The
disadvantage of this method is the increase in computer
time with respect to the time needed to compute the aver-
age determinant at fixed mass; this is compensated by the
accuracy with which the determinant is measured. Hav-
ing all the eigenvalues at our disposal, it is possible to
check to which accuracy the relation
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FIG. 7. Histogram of the mean plaquette energy for the
quenched (q) against the unquenched (u) case at (a) P=0.7, (b)
P=0.885, and (c} P=O 95 for 6 lattices. The fermion mass in
the unquenched case is I=0.1.
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is satisfied. All results from both algorithms are in excel-
lent agreement with Eq. (4.1). A further check on the
precision of the algorithms has been performed by corn-
paring the eigenvalues obtained from both algorithms on
the zero-mass matrix, ' also in this case, the agreement is
excellent.

Having the eigenvalues for each configuration, it is
possible to compute the determinant as

detb, (m)= g( —
A,;+m ) (4.2)

from which we compute the effective fermionic action for
the canonical simulation (see Fig. 6). In the determination
of the effective action as well as in the canonical simula-
tions, statistical errors have been computed in a standard
way by means of the jackknife method.

As for the chiral condensate, it can be written as

(~~) 1 BlnZ
V Bm

JdE N(E)e~ Bl(Bm )deth(E, m )

JdEN(E)e~ detb, (E,m)
(4 3)

1.e.,

JdE N(E) e~ detb (E,m )8/(Bm )ln detb (E,m )

V JdEN(E)e~ detb(E, m)

It is thus directly calculable using the effective action and
fermion matrix eigenvalues already obtained.

Let us now describe the canonical simulations: it is im-
portant to control the reliability of the interpolation pro-
cedure necessary to compute the effective action for every
energy from the finite number of points on which the
average determinant has been measured. In the simula-
tions which will be presented in the following, we have
used a standard polynomial interpolation routine which
allows the reconstruction of the efFective fermionic action
with a little CPU time overhead. To check that we do
not introduce systematic errors in the canonical simula-
tions with this particular choice of interpolating function,
we have also performed simulations using different inter-
polation schemes, or varying the order of the interpolat-
ing polynomial. We have further checked whether the
statistical errors of the efFective fermionic action intro-
duce systematic errors in the canonical simulations. To
test this we have shifted the value of the effective fer-
mionic action within the range of the statistical errors.
All these tests led to results in agreement within statisti-

cal errors. This implies that systematic errors are well
under control.

The observables we measured are the plaquette energy,
the specific heat, and the chiral condensate. In order to
determine the height of the peak in the specific heat and
the critical value of the coupling constant, we have per-
formed an analysis similar to the one developed for the
quenched case. ' ' In the numerical simulations we have
used a modified overrelaxation procedure to take into ac-
count the use of a discrete U(1) subgroup. In the
canonical simulation, in fact, the use of a discrete sub-
group does not spoil the overrelaxation procedure, which
does not need to be exactly microcanonical, since it is
used for a few sweeps (1—5) between Metropolis ones; the
acceptance of this modified procedure is, in any case,
very high (99%).

We will now describe the results obtained in the follow-
ing cases: (1) 6 lattice with n&=4, (2) 6 lattice with
both n& =1 and 16, and (3) 8 lattice with nj =4.

(1) For the 6 lattice, the effective action has been
determined in the energy range 0.32—0.78; 11 values of
the energy have been considered, and for each value be-
tween 100 and 500 configurations have been diagonalized
with the method described above. The number of
configurations has been chosen in such a way as to keep
approximately constant the relative error on the effective
action. In the canonical simulations, the statistics used
away from the transition region is 200 thermalizations
(starting from an equilibrium configuration of the preced-
ing /3 value) and 800 measurements, while in the critical
region we have reached 1000 thermalizations and 36000
measurements, with three overrelaxation cycles between
Metropolis ones. The results of the longest run have been
used for the computation of the specific heat at the criti-
cal coupling.

In Fig. 8(a) we present the measured behavior of the
plaquette energy for two mass values (m=0.0 and 0.1).
The latter case is used for comparison with the results of
diff'erent methods. " In Fig. 8(b) we present the values of
the chiral condensate at m=0. 1, as a function of P. The
position of the phase transition is clear, as well as the
progressive shift of the critical coupling to lower values
with decreasing fermion mass; our results at m =0.1 are
in excellent agreement with those of Ref. 11, obtained
with standard methods.

From the analysis of the peak of the specific heat we
can accurately measure the critical values: /3, =0.8854(3)
at m=0. 1 and /3, =0.8540(5) at m=0; the height of the
maximum of the specific heat is h, =8.9(2) at m =0.1 and
/i, =8.2(3) at m =0 to be compared with the value
h, =7.57(13) of the quenched case. From the behavior of
h, as a function of the mass, we can observe that, as not-
ed in Ref. 11, the introduction of light fermions tends to
produce a stronger transition.

(2) As a consequence of the properties of the fermionic
action and of the fact that the determinant is known for
all the configurations generated in the microcanonical
simulation, it is possible to simulate any flavor number,
without a significant increase in CPU time, since only the
simulations in the effective theory are to be repeated. We
have thus performed simulations in a 6 lattice and n& =1
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and 16, checking with existing data.
In Figs. 9(a) and 9(b) and 10(a) and 10(b) we present the

results for nf = 1 and 16, respectively, measuring E
&

and
(Pt/i). From these figures it is evident that both the shift
in P, and the sharpness of the transition (evidenced by
the wide hysteresis cycle in the nf =16 case) increase
with the number of Aavors. In the nf =1 case there is no
real hysteresis, probably due to the fact that the statistics
used allowed the system to reach equilibrium. However,
the transition is well characterized by the huge variation
of the average values and the increase of the statistical er-
rors, which signals violent fluctuations of the system.

Again, our results in the one-flavor case are compatible
with those obtained by a stochastic method in Ref. 11.
However, in the 16-Aavor case, we have obtained results
slightly different from those of Ref. 11 in the sense that
our critical coupling seems to be somewhat larger. This
is not very surprising since systematic errors increase
significantly with the number of flavors both in our
method and that of DK.

(3) Finally, we present some results obtained in the 8

lattice; the statistics used for the determination of the
eft'ective action is, in this case, much lower than before (4
configurations for each of the 12 energy values in the
range 0.40—0.73). However, in light of the discussion on
the behavior of the fluctuations of the logarithm of the
determinant as a function of the volume (see Sec. III), it is
not inconceivable that these results are significant.

In Figs. 11(a) and 11(b) we present the results for the
plaquette energy and the chiral condensate; the statistics
for the canonical simulation of the effective theory
amount to a few thousands of iterations away from the
critical region, increasing to 172 500 iterations (with
overrelaxation) around the critical point. Using the data
of two long runs in the vicinity of the critical value we
can derive the specific heat at m =0.1 and 0.0. At m =0.1

and P=0.8935 we performed 30000 iterations with over-
relaxation; the critical coupling is /3, =0.8937(2) and the
height of the maximum of the specific heat is It, =24.5(6).
The histogram of the distribution of the plaquette energy
is shown in Fig. 12(a); the two-peak structure is evident.
The system has fluctuated 30 times between the two va-
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cua. Again, these results are in good agreement with
those of Ref. 12. At m=0 and p=0.864 we have data
from a run of 172 500 iterations, with overrelaxation; the
system stayed during 30000 iterations in the Coulomb
phase and then jumped to the confining phase remaining
there even after 140000 iterations [see Fig. 12(b)]. There-
fore, we cannot give an accurate value of the critical cou-
pling, which is in any case in the very proximity of
P=0.864.

The value of the peak of the specific heat is

h, =48.9(5). This can be compared with the quenched
case, which is h, =13.73(26) (Ref. 20); comparing these
numbers with those of the 6 lattice, we note that the
transition tends to become stronger at low masses, al-
though we cannot give reasonable values for the critical
exponents. In fact, the effects of scaling violations due to
the finite size are still important in these lattices. The re-
sults at I=0, however, point in the direction of a strong
first-order transition.

V. CONCLUSIONS

In this paper we have discussed some possibilities of
speeding up Monte Carlo computations with dynamical
fermions. The general idea is to factorize out the compu-
tation of the fermionic determinant, which is the most
costly in terms of CPU, so as to avoid repeating it for
every value of the parameters of the theory. Thermo-
dynamical quantities such as specific heat, chiral conden-
sate, etc. , are then recovered as appropriate derivatives of
the action.

A first attempt, amounting essentially to computing
the quenched average of the determinant, turned out to
miss the region of important configurations when the sys-
tem approaches the phase transition. The second ap-
proach turns out to be much more promising. We com-
puted the average determinant at fixed (total) energy.
The logarithm of the mean value of the fermionic deter-
minant is then inserted as an effective term in the action,
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which is used in a standard pure-gauge simulation. We
have used this method in an investigation of compact
QED, although, in principle, it can be used for other
gauge groups.

We have checked that, at least in the lattices examined
(i.e. , up to 8 ), the fiuctuations of the logarithm of the

determinant at fixed energy increase very slowly with the
volume. The fact that these fluctuations increase slowly
with the volume (i.e., the normalized fiuctuations de-
crease), if taken at face value, justifies the feasibility of
our method even for larger lattices. The results obtained
are extremely encouraging. We obtain results in good
agreement with those in the literature, using a relatively
small amoun; of computer time (700 CPU h for the mi-
crocanonical simulations) in a scalar computer (Vax
8650).

Furthermore, the method proposed here (at least in
conjunction with an algorithm which computes exactly
the determinant) allows us to perform computations at
small values of the fermionic mass, in particular, atI=0. Moreover, whenever it is possible to exactly com-
pute the eigenvalues of the fermionic matrix, the mass
dependence becomes trivial and can be factored out. The
results we present are obtained in this way. Another
relevant feature of our method is that correlations be-
tween consecutive configurations can be very well con-
trolled since, in the microcanonical procedure, the cost of
computer time in the overrelaxation algorithm is negligi-
ble.

We presented some intuitive arguments to explain why
computing the fermionic determinant at fixed energy
reduces its fluctuations. It is, however, fair to say that we
lack a more rigorous proof of the feasibility of the
method.
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