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QCD phase transition with Kogut-Susskind fermions on an 8 X2 lattice
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We report a study of the QCD finite-temperature phase transition in the presence of dynamical
fermions with fermion masses ranging from 5.0 to 0.02. These calculations were performed with
four Aavors of Kogut-Susskind fermions on an 8'X2 lattice using the "hybrid molecular dynamics"
algorithm. The transition remains unambiguously first order for fermion masses in lattice units as
low as 4.5, but weakens dramatically as the mass is reduced to 4.0. Calculations with masses of 2.0
and below show no evidence of a transition. Unlike studies with X, )2, we see no evidence of a
first-order phase transition for masses as small as 0.02.

I. INTRODUCTION

Low-lying states in the hadronic spectrum illustrate
two important properties of quantum chromodynamics at
zero temperature: the approximate SU(2) or SU(3) chiral
symmetry is spontaneously broken, and the theory
confines. Both of these properties are expected to persist
only for temperatures below that of the so-called QCD
finite-temperature phase transition. A number of argu-
ments including numerical calculations and rigorous re-
sults for SU(2) lattice gauge theory support the expecta-
tions that above some critical temperature chiral symme-
try will be restored and a deconfined quark-gluon plasma
will come into existence.

It has been long recognized that the finite-temperature
phase transition need not persist for all values of the
quark mass. The general symmetry-breaking arguments
that both the pure gauge theory and the massless chiral
limit possess a finite-temperature phase transition are
spoiled by quarks with a finite mass; the presence or ab-
sence of such a transition becomes a complicated dynami-
cal issue. This question has been addressed in recent
years by a number of large-scale Monte Carlo calcula-
tions. Good evidence is found for a strong first-order
chiral-symmetry-breaking transition when the quark
mass is small, and the calculations show that the transi-
tion weakens and probably disappears as the mass is in-
creased to intermediate values. With some exceptions,
current Monte Carlo evidence is consistent with, and
indeed supports a picture in which the finite-temperature
phase transition does not persist for all values of the
quark mass.

Much of the finite-temperature fermion work has been
carried out on lattices with N, =4, with spatial volumes
only occasionally exceeding 8 . Groups studying N, =4
pure gauge theory have felt the need to work on relatively
large lattices; Brown et al. ,

' for example, have employed
spatial volumes as large as 24, a size somewhat daunting,
given the cost of dynamical fermion calculations.

The calculations reported here are an attempt to ad-
dress these issues. We use Kogut-Susskind fermions for
computational efticiency, and because they possess a rem-

nant chiral symmetry at zero mass, we use four flavors
because that number emerges naturally in the Kogut-
Susskind formation and has received considerable atten-
tion in previous work. Our choice of N, =2, however, is
less conventional. The only other N, =2 study of the na-
ture of the finite-temperature phase transition was done
for the pure gauge case and showed clear evidence for a
first-order phase transition. By using an 8 X2 lattice,
we gain the advantage of higher statistics on a larger
volume than achievable on an 8 X4 lattice (a 16 X4 lat-
tice has a naively comparable physical volume) but at a
cost of working with a coarser lattice spacing that is fur-
ther from the continuum, and worries about the possible
breakdown of our simulation algorithm. The latter wor-
ry stems from using our algorithm with an N, =2 lattice.
In the update we calculate the quantity M M where M is
the Dirac matrix. In the extreme limit where all the
gauge links are unitary matrices, the coupling in the time
direction vanishes.

Keeping in mind our caveats about coarse lattice spac-
ings and the N, =2 limit, we are encouraged that we can
clearly resolve the pure-gauge deconfining phase transi-
tion and that the transition transforms in a sensible
manner with varying quark mass. In this work we
present results for a range of masses from ma =5.0 to
ma=0. 02. Going from large to intermediate fermion
mass, we study how the finite-temperature transition
weakens as the quark mass is reduced. At intermediate
to small fermion mass, we see the transition strengthen,
though we see no evidence for a reappearance of a first-
order phase transition.

II. METHOD OF CALCULATION

Our current calculation was done using the hybrid-
molecular-dynamics @ algorithm of Gottlieb et al. im-
plemented on the 16-node lattice gauge theory computer
at Columbia University.

The hybrid-molecular-dynamics algorithm samples the
partition function
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by introducing an auxiliary momentum field so that

Z= f [fX][fiP]e ("-"+" ') (2) (6)

S (X)=SG [ U]+S~[U], (3)

where SG, the simple Wilson action, is given by

The hybrid algorithm periodically refreshes the momenta
with a heat bath. Between heat baths, the momenta and
the dynamical variables are evolved according to
Hamilton's equations.

In our simulation, the action is

where m is the quark mass and o.;„are the Kogut-
Susskind sign factors.

The fermionic fields and the momenta are refreshed
with a heat bath at the beginning of each trajectory.
During the molecular dynamics evolution, the fermionic
fields are kept fixed.

In the heat bath we set

SG[U]=—Re Tr g (1—U t, U, +, „U +„, U„)
x,p) v

1

2
(8)

and Sz, the fermionic action, is given by

S~[U]=P,(M M)

U „, the gauge field, resides as SU(3) matrices on each
link of the lattice. P„ the Kogut-Susskind fermion field,
resides on even sites of the lattice. P=6/g, where g is
the gauge coupling. M, for Kogut-Susskind fermions, is
defined as

where k, are the eight Gell-Mann matrices normalized as
Tr(A.,A,b) =25,b, ri is a normal deviate, and ri is a com-
plex vector of normal deviates.

Hamilton's equations for our system take the form

U;„=I'P; U;„

and, for even sites,

iP;„=——(U, „IV, „—o, „[(MtM) 'p], [(M ) 'p*], ~„])rA (10)

and, for odd sites„

iP, „=——(U, „IV, „+o;„[(M) 'P];[(M M) 'Q*];+„I)r~.

V;„ is the sum of the six staples that surround the link

U; „, "TA" means to take the traceless anti-Hermitian
part, and is the exterior product defined as

P= —,'tr Q U(, „)

and the plaquette action

(16)

(04). b =P. 0b . — (12) = 1 —
—,
' Re Tr( U, ,U„+,„U„+„U„„)„„& (17)

We numerically integrate these equations using the
"leapfrog" method:

P ( +ro—,
' b, r) =P(ro)+ ,' ArP(ro), —

U(r„+dr) =exp[ihrP(r„+ —,'br)] U(r„),

P (r„+ ~ b r) = P(~„,+ —,
' Ar)+ ArP(r„),

(13)

(14)

where ~„=~o+n A~.
We run using a step size of 6~=0.02 and 0.025. Each

step requires an exponentiation and an inversion of the
fermionic determinant. We use a fourth-order Taylor po-
lynomial for the exponentiation and we reunitarize the
resulting matrix. We use a conjugate gradient to invert
the fermionic determinant. We stop with a typical resid-
ual squared of 5 X 10 across the lattice. For masses of
ma =0.05 and 0.02 we relaxed this condition to 5 X 10
We thermalize the system every 0.5 units of time. For
our heat bath we generate normal deviates using
Forsythe's method and uniform deviates using a Fibonac-
ci generator with a period exceeding 2

The following observables were measured every five A~
units of time: the Polyakov loop

The chiral condensate

Pg =
—,
' tr(M '

) =q*M (18)

where g is a complex vector of Gaussian noise
( g*q ) = 1, was measured every 0.5 units of time.

The 16-node Columbia machine only does fIoating-
point arithmetic to 22-bits precision. Empirically, we
have found this degree of precision sufficient for the
current calculation. The most direct check of the
correctness of our implementation has been made by the
newest Columbia machine which has 32-bit precision.
An independent implementation of an exact hybrid
Monte Carlo algorithm reproduced some results done by
our current calculation at m =2.0 and m =0.02. This
gives us a fair degree of confidence in our current pro-
gram in both the high- and low-mass regimes.

As a check of our simulation parameters, we did two
simulations at m =4.25. With a step size of At =0.02,
and 50 conjugate-gradient iterations we see a bimodal sig-
nal at P=5.040 (Figs. 6 and 12). With b, t=0.01, and 100
conjugate-gradient iterations, the configuration was much
more deconfined than our original simulation. Lowering
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FIG. 3. Curves used to find critical points. Included are
m =2.0, 4.0, and ao. From I =2.0 and 4.0, averages of the
real part of the Polyakov loop from times t =200—400 of both
hot and cold starts are plotted. Measurements for rn = oo are
from a heat-bath simulation and included only for comparison.
Lines are included to help guide the eye.
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FICx. 1. Data from an 8'X2 heat-bath simulation. Histo-

grams of (a) the real part of the "wrapped" Polyakov loop and

(bl the elementary plaquette at the critical coupling @=5.090.
Clear two-peaked structure is seen. "Wrapping" the Polyakov
loop P= ~P~e' ~ ~P~e" =P„„~~,d allows for comparison of
pure gauge measurements with finite-mass measurements.

to P=5.035 we managed to produce a simulation quite
similar to our original run (Fig. 17). This "shift" in P we
attribute to finite-step-size effects, but we emphasize that
we have reproduced the qualitative features of the phase
transition from our earlier run.

We spend 10% of our calculation checking for
hardware errors. The 16-node machine is configured as a
4X4 torus with each node containing a 2X2XSX2 sub-
lattice. Roughly every half hour, the lattice configuration
is "translated" one node and the previous three minutes
worth of calculation is duplicated and compared. After
six months of running, we have yet to detect a hardware
error with this test.
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FIG. 2. Data from m = ao, p= 5.092 simulation. Histograms
of (a) the real part of the Polyakov loop and (b) the elementary
plaquette. These histograms are made from a cold start and
reproduce the results from Fig. 1.

FIG. 4. Data from m =5.00, p=5.05 simulation. Histo-
grams of (a) the real part of the Polyakov loop and (b) the ele-
mentary plaquette. Dotted lines correspond to hot start, solid
lines correspond to cold start.
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FIG. S. Data from M =4.50, p=5. 037 simulation. Histo-
grams of (a) the real part of the Polyakov loop and (b) the ele-
mentary plaquette. Dotted lines correspond to hot start, solid
lines correspond to cold start.

FIG. 7. Data from m =4.00 P=5.025 simulation. Histo-
grams of (a) the real part of the Polyakov loop and (b) the ele-
mentary plaquette. Dotted lines correspond to hot start, solid
lines correspond to cold start. Two-peaked structure is much
less apparent than I =4.25 case.

III. SIGNAL FOR A FIRST-ORDER PHASE TRANSITION

First-order phase transitions are characterized by
discontinuities in the first derivatives in the free energy of

the system. In the case of lattice QCD, we look for
discontinuities in the Polyakov P and the chiral conden-
sate it/ order parameters as a function of temperature.

For systems with a first-order phase transition we say
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FIG. 6. Data from m =4.25 P=5 040 simulation. Histo. -

grams of (a) the real part of the Polyakov loop and (b) the ele-
mentary plaquette. Dotted lines correspond to hot start, solid
lines correspond to cold start.

FIG. 8. Data from m =3.50, P=5.006 simulation. Histo-
grams of (a) the real part of the Polyakov loop and (b) the ele-
mentary plaquette. Dotted lines correspond to hot start, solid
lines correspond to cold start.
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FIG. 13. Data from m =4.00, I33=5.025 simulation. Run
history of (a) the real part of the Polyakov loop and (b) the ele-
mentary plaquette. Solid lines are cold start, dotted lines are
hot start.

low-temperature phase and the high-temperature phase.
In finite models of systems with first-order phase tran-

op. n ta ing asitions, true discontinuities do not develo . I t k
statistical average over enough configurations, the order
parameters will converge to unique values for all temper-
ature, even the critical temperature. The reason for this
is that near the critical temperature, the two phases be-
come metastable and the system will tunnel between the
high-temperature phase and the low-temperature phases.
This coexistence of two metastable phases in a finite-sized
model is a clear signal for the presence of a first-order
phase transition in our system.

In on our computer simulation we sample P and 1i&ttj at
regular intervals, generally every tenth of a unit of micro-
canonical time. For points away from the critical point
we expect thermodynamic fluctuations to cause our mea-
surements to obey a Gaussian probability distribution
centered at the expectation value of our observables. The
signal for a first-order phase transition is a probability
distribution that corresponds to a double Gaussian with
an interfacial correction. '

Since our goal is to classify various masses in terms of
whether they exhibit a first-order phase transition or not,
it is not necessary to accurately determine the relative

eights and widths of the double Gaussian peaks at the
critical point. We are content to see a clear two-peaked
structure in the histogram of 1l&itj or P.

We search for the critical point by making several runs
over the region in temperature where the system crosses
between the presumed low-temperature phase and the
presumed high-temperature phase. For each tempera-
ture, we make runs from both an ordered (gauge fields set
to unity) lattice or a disordered [random SU(3) gauge

elds] lattice. This serves the dual purpose of probing for
metastable behavior near the critical point, and giving a

andle on equilibrium time when we are far from the crit-
ical point.

Unfortunately, there is no correspondingly definitive
signal that indicates the absence of a first-order phase
transition in a system. Instead, what we look for is a
smooth continuous crossover between low-temperature
and high-temperature regimes. In lattice QCD simula-
tions, this can be rather treacherous because of the long
equilibration time of the system. Early investigations
were misled by what was thought to be hysteresis (and
therefore a signal for first-order phase transition) when,
in fact, what was seen was the result of slow equilibra-
tion.

In our studies, by taking disordered and ordered starts
for each temperature, we are able to get an unbiased mea-
surement of P and tt&g in the transition region. When the
hot start measurements and the cold start measurements
converge together for all values of P giving us a smooth
crossover between the high- and low-temperature re-
gimes, we say the system does not have a first-order phase
transition.

FIG. 14. Data from m =3.50, P=5.006 simulation. Run
history of (a) the real part of the Polyakov loop and (b) the ele-
mentary plaquette. Solid lines are cold start, dotted lines are
hot start.

IV. RESULTS

We he have performed a series of calculations with four-
flavor Kogut-Susskind fermions on an 8 X2 lattice. At
large mass values, we have studied masses of ma =5.00,



43 QCD PHASE TRANSITION WITH KOGUT-SUSSKIND. . . 3481

4.50, 4.25, 4.00, 3.50, 3.00, and 2.00 as well as the pure
gauge case of ma=~. For this range in masses, we
present histograms and evolutions for the Polyakov loop
and elementary plaquette that show the structure of the
deconfining phase transition as it weakens with decreas-
ing mass. At intermediate to small mass, we present re-
sults from simulation with ma =1.2, 1.0, 0.8, 0.5, 0.1,
0.05, and 0.02. For these small values, examination of
the Polyakov loop and chiral condensate shows contin-
ued broadening followed by a gradual sharpening of the
crossover region. However, no reappearance of a first-
order transition is observed.

A. Pure gauge result

C3 I I I I I I I I I
I I I

I
I I

I
I I 1 I

I
I

I i i i t I
I I

(b)

100 200 300
T

In light of our comments in Sec. I about the weakness
of the pure gauge transition, let us begin with a compar-
ison of pure gauge calculations performed with the same
hybrid-molecular-dynamics program used for the finite-
mass calculations, and with a conventional heat-bath pro-
gram. " Figures 1 and 2 show the histograms of the mea-
surements from the heat bath and the hybrid program
(see Fig. 9 for corresponding evolutions).

First, note that these runs are a good test of the
correctness of the molecular dynamics program: the
correct physical structure of the transition is obtained.
Next, we emphasize that the first-order deconfinement

200 300

FIG. 15. Data from m =2.0, P=4.90 that show very con-
tinuous behavior. Run history of (a) the real part of the Po-
lyakov loop and (b) the elementary plaquette. Solid lines are
cold start, dotted lines are hot start.

TABLE I. The long runs at p,„;„„,that were made in order to
observe bimodal behavior. Note that for ma =4.00 and
ma =3.50 no clear signal could be observed even with 20000
units of time.

transition is clearly resolved; the Polyakov loop histo-
gram shows a clear two-phase structure, which is seen
again more weakly in the bimodal plaquette histogram.
These pure gauge calculations show that only a finite-

5.00 5.050

Run length Comment

Clear bimodal signal
Figs. 4 and 10

4.50 5.037 7200 Clear bimodal signal
Figs. 5 and 11

4.25

4.00

3.50

5.040

5.025

5.006

8400

19000

24 000

Clear bimodal signal
Figs. 6 and 12

Large fluctuations
No clear bimodal signal
Figs. 7 and 13

Large Auctuations
No clear bimodal signal
Figs. 8 and 14

(b)

I I I

I
I I

500 '1 000

3.00 5.000 8000 Large Auctuations
No clear bimodal signal

2.00 4.750
4.850
4.900
4.915
4.930
4.950
5.000
5.250

400
400

5600
4800
2400

800
800
400

Smaller Auctuations
Transition region becoming
smooth 500 1000

FIG. 16. Data from m =2.0, P=4.915 that show very con-
tinuous behavior. Run history of (a) the real part of the Po-
lyakov loop and (b) the elementary plaquette. Both runs are
from hot starts.
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temperature transition significantly weaker than pure
gauge deconfinement could have been missed by the 8
volume and statistics of the dynamical fermion calcula-
tions presented here.

B. High masses

In order to locate the critical point, we look for signs
of metastability in the critical region. To this end, we do
hot and cold starts for 400 units of time and we examine
the last 200 units of time. In Fig. 3 we show this for
masses of ma =4.00 and ma =2.00. We see that there is
a rather noticeable gap for ma =4.00. For ma =2.00
this crossover region is very smooth; hot and cold starts
converge rapidly to a stable value. To show how much
this crossover-transition region has broadened, we have
also included pure gauge results in Fig. 3.

Histograms of the Polyakov loop and plaquette are
shown in Figs. 4—8 for a series of masses decreasing from
5.0 to 3.5, with corresponding evolutions given in Figs.
10—14. These runs are the basis for our principal result
and are summarized in Table I. The strength of the tran-
sition, as given, for example, by the separation of the
peaks in the Polyakov loop histograms, decreases modest-
ly as the mass is decreased from 5.00 to 4.25, but then
more sharply as the mass is decreased to 4.00. In fact, at
masses of 4.0 and 3.5, even with runs of 20000 units of
microcanonical time, no clean bimodal signal is seen in
the histograms, although they do show significant struc-
ture. The simplest interpretation of the data at these
masses is that the first-order transition persists down to

I I I I
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I i T

I
I

I I I

I I l I
I

4, 5
p

I i i i r I i i i i I
i i I

4.5
P

m =3.5, but has become rather weak by m =4.0, and
shows finite-volume smearing. Possible alternatives such
as a second-order transition, or a sharp, but continuous
crossover, are most easily probed by with larger volumes.

(a)

FIG. 18. Transition region measurements for several masses
(0.5, 0.8, 1.0). (a) is the real part of the Polyakov loop and (b) is
the chiral condensate. Triangles represent hot starts and boxes
represent cold starts.
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FIG. 17. Run history and histogram of a m =4.25 run with
step size of 0.01 and 100 conjugate-gradient sweeps. (a) shows
the results for @=5.040 which is apparently deconfined. (b)
shows a two-state signal at P=5.035. Solid lines are cold start,
dotted lines are hot start.

FIG. 19. Transition region measurements for several masses
(0.02, 0,05, 0.1). (a) is the real part of the Polyakov loop and {b)
is the chiral condensate. Triangles represent hot starts and
boxes represent cold starts. Notice the progressive sharpening
of the chiral condensate as mass is decreased.
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TABLE II. Values for the chiral condensate and the Polyakov loop at fermion mass, (a) ma =1.20,
(b) ma =1.00, (c) ma =0.80, (d) ma =0.50, (e) ma =0.10, (f) ma =0.05, on an 8'X2 lattice. The run
length is given in units of microcanonical time and indicates the number of units of time that was dis-
carded to allow for equilibration.

ma

1.20 4.30
4.60
4.70
4.75

4.80
4.90
5.00
5.10

Start

Hot
Hot
Hot
Cold
Hot
Cold
Cold
Cold
Cold
Cold

(a)
0.459(1)
0.452(2)
0.444(1)
0.439(1)
0.440(2)
0.431(1)
0.423(1)
0.415(1)
0.409(1)
0.409(1)

0.077(3)
0.128(5)
0.189(5)
0.242(14)
0.236(7)
0.310(13)
0.382(7)
0.444{5)
0.489(2)
0.489(2)

Run length

400-200
400-200
400-200
400-200
400-200
400-200
400-200
400-200
400-200
400-200

1.00

0.80

0.50

4.50

4.60

4.70

4.80

4.85

4.90

5.00

4.30
4.40
4.50
4.60
4.70
4.80
4.90

4.00
4.30

4.40
4.50

4.60
4.70

4.80

4.90

5.00

Cold
Hot
Cold
Hot
Cold

Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot

Hot
Hot
Cold
Hot
Cold
Cold
Cold

Hot
4.00
4.40
4.50
Hot
4.60
4.70
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot

(b)

(c)

(d)

0.470(1)
0.469(1)
0.465(1)
0.463(1)
0.454(1)
0.454(1)
0.445(1)
0.445(1)
0.439(1)
0.439(1)
0.433(1)
0.432(1)
0.428(1)
0.427(1)
0.419(1)
0.418(1)

0.491(2)
0.485(1)
0.476(2)
0.463{2)
0.445(2)
0.430(1)
0.419(1)

0.511(2)
0.481(2)
0.485(3)
0.469(2)
0.447{2)
0.444(3)
0,417(3)
0.395(2)
0.397(1)
0.377(1)
0.379(1)
0.363{1)
0.365(1)
0.351(1)
0.353(1)

0.133(7)
0.131(6)
0.167(5)
0.179(6)
0.250(5)
0.240(7)
0.307(8)
0.310(7)
0.355(4)
0.347(7)
0.387(4)
0.391(7)
0.420(5)
0.421(3)
0.468(2)
0.469{2)

0.114(4)
0.149(5)
0.180(6)
O.247(7)
0.331(6)
0.404(5)
0.452(3)

0.130(5)
0.212(12)
0.203(6)
0.244(3)
0.307(5)
0.307(6)
0.380(6)
0.437(5)
0.431(3)
0.473(2)
0.472(3)
0.504(2)
0.502(2)
O.527(2)
0.526(2)

750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200

400-200
400-200
400-200
400-200
400-200
400-200
400-200

200-100
200-100
200-100
200-100
800-200
200-100
200-1OO
400-200
400-200
400-200
400-200
400-200
400-200
400-200
400-200
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TABLE II. (Continued).

ma

0.10

N,

3.60

3.80

3.90

4.00

4.10

4.20

4.40

Start

Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot

(e)

0.465(2)
0.466(2)
0.405(2)
0.406(3)
0.360(3)
0.361(3)
0.314(3)
,0.302(3)
0.262(2)
0.264(2)
0.220(2)
0.221(1)
0.167(1)
0.167(1)

0.190(2)
0.189(2)
0.252(2)
0.2S1(3)
0.292(3)
0.291(3)
0.330(4)
0.342(2)
0.371(2)
0.371(2)
0.407(1)
0.405(1)
0.457(1)
0.456(1)

Run length

750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200

0.05 3.10

3.30

3.50

3.65

3.80

3.90

4.10

Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot

O.S14(3)
0.516(2)
0.482(3)
0.487(2)
0.435(4)
0.434(3)
0.370(3)
0.370(4)
0.278(4)
0.279(4)
0.220(4)
0.218(3)
0.141(2)
0.139(1)

0.139(2)
0.138(1)
0.167(2)
0.163(2)
0.210(3)
0.205(2)
0.258(2)
0.255(4)
0.316(3)
0.315(3)
0.350(3)
0.350(2)
0.403(1)
0.405(2)

750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200
750-200

TABLE III. Values for the chiral condensate and the Polyakov loop at fermion mass ma =0.02 on
an N, X2 lattice. The run length is given in units of microcanonical time and indicates the number of
units of time that was discarded to allow for equilibration. Note that the corresponding measurements
for N, =8 and 16 are identical.

0.02

16

3.50

3.55

3.60

3.65

3.70

3.80

3.90

4.00

3.65

3.70

Start

Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot
Cold
Hot

0.353(9)
0.359(6)
0.321(8}
0.334(5)
0.283(5)
0.283(12)
0.235(6)
0.217(6)
0.189(8)
0.184(6)
0.130(3)
0.130(3)
0.091(2)
0.096(2)
0.071(2)
0.074(1)
0.231(2)
0.227(6)
0.192(2)
0.189(3)

0.242(5)
0.239(3)
0.2S8(4)
0.253(4)
0.282(3)
0.283(7)
0.303(3)
0.313(4}
0.324(2)
0.324(2)
0.352(2)
0.351(2)
0.374(2)
0.372(1)
0.395(1)
0.391(1)
0.301(2)
0.302(3)
0.319(1)
0.321(2)

Run length

600-200
600-200
600-200
600-200
600-200
600-200
600-200
600-200
600-200
600-200
600-200
600—200
600-200
600-200
600-200
600-200
400-200
400-200
400-200
400-200
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Finally at a mass of 2.0, we see no evidence for a transi-
tion. The m =2.0 runs shown in Figs. 15 and 16 were
performed for P in the region of sharpest P dependence.
These runs are supportive of, and fully consistent with,
the absence of a phase transition at this mass.

C. Intermediate and low mass

In our attempt to locate a critical region for lower
masses, again we look for signs of metastability. Starting
from hot and cold starts, we do simulations of 600—700
units of time, throwing away the first 200 units of time to
allow for thermalization. Figures 18 and 19, and Tables
II and III, represent measurements of the Polyakov loop
and the chiral condensate obtained for masses between
1.0 and 0.02. As you can see, all of these are very smooth
with no discernible gap.

We observe in Figs. 18 and 19 that the chiral conden-
sate begins to show some structure in the crossover re-
gion at masses below 0.5. The transition region continues
to sharpen as the mass is decreased to 0.02, but no
discontinuity develops.

To further examine the I =0.02 case, we have made
runs using the 256-node Columbia machine on a 16 X2
lattice at P=3.65 and P=3.7. We see from Table III
that even with greater precision, larger volumes, and us-
ing an exact algorithm, the results show a smooth transi-
tion region with no discernible gap.

The failure to find the appearance of a first-order chiral
phase transition is rather surprising. First-order chiral
phase transitions have been found for ma =0.01 on lat-
tices with X, =8 (Ref. 12j and on N, =4, and X, =6 lat-
tices using the same 256-node machine and program that
fails to find a first-order transition for N, =2. ' It is be-
lieved that for N, =4, the first-order transition persists to
ma =0. 15. ' Naively, one would expect to see first-order
behavior on an N, =2 lattice at a mass as high as
ma =0.1.

sition. Below a mass of 4.00, we see fluctuations increase
and the two-peak structure wash out. These effects are
consistent with a phase boundary disappearing at a
second-order critical point. For intermediate and low
masses, the behavior is characterized by a smooth cross-
over between high- and low-temperature regimes for
masses as low as 0.02.

Our direct measurement of the disappearance of the
deconfining phase transition at intermediate mass is con-
sistent with, and serves to confirm, the failure of earlier
N, =4 calculations to find a first-order phase transition in
the mass region between ma =0.2 and ma =1.00. But as
we have noted in the previous section, our failure to see a
low-mass first-order phase transition is surprising. In
four-flavor simulations, a first-order chiral phase transi-
tion has been observed at ma=0. 05 on a 16 X4 lattice,
at ma=0. 01 on a 16 X6 lattice, ' and at ma=0. 01 on a
16 X8 lattice. ' At the critical point, ma =0.02 on an
8 X2 lattice would naively correspond to ma =0.01 on a
16 X4 lattice, ma =0 007 on a 24 X6 lattice, and
ma =0.005 on a 32 X8 lattice. On the 8 X2 lattice we
see none of the clear metastability seen on the 16 X 4, 6,
and 8 lattices. We do, however, see a progressive shar-
pening of our Polyakov loop and chiral condensate ob-
servables. At this point it seems possible that no first-
order transition will appear for small fermion mass on
8 X2 lattices.

Lattices with N, =2 appear to be anomalous in their
failure to exhibit a strong chiral phase transition at low
quark mass. This anomalous behavior is not well under-
stood and worries about the behavior of the update pro-
cedure on N2 =2 lattices mentioned in Sec. I only further
confuse the issue. Future studies of N, =2 lattices may be
advised to use alternative update procedures to minimize
these worries. The high-mass behavior, however, seems
consistent with lattices with larger temporal extent. We
believe these measurements present a good qualitative
picture of the disappearance of the deconfining phase
transition in lattice QCD.
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