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We establish the connection between the multigrid algorithms and the real-space renormalization

group. This is illustrated with the example of the two-dimensional Euclidean Klein-Gordon equa-

tion with random mass. The equation is then numerically solved using a two-level multigrid algo-
rithm.

I. INTRODUCTION

Simulation of lattice gauge theories' with fermionic
degrees of freedom requires repeated inversion of the
Dirac operator in the presence of a prescribed gauge
field. Such an operator is represented on the lattice by a
large, sparse matrix with Auctuating coefficients. The
usual numerical methods employed for inverting sparse
matrices involve some form of iterative scheme, and all
such algorithms show a poor rate of convergence when
applied to a Dirac operator with a realistic (small) quark
mass. We shall refer to this as the problem of critical
slowing down.

Similar problems appear in the numerical analysis of
partial differential equations (PDE's) and in this context
the "multigrid" (MG) method was developed. ' It allevi-
ates and in some cases eliminates the problem of critical
slowing down. Since the Dirac equation is a PDE, it is
natural to try and see whether the MG method would
work for the Dirac equation. On the other hand, there
are several features which distinguish the problem of cal-
culating fermionic propagators from that of solving ordi-
nary PDE's. Some of these are the presence of gauge
fields and the fact that one has to average the fermionic
propagator (or products of fermionic propagators) over
quantum fluctuations of gauge fields. In fact, the direct
application of MG methods faces problems in the pres-
ence of nonzero topological charge. '

In Ref. 9 (see also Ref. 11) it was suggested that one
possible way of taking into account these features is to
combine traditional multig rid methods with
renormalization-group techniques in a gauge-invariant
manner. In this paper we investigate this suggestion in
the simpler context of inverting the Euclidean Klein-
Gordon equation with a Auctuating mass in two dimen-
sions. The important feature this model shares with the
problem of calculating fermionic propagators is that both
involve inverting a matrix with Auctuating coefficients.

In Sec. II we give a brief introduction to the MG ap-
proach. As described in Sec. II, the MG method involves
solving for the smooth eigenmodes of the original opera-
tor on the coarse lattice. In Sec. III we address the ques-
tion of what should be the form of the operator on the
coarse lattice. In Secs. IV and V we use a real-space
renormalization-group (RG) transformation to obtain one

possible form for this operator. In Sec. VI we present our
numerical results. We state our conclusions in the final
section. In Appendix A the connection between the RG
approach to the MG method and the traditional ap-
proach is established.

II. MULTIGRID

Consider the linear equation

Lu=b . (2.1)

L is a symmetric positive-definite linear operator defined
on the lattice, and b is an external source; L will in gen-
eral depend on some external field. Let us apply the sim-
plest form of relaxation method, the Gauss-Jacobi algo-
rithm, to solve Eq. (2.1). Although the algorithm is not
the most efficient, we use it because it illustrates in a very
clear manner the role played by the small eigenvalues in a
relaxation algorithm:

u'"+"=(1 eL)u'"—'+ eb, (2.2)

where e is the step size. The nth iterate can be written as

u'"+"=u'"' —(1 —eL)"e, ,

where eo is the initial error, defined as

e =L 'b —u' '.
0

(2.3)

For the iteration scheme to converge, ~~1 eL
~~
(1,whic—h

can be ensured by choosing

(2.4)

where A,
+ is the largest eigenvalue of L. The component

of error along the A,th eigenmode of L will evolve as

e'"'=(1 —eA, )"e( )

n

(n) e (0)

(2.5a)

(2.5b)

e'"' =exp —n e' ' . (2.5c)

It follows from Eq. (2.5) that the number of iterations
required to solve Eq. (2.1) is of order of
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(2.6)

r( ) —g Lu( ) (2.7)

Then the error

e ()— ( ) () (2.8)

satisfies the equation

where A, is the lowest eigenvalue of the operator L.
the relaxation time, tends to infinity as k becomes small:
This is the problem of critical slowing down.

The central philosophy of the MG approach is that
slow components of the error, components associated
with low eigen values, can be well represented by a
coarser lattice. Therefore, by projecting the error vector
to a coarse lattice, we reduce the size of the problem
while retaining the information about the relevant
modes. We shall illustrate the idea with a two-grid algo-
rithm. Start with a trial solution u' ' and iterate this
solution v times. Calculate the residue defined as

III. FORM OF f
We are interested in solving the linear equation

L t
o. ]P=b, (3.1)

where L [o] is an operator defined on the fine lattice,
which depends on the "external" field 0., and b is a source
for the P field. In the context of lattice gauge theory, P is
the analog of a matter field and o. that of a gauge field. In
the multigrid algorithms we need to choose a coarse-grid
operator L which mimics the behavior of L I cr ] when act-
ing on slowly varying fields. Going from a fine lattice to
a coarse lattice corresponds to reducing degrees of free-
dom. The consequence of such a reduction can be fol-
lowed using RG methods. ' ' RG transformations can
be applied directly to Eq. (3.1), but from the point of view
of lattice gauge theories, it is more convenient and natu-
ral to implement it on the action from which Eq. (3.1) can
be derived. In Appendix A we show the equivalence of
the two approaches.

Consider a field theory defined on the lattice by the ac-
tion

(&) r(&)

Solving Eq. (2.9) is equivalent to solving (2.1) as

(2.9) S =S [P, o. ] +Sg [o.], (3.2)

(3.3)

u' '=u' '+e' ' (2.10)
S [o.] is the part of the action which only depends on the
0. field. To define this theory on the coarse lattice, we
divide the fields into two parts:

The MG approach is to solve Eq. (2.9) on a coarse lat-
tice (in what follows we will assume that the coarse lat-
tice constant is twice that of the original lattice). Denot-
ing the quantities on the coarse lattice with a caret, (3.4)

L~e( v) ~r( v) (2.11)

where

~r(~) —Pr (~) (2.12)

and P is the operator which projects the residue vector r
to the coarse lattice. L is the coarse-grid version of the
original operator L. We will consider one possible form
for it in the next section. L is smaller by a factor of 2
than L, where D =number of dimensions. After having
solved Eq. (2.11) on the coarse grid to some approxima-
tion, one interpolates the solution e to the original lattice,

e=Ie . (2.13)

The interpolated value of the error vector is used in
Eq. (2.10) to obtain a better approximation to the correct
solution. This is called the coarse-grid correction and is
given by

u' '=u' '~e (2.14)

To take into account the error introduced because of
projection and interpolation, v more iterations are done
on the fine grid. This constitutes one cycle of a two-level
MCi algorithm. To solve Eq. (2.11) efficiently, one may
again use a coarse-grid correction by introducing a new
grid, with twice the lattice spacing of the coarse grid,
thus defining a recursive algorithm.

(3.5)

The next step is to integrate out the P variables (see
Appendix A) to obtain an effective action for the P vari-
ables on the coarse lattice:

exp( —SIP, &,o. ] ) = fD(t exp( —SIP, &,g, o ] ) .

Then the action for the (t variables can be written as

(3.6)

(3.7)

Equation (3.7) defines one possible choice of the
coarse-grid operator for a given o.-field configuration.

The operator defined by means of Eq. (3.7) depends on
both the o. and the o variables. If the coarse-grid vari-
ables are obtained by blocking of the fine variables, as is
the case in our model problem (see Sec. V), then the &
variables contain the information about the long-
wavelength modes of the original o. configuration and the
o. variables have the information about the short-
wavelength modes. ' This motivates us to explore the

where (t and o are the coarse degrees of freedom, while

(t, o. are the degrees of freedom not present on the coarse
grid. The action (3.2) is now reexpressed in terms of
these new variables:
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possibility of approximating L ( cr, o'
) by an operator

which is only a function of the & variables. It is also
possible that eliminating the dependence over the o. vari-
ables is not the desirable thing to do in a given situation,
and one should not reduce the degrees of freedom for the
o. field and, therefore, obtain L as a function of both the
& and the o. variables. This is indeed the case in the suc-
cessful application of algebraic MG techniques to the
random-resistor problem. ' %'e will study this issue in
the context of our model both analytically in Sec. V and
numerically in Sec. VI.

L as defined by Eq. (3.7) is in general a nonlocal opera-
tor which is practically impossible to calculate. For-
tunately, for MG we do not need the full form of L, but
only its action on the slow modes (see Sec. II). Therefore,
for the MG algorithm we can replace L by L,pp„, as long
as

( +slowr +slow ) ( +slow~ approx +slow ) (3.8)

where 4,&, are the states spanned by the slow modes of
L. The simplest form of approximation which one can
try is

Si =—g —
P g (5„+„+5 „—25, )P

X,y )M

+P„a (m 5„+ger 5 )P (4.6)

Si =—g cr„—g (5„+„+5„„—25„)o.=1
X,y P

+Q P OX6X yOy (4.7)

where p is the mass of the 0. field. We will consider the
case where the coarse lattice, to be used in the MG algo-
rithm, is obtained by blocking the sites of the fine lattice,
as in Fig. 1. Corresponding to this blocking of sites, we
group the values of the fields into a four-component field.
These four-component fields live on the sites of the coarse
lattice:

L, „„„=Lt(2a), k, m ), (3.9) y(3) (4.8)

where a is the lattice constant of the fine lattice and k and
m are the renormalized coupling constant and mass. In
this approximation L,pp„, has the same form as that of
L, apart from renormalization of the parameters appear-
ing in it. In the next two sections we will investigate the
conditions under which such an approximation may be
possible.

IV. EUCLIDEAN KLEIN-GORDON OPERATOR
WITH VARIABLE MASS

where x labels the sites of the coarse lattice. Similarly,
we group the o. field in a four-component field X. Now
we rewrite the action (4.S) in terms of the coarse-grid
variables N and X; this can be done in a convenient
manner using the notations of Refs. 16 and 17:

g) T

T (+ ) g(&)+ T( —
) g(c)@

P P P y
x,y

One of the features, as noted in the Introduction,
which distinguishes the Dirac operator on the lattice is
that it is represented by a sparse matrix with fluctuating
coefFicients. To study the efFect of such randomness in a
simpler context, we consider the two-dimensional Eu-
clidean Klein-Gordon operator with a position-
dependent mass term. This leads us to consider the equa-
tion

+ —g cls, MrIs„+ —A, g &Is crsI&, ,
X X

gT
T(+ ) g(2)+ T( —

) g(c) )y2 2 2 P P P y
X,y P

+ —g X,NX

(4.9)

(4.10)

—g (P +„+rt „)+(E+Acr )P„=b (4.1)

with

K =4+m a

A, =a g )

b„=a J

(4.2)

(4.3)

(4.4)

0 ~ ~

~ ~ ~ ~

~4 ~ 3 ~ ~

is the external source for the P field, a is the lattice
constant, and m is the mass of the P field. The effect of
the cr field is to give a position-dependent mass term to
the P field; g measures the strength of coupling between
the P and o fields. We would like to use a MG algorithm
for inverting Eq. (4.1). The model can be described by
the action

~ ~
, e,

~ ~

4

S =Si+Si+g P b (4.&) FIG. 1. Blocking of the sites to obtain the block lattice.
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(4.11)

a"=n
P y, x+2)M y, x —2p (4.12)

where the matrices T and o. are defined in Appendix B,
and

m a

0
0
0

0

4+m a 0

4+m a 0

m 2a2

(5.8)

M and X are the so-called mass matrices defined by

M=K —2g T„+,
P

(4.13)

(4.14)

and H =4+p a . In terms of the block fields, the parti-
tion function becomes

The fluctuating fields are much heavier than the block
field; in particular, P3 is the heaviest mode. The action
(4.1) can be reexpressed in terms of the block-spin-
transformed fields. Explicit calculation shows that
decouples from the block field P, and in view of its large
mass, we shall neglect it. With this approximation we
have the following fields on the block lattice:

Z =Zo jQ dN dX exp( —SI@,XI ) . (4.15)
(5.9)

At this stage we have reformulated the model onto a
coarse lattice while keeping the same number of degrees
of freedom as on the fine lattice.

V. BLOCK-SPIN TRANSFORMATION

In order to thin out the degrees of freedom, we
separate the fields 4 and X into an average block field
and fields which take into account Auctuations within a
given block. First, consider the N field; the separation
can be done by the following similarity transformation,
implemented by the matrix R:

(5.1)

(5.2)

(5.10)

where now the fiuctuating fields P and cr have only two
components. These components correspond to Auctua-
tions within a block along the two coordinate axes (see
Pig. 2):

(5.11)

02
(5.12)

The next step in integrating out the fluctuations is to
go to momentum space on the block lattice, with lattice
spacing a =2a. The range of momenta will then be

where

(5.3)
a

'7T(pP
&

(5.13)

(5.4)

and for convenience we shall define k =p„a. Let n be
the number of points on the block lattice. The block ac-
tion can be rewritten as

S =S,+Sb+S, +Sd+S, +Sf,
where

(5.14)

p is the block field apart from normalization, while p
represent the fluctuations. These fields are the analogs of
P and P of Sec. III. In order to obtain the equation of
motion for P, we must integrate out the fiuctuations P
(see Appendix A). A similar separation can be done for
the X field:

+ g P'(@+I)&(l )P(k ),
4N k, ~

(5.15)

S, = —gg*(k)I —[cos(k, }+cos(k2)—2j+m a IP(k)
k

(5.5)

(5.6}

We shall refer to the above transformation as a block-
spin transformation' ' (BST). Under the BST, the mass
matrix (4.13), (4.14) becomes diagonal:

~ ~ ~ s
'leo o ~ o o o o ~

~ ~ '~ + ~ + ~ \ ~s ~ e
01 ~ ~ IOJOO

p4
i ~ g

~~3
I

i
I
~ 4y

~ ~

M =R.MR (5.7) FIG. 2. Definition of the P fields.
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Ss = —g P*, (k ) I
—[cos(k, ) —cos(k2 ) ]+K I P, (k )

k

S[o ]=—,'(&, ( —5 +p )a ),
s[~]=-,'(u, ( —3'+H)u)+(e, a e),

(5.23)

(5.24)

+ g P;(k+l)&(l)P, (k)
4n kP

+ i —g P*, (k )sin(k2 )P(k )

k

—gP (k)sin(k2)P, (k) (5.16)

Sd =—g 0**(k ) I
—[cos(k, )+cos(kz) —2]+p a I &(k ),

k

where —c) and —c) represent the kinetic energy terms
for the careted and the tilded variables, 0' is the central
derivative on the lattice, and K and H are defined via Eqs.
(4.2) and (4.14), respectively. The integration over the P
variables can be done exactly but formally; as for an arbi-
trary o. field configuration, the quadratic form in the in-
tegrand is not positive definite. We will continue with
this formal analysis as finally we will resort to a perturba-
tive calculation for L, which is valid for small values of A, .
The result of the integration is

and

S, = —g cr*, (k ) I
—[cos(k, ) —cos(kz )]+X]o. ,(k )

k

(5.17) s„ly, ,
-

]=s [y]——(a y, ~ -'I "]~0»

+—(a y, ~ -'["]-y)
2

+ i g—[o.*, (k )sin(k2)&(k ) —&*(k )sin(k~)cr, (k )]
k

+ g [P*, (k+1 )cr, (l )P(k )4n--
k, l =(y, L Id, u]P) .

A,
2

+ (crP, 3 'ter JcrP)

(5.25a)

(5.25b)

+P*(k )cr i (T)$,(k+ l )] . (5.18)

Before integrating out the P variables, let us rewrite
Eqs. (5.14)—(5.18) in the symbolic but more transparent
form

S, and Sf are obtained from Sb and S„respectively, by
interchanging subscripts 1 and 2. In terms of BST vari-
ables, the partition function has the form

Z =Zo f Q dP der dct da exp( —SIct, cr, g, cr ] ) .

(5.19)

'Icr ) is the propagator for the p field in the presence
of the fixed cr field (see Fig. 3). In obtaining Eq. (5.25) we
have neglected det[A 'Icr'I] as it does not effect the
equation of motion for the p field. L defined by Eq. (5.25)
is an nonlocal operator and does not have the same form
as L [Eq. (4.1)]. This form of L, as it stands, is of little
value for the implementation of a MG algorithm. Hence
let us investigate the conditions under which one can sim-
plify (5.25).

The o. field enters in the effective action through the
last two terms in Eq. (5.25). Consider the last but one
term: This term is of the order of

s =s[y]+s
I 4]+s[~]+sin], (5.20)

(5.26)

S[P]=—P, —5 +m a +—a
2 2

s[y]= —y, —8 + z+ —e
2 2

+(P,c)'P)+ —(P, crP),

(5.21)

(5.22)

which is small even in the case when k=rn a . Similarly,
the last term in Eq. (5.25) is of the order of A, /4. The
reason that the effects of these terms are relatively small
can be traced to the fact that we could implement a
blocking scheme on the P and cr fields in which the fields,
P and cr, representing fiuctuations within the block, have
a very large mass on the scale of the inverse lattice spac-

~ ~ ~ ~

FIG. 3. Result of integrating the P variables (~ above a line represents the derivative of the adjacent field).
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ing [see Eqs. (5.1)—(5.8)]. In view of the relative small-
ness of these terms, we will neglect them. It is in this ap-
proximation that we obtain L which is a function of the o.

variables alone. Let us now consider the effect of the
s=cond term in Eq. (5.25). In the leading perturbative ap-
proximation for 2 'I & ], this term combines with S [t)t ]
tc give, in the long-wavelength limit,

S,tr[ j]=—g (t "(k)[(kt+k2)+m2a2]t)t(k)
k

+2/2n g P*(k+1 )8(l)P(k),
k, l

(5.27)

VI. NUMERICAL STUDY OF TWO-DIMENSIONAL
EUCLIDEAN KLEIN-GORDON EQUATION

WITH RANDOM MASS

As a first step in determining the eff'ectiveness of MG
algorithms, we consider the equation

2

(t}t„+„+P „) +[4+a (m +gtT, )]t)t =a b„,
@=1

(6.1)

where a is the lattice constant, m is the mass of the r)t

field, and b is an external source. o. is a random external
field, which takes values from a Gaussian distribution:

I'[cr ]= exp( —
—,'o„) .

1

( 2~)
(6.2)

with a =2a and A, =a g. This is the same as the original
action, in the long-wavelength limit, on the fine lattice,
except for a rescaling of the lattice constant. The P and
& fields are now normalized so that they correspond to
the block-average fields. We will use L defined via Eq.
(5.27) in a numerical study of a two-level MG algorithm.
One of the aims of our numerical experiments will be to
check the validity of the approximations made in obtain-
ing Eq. (5.27).

FIG. 4. Lowest eigenfunction of L.

operator corresponding to piecewise constant interpola-
tion.

We used the simplest form of relaxation algorithm, the
Gauss-Jacobi method, to invert Eq. (6.1) with periodic
boundary conditions. As remarked in Sec. II, the Gauss-
Jacobi method is not the most efficient algorithm for in-
verting Eq. (6.1), but it has the virtue of showing in a
clear manner the effects of the lowest eigenmodes of the
operator on the relaxation process. The lowest eigen-
function of I for a lattice of size 32 with g =0.25 is
shown in Fig. 4; it shows a marked degree of localization.
This is not surprising, since Eq. (6.1) with (6.2) is similar
to the Anderson model which exhibits localization. '

We studied the problem of inverting Eq. (6.1) on lat-
tices of size 64, 128, and 256 with and without the
two-level MG algorithm. We implemented the two-level
MG by first applying v, =4 iterations of the Gauss-Jacobi
algorithm on the fine lattice. Then we go down to a
coarse lattice obtained by blocking the fine lattice and
solve for the error equation [see Eq. (2.11)] by applying
v2=4 iterations of the Gauss-Jacobi algorithm. Finally,
we come back to the fine grid and apply vi more itera-

Because of the random field, the effective mass varies
around m with a root-mean-square deviation equal to g.
The model differs from the model considered in Secs. IV
and V in that the action for the cr field is

S [ o ]
=

—,
' g o'„, (6.3)

and the randomness is "quenched" rather than "an-
nealed. "

Using the analysis of Sec. V, we consider the following
form for L:

2

(LP) = —g (P + +qY )+[4+a (m +gr7 )](tr,
/=I

(6.4)

12—

10 — o

I
I

L=128
= sin g I e —

g rid(g =0.0001
&

~ = single —grid(g=0. 00t)
= two —grid g=0.0001)—
= two —grid g=0.001}

P P

where

& =2a (6.5)

—5.0 —4.0

In (mass)
—3.5 —3.0

This is precisely the Galerkin choice of the coarse-grid FIG-. 5. 1n{~) vs 1n{mass) for L = 128.
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TABLE I. Results for L =64.

L =64
Mass 7$g +mg eff No. conf.

0.01
0.02
0.03

0.0001
0.0004
0.0009

1.0
1.0
1.0

50 329
12 641

5 786

10 849
2 691
1 203

4.63
4.70
4.80

25
50
50

0.02
0.02
0.02

0.0012
0.0024
0.0036

3.0
6.0
9.0

12 696
12 388
13 561

2 707
2 787
2 946

4.69
4.44
4.60

50
50
50

tions. This cycle was repeated until the norm of the resi-
due was less than 0.005.

One of the motivation in doing these numerical experi-
ments was to see the effect of randomness on the perfor-
mance of the MG algorithm. This was done by evaluat-
ing the performance of the MG algorithm for various
values of g /m and m, over a number of distinct
configurations of the o. field. Our results are presented in
Tables I—III, where we define the efficiency (eff) as the ra-
tio of the average value of r [see Eqs. (2.5c) and (2.6)] for
a single grid to ~ for the two-level MG algorithm. In
each case we see that the two-level MG algorithm de-
creases the average relaxation time by a factor of at least
4, but as expected, this does not eliminate the critical
slowing down (see Fig. 5; [the dip in Fig. 5 occurs for the
value of m for which the algorithm on the top grid be-
comes optimum for the fixed chosen value of the step size
e of Eq. (2.2)]) as it is still, with two levels, a local algo-
rithm. The efficiency of the algorithm showed large Auc-
tuations for a small-sized lattice, L =64 (see Fig. 6), but
decreased for the larger lattice L =256 (see Fig. 7) with
the value of g jm kept constant. In all the cases studied,
we find that the efficiency of the algorithm remained fair-
ly constant for a wide range of randomness, as measured
by the value of g /m . This is consistant with the fact

that the RG corrections to L are in each of these cases
small, being of the order of g /4 (see Sec. V).

The main result of our preliminary investigations is
that the MG algorithms are effective even for operators
with fluctuating coefficients, in the range suggested by
RG analysis.

VII. CONCLUSIONS

In this article we have established a connection be-
tween the real-space RG method and the multigrid algo-
rithms. RG provides us with one possible form of the
coarse-grid operator L, which has the desired property of
reproducing the correct infrared physics on the coarse
lattice. This is of utmost importance for MG algorithms
as we want to solve for the long-wavelength modes of the
original operator on the coarse lattice. In the traditional
approach to MG, one chooses a simple form for L, which
is usually obtained from the original operator L by re-
placing the lattice constant a by 2a. From the computa-
tional point of view, such a form of L is desirable, and
therefore we would like to know if the traditional ap-
proach would work in a given situation. This can be
answered by an approximate RG calculation of L, thus
determining the range of conditions under which the

15. 0

12. 5—

10. 0—

L = 64
mass = 0. 01
g

= 0. 0001
conF = 25

L = 256
m=001
g

= 0. 0001
conF = 25

7. 5—

5. 0—

2. 5—

M

3. 5 4 0 4. 5

SG MG

5. 0

FIG. 6. Fluctuations in the efficiency of the two-level MG al-
gorithrn for L =64.

FIG. 7. Fluctuations in the efficiency of the two-level MG al-
gorithm for L =256.
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TABLE II. Results for L =256.

L =256
Mass

0.01
0.02
0.03

0.0001
0.0004
0.0009

1.0
1.0
1.0

7$g

48 244
5507
5574

+mg

10780
1142
1185

4.48
4.82
4.70

No. conf.

25
25
25

0.03
0.03
0.03

0.003
0.006
0.009

3.3
6.7

10.0

5582
5725
6017

1193
1226
1286

4.68
4.67
4.68

25
25
25

traditional MG algorithms will be effective. Outside this
range an approximate RG analysis indicates that the
form of L has to be modified. Such a modification usual-
ly involves introducing next-nearest-neighbor interac-
tions and renormalizing the parameters appearing in the
original operator L. We have extended this analysis to
the case of fermionic propagators in lattice gauge
theories. ' This was done by obtaining L in the Migdal-
Kadanoff approximation. The numerical properties of
this operator are currently under investigation.
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TABLE III. Results for L =128.

L =128
Mass

0.007
0.010
0.013
0.016
0.019
0.022
0.025
0.028
0.031
0.034
0.037
0.040
0.043
0.046
0.049

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

7?1

2.04
1.0
0.59
0.39
0.28
0.21
0.16
0.13
0.10
0.09
0.07
0.06
0.05
0.05
0.04

Sg

119912
76 440
51 355
19067
19 123
10460

8 458
6 244
5 220
4291
3 239
1 370
2 497
2 314
2 053

+mg

22 180
10 932
6482
4 201
2 974
2 217
1 711
1 368
1 116

924
620
279
491
481
437

eff

5.4
7.0
7.9
4.5
6.4
4.7

4.6
4.7
4.6
5.2
4.9
5.0
4.8
4.7

No. conf.

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

0.007
0.010
0.013
0.016
0.019
0.022
0.025
0.028
0.031
0.034
0.037
0.040
0.043
0.046
0.049

0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

20.4
10.0
5.9
3.9
2.8
2.1

1.6
1.3
1.0
0.9
0.7
0.6
0.5
0.5
0.4

58 885
31 720
18 965
13 659
10214
7 942
6 383
5 286
4358
2437
1 371
2 436
2257
2038

35 786
14 075
6 600
4 270
2 992
2 246
1 717
1 370
1 124

931
623
315
551
495
442

4.5
4.8
44
4.6
4.5
4.6
4.7
4.7
4.7
3.9
4.4

4.6
4.6

23
50
50
50
50
50
50
50
50
50
50
50
50
50
50
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APPENDIX A This allows us to define I as

In this appendix we will establish the connection be-
tween the coarse-grid operator defined by means of the
RG transformation (see Sec. III) and the coarse-grid
operator defined via so-called Galerkin condition.

Consider the following linear equation defined on the
fine grid:

Lg=b, (Al)

where L is a symmetric positive-definite operator. We
wish to find its form on the coarse grid. Let us assume
that there exists an interpolation operator I such that

Q=IQ, (A2)

where P is the field defined on the coarse grid. Equation
(A2) is statement of the assumed smoothness of the slow
modes (see Sec. II). Using Eq. (A2) in (Al), we obtain

LIP=b . (A3)

Applying the projection operator P [defined by Eq.
(2.12)] to both sides of Eq. (A3) leads to

PLIP=b . (A4)

From Eq. (A4) we obtain the Galerkin condition for
the coarse-grid operator:

L =PLI . (A5)

In order to make the connection between Eq. (A5) and
the L defined in Sec. III, consider the case when the
coarse grid is obtained by decimation (generalization to
the case of blocking will become apparent. ) Let the
coarse grid be defined by the "even" sites P, =P, while
the fine grid is defined by both the "even" and the "odd"
sites P, . Equation (Al) can be rewritten in the symbolic
form

L„
Loe

Loe

Lee

b,

b, (A6)

(L„L„L,, 'L„)P—, =(b, L„L,, 'b, ) . — (A7)

Equation (A7) provides us with the explicit form for the
L and the projection operator P:

The next step in the RG approach is to solve for the P,
in terms of the P, ; this can be done algebraically or in
terms of the "functional" integral. Let us first solve for
the P, algebraically. A simple calculation leads to fol-
lowing equation for the P, variables alone:

—L„'L„ —p T (A12)

Solving for P, is equivalent to integrating over them in
Eq. (A14). The result of this integration is

Z =const X fDg, exp[ —,'(P„LP,—)+(b,P, )], (A15)

where the L and the b are same as those given by Eqs.
(A8) and (A9).

Coming back to the Galerkin condition (A5), it is easy
to see that the L given by Eq. (A8) satisfies (A5) with the
projection and interpolation operators given by Eqs.
(A10) and (A12), respectively. Condition (A5) in itself
does not tell us the explicit form of the projection and in-
terpolation operators, while the RG approach provides
us with one possible form. The advantage of this, as not-
ed in Sec. III, is that by construction L will reproduce the
infrared physics of the L on the coarse grid. ' Unfor-
tunately, L given by Eq. (A8) can be calculated exactly
only for the one-dimensional cases. ' For more realistic
cases we need an approximate way of implementing the
RG prescription. Such an approximation, whether per-
turbative as in Sec. V or nonperturbative as the Migdal-
Kadanoff approximation, is most conveniently ex-
pressed in the language of functional integrals.

APPENDIX 8

The explicit form of T matrices is

0 1 0 0
1 0 0 0
0 0 0 1

0 0 1 0

(B1)

Instead of solving for the P, in terms of the P, algebra-
ically, one could consider the Gaussian integral

Z = fDP exp[ —
—,'(P, LP)+(b, P)], (A13)

where the integrand is the "action" corresponding to Eq.
(Al). Again, separating the degrees of freedom into the
"odd" P, and the "even" P„we obtain

Z= D,D, exp —
—,
' „L„,+ b„

,'(0.—L—..4. )+(&. 0,L.,—0.)] .

(A14)

L =L„—L„L„L„,
b =Pb,
P =( L„L,, '1) . —

(A8)

(A9)

(A10)

0 1 O O

—1 0 0 0
T o o o

0 0 1 0

(B2)

Let us now consider the form of the interpolation
operator I. In order to interpolate P to P, we will solve
for the P, in terms of the P, with the b, set to zero (as
there are no "odd" points on the coarse grid) and thus
obtaining

4'0= —L..'L.,0, . (Al 1)

0 0 0 1

0 0 1 0
T2=

P 1 P

1 0 0 0

(B3)
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0 0 0 1 o, (x ) 0 0
0 0 1 0

T 0 —1 0 0
0 o2(x) 0 0

—1 0 0 0 0 0 o.3(x ) 0

and the o matrix is
0 0 0 cT4(x )
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