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Perturbative renormalization of null-plane QED
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It has been recognized for some time that quantization on a null plane has several unique and re-
markable advantages for the elucidation of quantum field theories. To date these unique features
have not been exploited to solve strongly coupled, four-dimensional gauge theories. This is the first
in a series of papers aimed at systematically formulating renormalizable gauge theories on the null

plane. In order to lay down the groundwork for upcoming nonperturbative studies, it is indispens-
able to gain control over the perturbative treatment first. A discussion of one-loop renormalization
of QED in the Hamiltonian formalism is presented. In this approach, one is faced with severe in-

frared divergences characteristic of the light-cone gauge. We show how to treat these divergences
in a coherent fashion, and thus recover the usual results of the renormalization procedure such as
Ward identities and coupling-constant renormalizations.

I. INTRODUCTION

The dynamics of a relativistic many-body system is
specified completely by expressing the ten generators of
the Poincare group P" and M" in terms of dynamical
variables. The dependence of the generators upon the in-
teraction between the particles is not unique, but there al-
ways exists a kinematic subgroup, the set of generators
which are independent of the interactions. The kinemat-
ic subgroup is uniquely determined by the choice of an
"initial surface" on which the state of a system is
specified. The Poincare generators that do not belong to
the kinematic subgroup are called "Hamiltonians" and
they contain information about the dynamics.

In the usual formulation (H =P ) of dynamics, a phys-
ical state is given at x =const, which is left invariant by
the six generators of the associated kinematic subgroup,
translations, and rotations. In the null-plane formalism
(H =P ) a physical state is given on
x+=(x +x )/&2=const. There are seven generators
that leave the null plane invariant, and this is the largest
stability group of all possible schemes of relativistic evo-
lution. '

Another important property of the null-plane kinemat-
ic subgroup is that it acts transitively on the mass shell

p =m, p )0. Hence the null-plane wave function of a
system is determined if it is known at rest. This property
is not shared by theories based on a x =const initial sur-
face because the boost operators depend on the dynamics.
That is why the null-plane formulation is ideally suited
for the relativistic bound-state problem. Finally the kine-
matic subgroup of the null plane contains the generator
P =(P +P )/&2 of lightlike translations. The re-
quirement that the spectrum of P" should be contained in
the forward cone p )0, p & 0 implies that for massive
particles p+ must be positive. This ensures that the exact
ground state of the system is the bare Fock-space vacuum
of the canonical quanta.

Thus if a viable nonperturbative approximation scheme

is ever devised for the null-plane quantization approach,
vacuum problems will be vastly simplified. In a future
publication, we will investigate the approach invented in-
dependently by Tamm and Dancoff in the late 1940s. '

The idea consists in diagonalizing the Hamiltonian in a
Fock space truncated to some finite number of bare parti-
cles, yielding a finite number of coupled integral equa-
tions in the wave functions of the Fock components. In
doing this, one insists that the masses of the physical free
particles are fixed once and for all, which requires the ad-
dition of counterterms to the Hamiltonian. The method
will be successful if the number of required counterterms
remains finite, and if the eigenvalues converge rapidly
enough when the size of the allowed Fock space is in-
creased.

The pursuit of the Tamm-Dancoff approach in the
1950s led to insoluble difficulties because, in a space-time
frame, first the physical vacuum is not a Fock state, and
second the dependence of the boost operators on the in-
teraction makes a covariant treatment impractical. On
the other hand, a Tamm-Dancoff method developed in a
null-plane frame might very well, because of the proper-
ties described above, allow for a solution of quantum field
theories. ' A clear understanding of divergences in per-
turbation theory is a necessary first step towards formu-
lating such a program. The objective of this work is pre-
cisely to clarify this issue, at least at order one loop. We
expect it to provide guidance in the choice of counter-
terms in the null-plane Tamm-Dancoff treatment, as well
as a check of our future results against perturbative ones
in the small-coupling limit.

The null-plane (or light-front) formulation of quantum
field theory is not to be confused with the infinite-
momentum frame (IMF) description, in which a field
theory is formulated in standard fashion, but in a frame
moving at (almost) the speed of light [the renormalization
of QED at order one loop in the IMF can be found in
Refs. 7(a) and 7(d)]. In the general formulation of a field
theory in a null-plane frame, canonical commutation re-
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lations and initial conditions are defined on the null plane
x+=0 and the evolution of the system with respect to
x+ is determined. ' The canonical coordinates and in-
dependent degrees of freedom are very different in this
approach from those in the standard formulation of field
theory. In particular, QED develops four-point interac-
tions, the so-called instantaneous terms, which introduce
new singularities into the theory. It is not surprising
therefore that the one-loop renormalization of QED
quAntized on the null plane looks very different from the
standard treatment. For example, one finds' that, in the
IMF limit, the disconnected vacuum contributions sur-
vive simply because they are Lorentz invariant; further-
more there is a delicate interplay between cutoffs and
total-momentum limits, giving origin to tedious calcula-
tions. These difhculties do not arise in the null-plane
treatment.

Quantization is done in the light-cone gauge A + =0,
and a "time"-ordered perturbation theory is developed in
the null-plane Hamiltonian formalism. For gauge-
invariant quantities, this is equivalent to the use of Feyn-
man diagrams together with an integration over p by
residues. " In addition to not being manifestly covariant,
x -ordered perturbation theory is fraught with singulari-
ties, even at the tree level. In particular, there are two
types of instantaneous four-point interactions, one of
them proportional to (Pt+, )

' and the other to (pt+, )

where p„ is the momentum transferred instantaneously
across the vertex. The origin of these unusual, "spuri-
ous, " infrared divergences is no mystery. Consider for
example a free particle whose transverse momentum
p~=(p', p ) is fixed, and whose third component p is cut
off at some momentum A. Using the mass-shell relation
one sees easily that p+ has a lower bound proportional to
A . Hence the light-cone spurious infrared divergences
are simply a manifestation of space-time ultraviolet diver-
gences. One of the goals of this and future work is to
show how to treat these divergences in a self-consistent
manner. Bona fide infrared divergences are of course also
present, and can be taken care of as usual by giving the
photon a small mass, consistent with null-plane quantiza-
tion. ' For simplicity in this paper we shall not provide
an exhaustive treatment of the latter type of infrared
divergences, but shall concentrate on the divergences re-
quiring renormalization. The appearance of four-point
interactions, that is of terms that are naively nonrenor-
malizable, indicates that a power-counting analysis of
divergences works very differently in null-plane quantiza-
tion from a conventional space-time treatment. To the
order that is dealt with here (one loop), this did not cause
any major problems. However a more careful study of
higher-order corrections is necessary to understand the
full structure of counterterms in null-plane QED.

In Sec. II we present some of the basics of null-plane
theory including a brief review of the null-plane QED
Hamiltonian based on the work of Kogut and Soper. '

Some of our results in the next sections overlap with
those of Bjorken, Kogut, and Soper, ' who studied
scattering from an external field in the same framework.
In Sec. III we calculate the fermion mass shift and wave-
function renormalization Z2. Here we introduce our

II. BASICS

We define our light-cone coordinates by

+ x +x x —x
& z

0 3 0 3

x =— —,x =— —,x~=(x,x ),
VZ

' &2
(2.1)

and four-vectors are x =(x+,x,x~). The matrix tensor
is

0 1 0
1 0 0
0 0 —1

0 0 0

0
0
0 (2.2)

Our Dirac matrices have the property

(y+)'=(y ) =0 .

We will use extensively the projection operators
+ +

2
Fermion fields will often be decomposed as

1t=1(t++1(, where 1tj+—=A+/ .

(2.3)

(2.4)

(2.5)

The integration measure in light-cone coordinates is
given by

fd p~ f P =fd p5(P —m )H(p )=f
P

(2.6)

A list of conventions can be found in Appendix A along
with a number of useful identities.

The null-plane Hamiltonian is P, the operator conju-
gate to the 'time" evolution variable x+. P" is given in
terms of the energy-momentum tensor

P"=f d x~dx T+" . (2.7)

mixed regularization scheme which involves dimensional
regularization in the transverse dimensions and cutoffs in
the longitudinal direction x =(x —x )/&2. A three-
dimensional cutoff regularization scheme is also present-
ed. In the dimensional-regularization scheme, which will

be adopted in most of this paper, Z2 is found to be
momentum dependent.

In Sec. IV we calculate the photon mass shift and
wave-function renormalization Z3. In Sec. V we calcu-
late the various vertex corrections. We show that at zero
photon momentum the Ward identity Z, =Zz is satisfied.
However in general, because of the momentum depen-
dence of Zz found in Sec. III, the Ward identity takes the
form Z, (p+,p+)=QZz(p+)Z2(p+), where p+ and p

+

are the longitudinal momenta of the incoming and outgo-
ing electrons.

The Heitler method' for defining single-particle reduc-
ible diagrams which have a vanishing "energy" denomi-
nator, is discussed. Finally we effect the renormalization
of the electric charge and find the standard result

e~ =e+Z, .
In Sec. VI we present our summary and outlook.
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The energy-momentum tensor is easily obtained from the
standard QED Lagrangian PF = f d xidx —gy a p+ J+A (2.17)

l IX=—
Q ag —m fg —F—Fi' J—I' A

2 4 P& IJ '

where

One finds

T~ =F'~(a A )+g~ 'F'~F-a aP

(2.8)

(2.9)

It is now clear that we have two independent boson de-
grees of freedom Az, which we will now write a& = A&,
and we define 3+ =a++y+ and a = A =0, where

a+ =Okay and 0 go+ = —J+. Only one of the projec-
tions of P is an independent degree of freedom. We
define i)'j =g +i), g+=g+, and /=/++A, and use
g+ as our independent fermion degree of freedom.
and q are defined by

l l+ll —y"a'+g"" m ——8
2 2

f+g"'J A

(2.10)
a g = ——(i'y a„+m)y+g

2
(2.18)

It is convenient to separate out P into a purely bosonic
part PG plus a coupled fermionic part PF, and working
in the light cone gauge 3 + =0 we find

PG = f d xidx [(a A„)(a„A+ )
—

—,'(a A+ )~

+ '(F ) ] —(k=1 2)

la i) = —e A„y "y+g
2

Inserting these into P we find

P =H =Ho+ V) + V2+ V3,

w~ere

(2.19)

(2.20)

pF —f d xidx Q y a y ak+m
Ho= f d xidx —gy a g+ —(F,~) ——a+a akak

i — 1 2 1

(2.21)

(2.12)

However from the equations of motion for the vector po-
tential we see that

is the free Hamiltonian,

V, =e f d xidx gy"ga„

is a standard, order-e, three-point interaction,

(2.22)

a A =a akAk —J+, (2.13)

so that A+ is not an independent variable. Solving for
A + (x +,x,xi ) we find

V2= —f d x~dx i)y a
2

e f d —xidx dy e(x —y )(gaky )(x)

A~(x)= f dy [a ai Ai (y ) —J (y )j .
—y I

— +
2

(2.14)

X y (a, y'g)(y) (2.23)

Similarly the fermion equation of motion gives

a q = ——I(iak —eA„)y"+~jy+q

so that g is not an independent variable. We find

(2.15)

is an order-e nonlocal effective four-point vertex corre-
sponding to an instantaneous fermion exchange, and

V, =—f d xidx gy+gy+

2

f d xidx dy (gy+g)(x)Ix —y

l(x)= —— dy e(x —y )4

X [[iak eAk(y —
) jy"+~ Iy+q+

(2.16)

Using the equations of motion and integrating by parts,
PF can be written more simply as

(2.24)

is an order-e nonlocal effective four-point vertex corre-
sponding to an instantaneous photon exchange. Graphi-
cally V2 and V3 will be drawn as four-point interactions
and a hash mark will be drawn on the instantaneous par-
ticle. A11 graphs will be representations of matrix ele-
ments of H in "old-fashioned" perturbation theory. '

and n„have standard expansions in terms of creation and
annihilation operators:
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2
d + —

(
—

) (+
g(x)= f f g [u(p, s)e ' 'b(p, s, x+)+v(p, s)e ' 'd (p, s,x+)],

(2~) 2p s =+in
2

d + + i( +x — x )a„(x)=f 3& f g e„(q)[e
' " '""a(q, ~,x+)+e' " '"'at(q, ~,x+)],

(2~) 2q+ g=i, z

where

(2.25)

(2.26)

[b(p, s), b (p', s')] =5(p+ —p'+)5 (pi —pi)5„=[d(p, s), d (p', s') j,
[a(q, A), a (q', A, ')]=5lq+ —q'+)5 (qz —q~)5&&, .

(2.27)

(2.28)

(These relations hold at equal x+, and this argument is suppressed for brevity. ) In terms of these momentum-space
operators, the free Harniltonian has the form

Pg+ Pla, = fd'p, dp+
2p

2

(b (p, s)b(p, s)+d (p, s)d(p, s))+ + g a (p, s)a(p, s)
s =+1/2 2p

(2.29)

Additional discussion of the interactions can be found
in Appendix A (we do not attempt here to present a de-
tailed set of diagrammatic rules).

III. ELECTRON MASS AND YVAVK-FUNCTION
RKNORMALIZATION

& p' s'lp s &
=5(p+ —p' »'(pi —pl»„ (3.1)

which corresponds to Eq. (2.27), is not Lorentz invariant.
For an invariant normalization one must use

Consider the amplitude T of the transition matrix T
between free electron states (p, s) and (p, o ). Note that
the normalization of states

k
k = k+, , k~2k+

(3.7)

tex, and all particles are on shell. Also, we have first-
order contributions from Vz and V3. These two-point
vertices have been called "seagulls" or "self-induced iner-
tias" in the literature. They are displayed in Figs. 1(b)
and 1(c).

Detailed calculations are found in Appendix B. Here
we briefly present the results along with a discussion of
regularization procedures.

The other momenta appearing in Fig. 1(a) are

IP,s&=&2p lp, s& .

Hence
+

2m5m5, —= T =2p+ Tpp
—6~&,

(3.2)

(3.3)

(pi —ki) + mk'= p+ —k+, , pi —ki
2(p+ —k+ )

Using Eqs. (A14), (A17), and (A23), we obtain

One can also identify a matrix X(p) through

5m 5, = u (p, cr )X(p)u (p, s) . (3.4)

Note that in this time-ordered formalism all particles are
on shell; therefore, X(p) has meaning only as defined by
Eq. (3.4). In particular, the electron wave-function renor-
malization Zz must be obtained separately.

At order e, we find three contributions to this ampli-
tude. First, the perturbation expansion P

(a)

T —V+V V+ .1

p —Ho
(3.5)

(b)

yields a contribution which is second-order in V1, and is
shown in Fig. 1(a) (in all our diagrams, time fiows toward
the top). Here

Pg+ f71

p = p ~ + ~py
2p

(3.6)
P P

is the initial (or final) electron momentum. The longitu-
dinal and transverse momenta are conserved at each ver-

(c)

FIG. 1. Diagrams for the electron mass shift.
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d k~ ~+ dk+ u(p, o )y"(k"+m)y u (p, s)d„(k)
5m, 5, =

m (4~) o k (p —k )
3 + + +

p —k —k'

=u(p, o )X,(p)u (p, s) .

For diagram 1(b), one gets, using Eq. (A24),

(3.9)

ep+5 d k + dk+
&mb&, ~=

3 I + + + =u(p, o )Xb(p)u (p, s) .
2m (2') 0 k+(p+ —k+ )

(3.10)

dk+ p+
(

+ k+)2 Jo

=u(p, o)X,(p)u(p, s) .

For diagram 1(c), one finds, using Eq. (A26),

ep+5,
~

dk~
5m, 5, =

2m (2~)3 0

dk+
(p++k+)'

(3.1 1)

These integrals have potential singularities at k+ =0 and
k+ =p+, as well as an UV divergence in k~. To regular-
ize them, in a erst step we introduce small cutoffs a and

this method, a and P are treated as constants, so the rules
give zero for the logarithmic term in Eq. (3.15), and we
are left with

a&k+ &p+ —P, (3.12)
e m d ki2

5m = dx
(2~) 0 k+m x

(3.17)

and get rid of the pole at k+ =p+ in 5mb and 5m, by a
principal-value prescription. Then one obtains (see Ap-
pendix B)

d k~ p+ dk+
5m, =

2m I (277)' o k+ p k

—2 —1 —lnp p
CX

where x —= (k /p
+ ). Using the rules again, we get finally

e m
5m =—

8~ e
(3.18)

P'&A', (3.19)

Cutouts. In this method, one restricts the momenta of
any intermediate state by means of the covariant condi-
tion

d2k~ p+
5m, ——' 'ln P

2m (2~)3 a

d2k~ p+
5m, = —1

m (2~)3 a

(3.13)

Aq«A . (3.20)

where P is the total four-momentum of the intermediate
state, and A is a large momentum cutoff. Furthermore,
we assume that all transverse momenta are smaller than a
certain cutoff A~,

' with

where

m 2( k + )2+ (p
+ )~k2

~ k=
2 +k+p

(3.14)

In the case of diagram 1(a), Eq. (3.19) reads

k~ (p~ —k~) +m
k p —k

+ &A', (3.21)

Adding these three contributions yields

e d kj. p+dk+ m I35m = +ln
2m (2~)3 0 k+ pk a (3.15)

where

A +p~

p
(3.22)

Note the cancellation of the most singular infrared diver-
gence.

To complete the calculation, we present two possible
regularization procedures.

Transverse dimensional regularization. The dimension
d of transverse space is continued from its physical value
of two, and the resulting integrals are expressed in terms
of

Hence

k,'(p, —k, )'+m'

In Appendix B, we show that

L3 (pi —ki) +mz
k'

(3.23)

de=1——
2

(3.16) d2k ln d2k
a '

o p+ pk' (3.24)

Some useful formulas can be found in Appendix A. In similar to Eq. (3.43) of Ref. 7(a). Now
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2 d2k +
5m= ' f ', f' dk+ + . (3.25)

2m (2~)~ 0 p k p+ k+

Upon integration, and dropping the finite part, one finds
finally

(3.26).
Henceforth, we shall use only the dimensional regulari-

zation.
The wave-function renormalization Z2, at order e, is

given by'

3e m
6m = ln

16~ m
(3.26) (3.27)

which is of the same form as the standard result. ' Since
6m is not by itself a measurable quantity, there is no con-
tradiction in finding di8'erent results, Eqs. (3.18) and
(3.26). Note that the seagulls (especially 5mb) are re-
quired in order to obtain the conventional result Eq.

where Po is the total energy of the intermediate state
~m ). Note that this expression is the same as the one
giving 6m„except that here the denominator is squared.
Thus similarly to Eq. (3.9), we have

u (p, cr )y~(k'+ m )y'u (p, s)d„(k)
(p —k —k' )

d kl p dk
(1—Z2)5, p+ (4') o k+(p+ —k+ )

e 5, ~ d kz 2(1 —x)kf

(2m) 0 k~+m x x (kj+m x )

(3.28)

which is the same result as in Ref. 13. Naturally this in-

tegral is both infrared and ultraviolet divergent. Using
our rules, we get

6p 6gg =2p Tpp (4.2)

because we are not using a covariant, gauge-invariant
regularization. As in Eq. (3.3),

2 +
+ ', ln P

(2~)'
1 —ln p

m

'2
2 3 +

Z~(p+ ) = 1+ ——ln
8ne 2 a

—ln p
CL

(3.29)

where

2
Pzp= p ~ +~pg

2p
(4.3)

is the initial (or final) photon momentum. One can also
identify a "tensor" ~" (p) through

where p is the scale introduced by dimensional regulari-
zation. Note that Z2 has an unusual dependence on the
longitudinal momentum, not found in the space-time
treatment (this may vary with the choice of regulariza-
tion). A similar dependence was found by Thorn in the
case of scalar QED."

IV. PHOTON MASS AND WAVE-FUNCTION
RENORMALIZATION

2

2
(4.1)

Consider now the amplitude T of the transition ma-
trix T between free photon states (p, A, ) and (p, k') at or-
der e . Although the bare Lagrangian does not contain a
photon mass term (p =0), the one-loop contributions
from perturbation theory will require a counterterm

(4.4)

This "tensor" is not the usual covariant vacuum-
polarization tensor, and will be used only in the context
of Eq. (4.4). The corresponding diagrams are displayed in
Fig. 2.

The seagulls generated by Vz, which are displayed in
Fig. 2(b), yield

1 1

p+ —k+ p++0+

(4.5)

where again a principal-value prescription is implied.
Since this integral vanishes by dimensional regulariza-
tion, we are left only with 5p, corresponding to Fig. 2(a).
Similarly to the fermion case, one finds easily

p
+ pdk+ tris—' '(p)(k' +)8m' '(p)(k' —m)]

6p 6~~.=2e
(4m) a k+(p+ —k ) p —k —k'

(4.6)
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Using Eq. (A32), one obtains

(a)

e pl
6p ——

4~ e

As for the tensor defined in Eq. (4.4), it has the form

rr" (p)

(4.10)

p du+ M"=2e
(4m) fo k+(p+ —k+) p —k —k'

(4.1 1)

Neglecting terms in M"' that will vanish by dimensional
regularization, we show in Appendix C that

2k+(p+ k+) —„.
4 (p )

p p +m (4.12)

where

FIG. 2. Diagrams for the vacuum polarization.
Thus one sees immediately that

p„M"'(p) =O=p„wi' (p) =0 (4.13)

k~+m
k = k+, , kJ2k+

(4.7)

as required by current conservation. Now performing
the integrations, one finds

and
evr"'(p)= —

I —,'p"p'+m d" (p)] .
4~ e

(4.14)

(pi —ki) +m
2(p+ —k+)

d kJ
5p =e f ln

(27r )

~p 2ki
+2 +

(p+ ) ki+m

In Appendix C, we show that

(4.8)

(4.9)

Noncovariance introduces the transverse "tensor" d"'(p)
in the expression of ~", which gives rise to a nonzero
photon mass renormalization.

The wave-function renormalization Z3 for the photon
is given by the same formula as Z2 in Eq. (3.27). Hence,
similarly to Eq. (4.6), we have

tr[g' '(p)(k'+m)g' '(p)(k" —m)]
(p —k —k' )

e d kJ p+ —
f& dk+

+ f (4 )3 f k+( + k+)
e 5~q. d ki 2

2 2
Pl+k2+~2 k2+m2 2

(4.15)

Dropping the second term in the large parentheses which
is finite, we find

eZ3=1—
12~ e

(4.16)

which is of the same form as the space-time result. '

Note that Z3 can also be read oft' directly from the
coefficient ofp "p' in Eq. (4.14).

V. VERTEX CORRECTIONS

The vertex corrections A"(p,p ) are of order e, as they
get contributions of the forre V, , V2V, and V3 V, . Dia-
grams are shown in Figs. 3—7.

Since we are interested here in calculating the vertex
renormalization Z&, checking the Ward identities and

Ao = ey+

(2~) +2p+ +2p +V 2q+
(5.1)

where p and p are the initial and final fermion momenta,
respectively, and q is the photon momentum. We will
first discuss the ultraviolet divergences, and return later
to the treatment of the infrared divergences.

The diagram Fig. 4(a) gives a contribution

calculating the charge renormalization, it will be ade-
quate for our purposes to calculate A+. This leads to
considerable simplification, because the tensor structure
of the diagrams in Figs. 3, 6(a), and 6(c) all give zero.
Also the photon mass renormalization does not enter.

The calculations follow in the manner discussed in ear-
lier sections, and will be left almost entirely to Appendix
D. The primitive vertex, properly normalized is
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2
A+

0 8~ e
—+—
2 2

while Figs. 4(b) and

A0
8~ e

2—+
+ln ~

A

—ln P
P

4(c) together give
r

P 5'

(5.2)

(5.3)

Therefore

Z~(P ) = 1+ ——ln
3

8~@ 2
(5.8)

in agreement with Eq. (3.27).
The diagrams in Fig. 6 give the correction to the pho-

ton line. Figure 6(a) gives zero and Fig. 6(b) gives

Summing up the singular contributions to the diagrams
in Fig. 4 yields the vertex correction

+ e +—Ao =—Ao+(Z3 —1) .
12m e

(5.9)

2
A+

0 8~ e

Thus

——+ln
2 A2

—=Ao (Z, ' —1) . (5.4)
Thus

eZ3=1—
12~ e

(5.10)

2 3 +—+
Z, (p+,p

+
) =1+ ——ln

8~ e 2 o.
(5.5)

Again we see that Z, like Zz is momentum dependent.
Comparing the above result with the UV singular part of
Eq. (3.27), one finds that the Ward identity is satisfied and
that it takes the generalized form

Zi(p+, p +)=+Z2(p+)QZ2(p +) . (5.6)

The diagrams in Fig. 5 give the corrections to the final
electron state. Figure 5(e) is the mass counterterm. To-
gether they generate the fermion wave-function renor-
malization. Adding the contributions of the various dia-
grams we find

2

A+, ——ln+ e 3 I
0 8~ e

= —Ao (Z2 ' —1) . (5.7)

a

,S

FIG. 3. Diagrams for the vertex corrections with instantane-

ous fermion exchange.
FIG. 4. Diagrams for the usual vertex correction and the as-

sociated instantaneous photon exchange.
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in agreement with (4.9). The fact that (5.8) and (5.10)
agree with previous determinations is a nontrivial result
in Hamiltonian perturbation theory. The external lines
do not factor from the vertex as they do in the covariant
treatment because the energy denominator contains con-
tributions from all particles in the intermediate states,
thus mixing the final state with other parts of the dia-
gram.

Consider the contributions from the diagrams in Fig. 7.
They are all one-particle reducible, and therefore the en-
ergy denominator associated with the single-particle state
vanishes. We shall use the Heitler method' for defining
these diagrams. While being somewhat formal, it has the
advantage of being straightforward to apply.

Let us study first Fig. 7(a). There are two intermediate
states and therefore two energy denominators. To de-
scribe the method, we will write the integrals as discrete
sums. The amplitude is of the form

V~ V, V~
T(7a)—

(P~ P„)(P—s P)— (5.1 1)

where 8 is the initial state, A the final state, n and m the
intermediate states. The single-electron states m have
P =Pz because of momentum conservation, thus
rendering Eq. (5.11) ill defined. We define it by means of
the principal-value integral

T(p ):f dE 5(E Pg )

(c)
FIG. 6. Diagrams for the vertex corrections with vacuum po-

larization.

Performing formally the integration, one finds

V~ V „V„~ . (5.1&)
(& —P, )(E —P

V .V.a
(P~ P„)— (5.13)

One then uses the relation between distributions

P 6(E P~ ) = ———5'(E Ps ) . —1
~

B

Here B —= (p, s), n —= (k, k'), m —=(p, cr). Returning now to
the explicit integral form one has

P

(b)

(c)
(c)

(e) (e)

FICs. 5. Diagrams for the vertex corrections with outgoing-
fermion renormalization.

FIG. 7. Diagrams for the vertex corrections with incoming-
fermion renormalization.
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V, V„~ e2 d k~ ~+ pl+ u p, o. y" '+m y u p, sd„k
(Pii P—„) p+ (4~)' 0 k+(p "—k+ ) (p —k —k' )

(5.14)

Similarly

e u(p s) y+ u(p o)
(2~)'~ V'2p+ V'2q+ V'2p+

(5.15)

So Eq. (5.13) reads

u(p, s) y+ u (p, o ) d ki i+ dk+ u(p, o )y"(h,"+m)y'u (p, s)d„,(k)
2(2~)'"p+ . &2p+ v'2&+ v'2p+ (4~)' ~ k+(p+ k+)— (p —k —k' )~

»nce the fermion self-energy is diagonal in spin, only o =s contributes. Note that the last part of Eq. (5.16) is identi-
cal to Eq. (3.28). Thus Eq. (5.16) yields

A+(7a) = 2
A+ [ 1 —Z (p

+
) ] = A+ ———ln

8~ e
p (5.17)

Now applying the Heitler procedure to the other diagrams in Fig. 7 we see that they all have only one energy denomi-
nator. Thus the factor multiplying 5 (E P~ ) is—independent of E, and upon integration by parts, all the integrals for
diagrams (7b), (7c), (7d), and (7e) vanish. Adding the contributions of all the diagrams in Figs. 3—7 as well as the
lowest-order vertex A0+, we obtain

2

1+
8~ e

2
3 P+P+ 3 p

+——+ln + ——ln
2 cx 2 A

2+
ln P 3

2
(5.18)

To obtain the renormalized charge we must divide out
the wave-function renormalization associated with the
final particles. So dividing 1 +

by QZ~(p +)QZ&, we
find

Therefore the complete expression for the vertex renor-
malization is

2

e 3 pZ, (p+,p+) =1+ ——ln8~', (2 a
I ~ =40 1 ——1 e

2 12~ e
=A,+QZ, . (5.19) 2 +

+ ln
4~2

1 —ln —lnp p
m CX

Therefore the renormalized charge is

e~ =e+Z, (5.20)
(5.22)

2 +
A+(4a) =A0+ ln

4~

2

+ln P
2

ln"
m

—ln p
CX

(5.21)

as in the space-time treatment.
Let us consider now the full infrared behavior of Zi.

For this discussion we will limit ourselves to p =p, that
is, zero photon momentum. Only the diagram in Fig. 4(a)
will contribute. The UV-singular expression Eq. (5.2) al-
ready has an IR-singular contribution, viz. , incr. In
addition however there are contributions that are IR
singular but UV finite. They come from two sources.
One of them is from terms of the form
[f(x) I'=1+elnf (x)+, which we have previously
neglected. The e multiplying the logarithm cancels the
UV singularity, but the integral of lnf (x) over p+ may
be IR singular. Second we consider contributions that
were not UV singular but are IR singular. Details are
given in Appendix D. We find

Comparing Eqs. (5.22) and (3.27), we find that the Ward
identity

Z, (p+,p+ ) =Z~(p+ ) (5.23)

is satisfied for both the UV-singular and UV-finite parts.

VI. SUMMARY AND OUTLOOK

We have carried out the renorrnalization of null-plane
QED at order one loop, and have evaluated the electron
and photon mass corrections, the wave-function renor-
malization constants Z2 and Zz, and the vertex correc-
tion Z&.

During the course of our calculations several infrared
singularities were encountered beyond those that can be
eliminated by giving the photon a small mass. By adding
the various contributions to each physical process, in-
cluding some involving the four-point interactions
characteristic of null-plane QED, these "spurious" diver-
gences were shown to cancel, leading to conventional ex-
pressions. One feature, however, that distinguishes the
null plane from space-time results is that in the former
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approach the ultraviolet-divergent parts of Z, and Z2 ex-
hibit momentum dependence. Again, for physical quanti-
ties such as the renormalized charge ez, this momentum
dependence cancels [in this case due to the Ward identity

Z&(p, p'+)=QZ2(p+)Z~(p'+)]. On the other hand,
momentum-dependent renormalization constants imply
nonlocal counterterms. Given that the tree-level Hamil-
tonian is nonlocal in x, it is actually not surprising to
find counterterms exhibiting the same property of nonlo-
cality. In the future it will be important to carry out a
more comprehensive study of the counterterm structure
in null-plane QED. As mentioned in the Introduction,
power counting works differently here from the space-
time approach. This is already indicated by the presence
of four-point interactions in the Hamiltonian. The
momentum dependence in Zi and Z2 is another manifes-
tation of unusual power-counting laws. One of us
(K.G.W. ) has set up formal power-counting rules for
null-plane gauge theories. It will be interesting to apply
them systematically in the case of QED. Power counting
alone does not provide information about cancellation of
divergences between diagrams. So it is also important to
gain more insight into when to expect cancellations such
as those in the calculation of the electron mass shift [Eqs.
(3.13)—(3.15)]. All of this is crucial, in order to successful-
ly carry out nonperturbative studies and generalize the
"Light-Front Tamm-Dancoff" program of Ref. 5 to
(3+ 1)-dimensional gauge theories. This program is
presently under investigation, and the current article
represented the first step in this direction.
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APPENDIX A: INTERACTION VERTICES

Dirac matrices:

(A 1)

'V 3' 'V =2T

Projection operators:

In the representation Eq. (A3), these are

0
A+=

000 0 0 0 0

0 0 0 0 1 0 0

0 0 0 ' 0 0 1 0

0 0 1 0 0 0 0

A+A =0, A++A

A2+ ——A+,

(& )'=A,

1 2

, 0, —1,0, e„=,o, o, —1
p p

d„(p)= g E„(p)F. (p)
A, =1,2

Dirac spinors:

m)u(p s)=0, (p+m)U(p, s)=0,
u(P, s)u (P,s') = —V(p, s)U (p, s') =2mB„, ,

u(P, s) Y"u (P,s') =V(p, s)r~u (p, s') =2P~5„, ,

u (p, s)u (p, s) =/+ m,
s =+1/'2

U (p, s)V(p, s) =P —m .
s =+1/2

Photon polarizations:

P. —Q ~A, ~A@ — $ ~A —
Q

For example, one can choose

(A6)

(A7)

(AS)

(A9)

(A10)

(A 1 1)

(A12)

(A13)

(A14)

(A15)

(A16)

(y ) =y, (y") = —y" (k =1,2, 3) .

For example, one can choose the representation

0 I
0 ky= I 0 r= ~, 0

+ x'+~' — r' —x'
&2 ' &2

(A2)

(A3)

(A4)

6„+p +6 +p„
gp~+

p

r r'd. f3(p)= —2

r r r~d.~(p»)=, (r'p'+g'P),= 2

(A17)

(A18)

(A19)

In the representation Eq. (A3), these are
r

0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

y 1 0 0 0 ' r 0 0 0 0
0OOO 0 1 0 0

(A5)

r r"r r d.l(p»)

pa= —4g" +2 (g" r r+ g"r"r+—+& +r'r
p

—g+ r"r +g+"r r ) .

Interactions:

(A20)
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V| =e f d x~dx f [dp] [dp ][dk]

X g [e'~' u(p, s')bt(P, s)+e '~' V(P, s )d(P, s')]y"[e '~' u (p, s)b(p, s)+e'~'"v (p, s)d (p, s) j
S) S,A,

where

Xe„(k)[e '" a(k, A, )+e'" "at(k, A, )], (A21)

(A22)

which gives a vertex of the form

(+)
3&2

' ' 6 (momentum) .
e tv(P, s') 8 (k) co(p, s)

(2~) 2p + 2k+ 2p+
(A23)

The initial (+ ) sign is determined by the order of the creation and annihilation operators. co(p, s) can be either a u or a
U, and the 5 enforces conservation ofp and p~ at the vertex with the constraint that p+ )0:

V2= — ej—d x~dx dy dl [dp][dp][dk][dk]

e"" '[e' "u(p, s)b (p, s)+e '~' v(p, s)d(p, s) jx
S&S,A, , A,

Xg (k)[e '" a(k, A, )+e'"'a (k, A, )]y+g (k)

where y = (x +,y, x~), which will contribute a vertex of the form

e~ co(ps) e' (k) y 8 (k) cv(ps') ~35 momentum
(2~)' V'2p+ V2k+ 2(+p++k +) +2k + V'2p+

where again signs vary according to the particles involved:

2

V3= f d x~dx dy dl [dp][dp][dk][dk j

X [e ' '

u (p, s )b(p, s')+e'~' v(p, s')dt(p, s')][e ' ' a(k, A, ')+e'"'~at(k, X') j, (A24)

(A25)

il (x —y )

x
S,S,0') CT

[e't"u(p, s')b (p, s')+e '~'v(p, s')d(P, s')]

(A26)

which will contribute a vertex of the form

Xy [e ' '
u(p, )bs(p, )+se'~'"v(p, )ds(p, s)][e'"' u(k, o')b (k, o.')+e '"'~v(k, ')d(k, o')]

Xy+[e '" ~u(k, o. )b(k, o. )+e'"'~v(k, o. )d (k, o )],

e~ r)(p, s')y+co(p, s) co(k, o')y+co(k, o ) ~36 momentum
2(27r) (+p +p ) V 2p +v 2p+ V 2k +V2k+

(A27)

Again the signs depend on which particles are involved in the vertex.
Dimensional regularization:

f d k~~(p 2)'f d k~, where e= 1 —d/2, (A28)

( z)' ddk
k+M

E'

p
M

(A29)

2

( )' dk p
~ (k2+M2)2 M2

(p )'f d k~(k~) =0 for a) 0,
M

(A30)

(A31)

(p, )' d k
kq+M

p mM
M' (A32)
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APPENDIX B: FKRMION RKNORMALIZATIONS

In order to derive the expression for 5m, given in Eq. (3.11) starting from Eq. (3.6), use Eqs. (A13), (A18), and (A19)
to obtain

u(p, o. )y"(lE'+m)y u (p, s)d„(k)=45,

then use

p —k —k' p.k
k+ +

2p+ k++ (p k) —mk+ p+ —k+ (B1)

(B2)

To prove the expression of 5mb in Eq. (3.11) starting from Eq. (3.8), write
r

f "dk+ P = f dk+
k+(p+ —k+)

1 1

k. + p. -k.
dk+ dk+ p+ —q dk++ +k+ +~ + k+ o + k+

fP+ dk+ fP+ dk+ +
=ln P

A'

dk+ dk+ p+ —g dk+ dk+ - dk++
p (

+ k + )2 o (
+ ~ k + )2 o (

+ I + )2 + ~ (
+ k + )2 +

( I + )2

where we have identified g with a in order to bring the momenta of Fig. 1(b) into physical range.
To prove the expression of 5m, in Eq. (3.11) starts from Eq. (3.9), write

(B3)

p+ dk+ p+ dk+ 2
+ I + 2 I + 2 +

where again we identified g and a.
In order to deduce Eq. (3.25) from Eq. (3.15), write

7a

(pi —ki) +m (p~+m ) —2(p~+m )(p~.k~)+k~(p~+m )

k~(p~+m ) (y —1) +5 (B5)

where

Therefore

6:—
pg+ m

k~

p~+m

2
p~.k~

pg+m
(B6)

p~.k~
2

pg+ m
2

p~. k~
y — +6

pg+ m

2 y p~+m —
p~ k~

y (p~+m ) —2yp~ k~+k~
2

2ym yp —p .k
y (2p+p ) —2yp~ k~+2k+k o (kj —yp~) +y2m~

p dk m 1 ypi
2pp+ p k 0 (k~ —yp~) +y m

(B7)

The second integral yields zero upon integration over k~.
Adding the contributions X, , Xb, and X, which lead to Eqs. (3.9), (3.10), and (3.11), one obtains
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d k~ ~+ —m
, — +k+(p+ —k+ )(p —k —k' ) (p+) p'k

2

+
d ~ fI+ dk+ pp+ —m y+
(2~)' o k+(p+)' p —k —k'

Using dimensional regularization, this is

2 m 1 mX(p)= m +
8m e 2p+ 2 p+

(B8)

(B9)

APPENDIX C: PHOTON RENORMALIZATIONS

We want to deduce Eq. (4.9) from Eq. (4.6). As usual,

M"'= tr[y"(—k'+m)y (I' —m)]=4[k "k"+k'k'" g" (k—k'+m )],
where

(C 1)

k -k'+m ( +)2

2k+(p+ —k+ )

So using Eq. (A15), one finds

k—
2

k 2
~ pg +m

p
(C2)

«[~' '(p)(&+m)~' '(p)(&' —m)]
p p

With the help of

(C3)

p —k —k'

one gets

k k'+m
p

(C4)

d kg p+ —p

(2~)'
dk+

k+(p —k+)

+ 2

2k+(p+ —k+ )

(k~+m )
2k+(p —k )

p 2k'+k+(k+ —p+) p+(k +m )
(C5)

yielding Eq. (4.9).
To find a more explicit expression of M", it is convenient to parametrize k and k' in the following way:

2~m 2

k"=xp"+ g e "k"+V
k=1 2p x

2 k2~m2
k'~=(1 —x)p"—g e "k"+o"

A, =1 2p+(1 —x)

One finds easily from Eq. (Cl) that M" has the form

(C6)

M"
4

=2x (1 —x)p"p'+ m —(k~+m ) 1 —— +
2 1 —x x

k+m

d"'(p)

—(k~+m )g""+

Using this result, as well as

6" 6
2x (1—x)(p+ )

(C7)

p —k —k' k~+ m

2p+x (1—x)
(C8)
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one obtains ~" given in Eq. (4.11). The terms in M" proportional to (k~+m ) cancel the (kf+m ) dependence in the
denominator, leaving a term independent of k~ which integrates to zero in dimensional regularization. Thus

2x(1 —x)p"p +m d" (p)w" (p)= —2e dx
(2~)' kq+m

yielding Eq. (4.14) by dimensional regularization.

(C9)

APPENDIX D: VERTEX CORRECTIONS

The diagram shown in Fig. 3(a) is typical of the diagrams in Fig. 3 and 6(c). The integrand has the form

u(p, s) g (k') u (k",cr) u(k", a) y" y+ g (k') u (p, s)
&2p+ &2k + &2k-+ &2k-+ &2q+ 2k+ &2k+ &2p'

For p = +, the integrand contains (y+ ) and vanishes.
The momenta in Fig. 4(a) are defined as follows:

pg+ I
p p ~ + ~ps

2p

(D 1)

(D2)

The transverse momentum of the photon is parametrized as (ypj+qj), and we choose a frame in which q&=0 (this
choice does not affect the divergent contribution to A+ ). Further,

(xpi+ ki)
k = xp+,

2p x
2

Pz
pi

2p

,xp~+k~

[{1—x)p~ —k~1 +mk'= (1—x)p+,
2(1 —x)p+ , (1 —x)pi —ki

(D3)
[(1—x —y)p~ —k~] +mk"= (1—x —y)p+,

2(1 —x —y)p+
, (1—x —y)pi —ki

+ (1—y)p&p= (1—y)p' +
2p

2+,(1 —y)p,2p+(1 —y)

Applying V, three times, one gets

N,"+yN
(4~) k+k' k"+ (p —k —k' )(p —k k" q )— (D4)

where

N,"+yNt,'=) (k''+m)y"(k" +m)y~d p, (D5)

'=(2~) +2p++2p ++2q+ .

Using Eqs. (A18), (A19), and (A20), we find

(D6)

1 +1—x
1 —x

y)(k~+g, m )

+ 1 —x

A +=Xj' 'dx j
+k dx

) —y d ki 2x(1 x)[(1 x)Pp (1 x)m y p m]
(2~) (1—y)(k~+x m )(k~+g, m )

where g, =x {x+y)/(1 —y) and a is a dimensionless infrared cutoff, and

(D7)
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2——1
x+ i y dki

y~,+ ————y~ dx
y ~ (2~) (k~+g, m ')

The ultraviolet-singular contribution to A+(4a) is

+A, — dxy &
—~ d ki m xy++2x(1 —x)(p+p —m y+)

y ~ (2~) (k~+m x )(k~+g, m )
(D8)

d k
A+(4a)=A+ f dx f

A (2~)

2 x+y 2
x 1

ki+g ) m
=A+ 1

0 8~ e

—3 y f&
—zdx

2 2 a x
(D9)

A,e [(P—m)p+ —m y+]
4m. m

Since the above expression is meant to be used between u(p, s) and u (p, s), it is equivalent to

2 2
A+ (4a),R

=Ao+ (Ina ) —lna ln +1na
4~ m2

The contribution of the diagram in Fig. 4(b) is

2

~
I

p

p

q

~
dk~

~
d ki p+ dk+

A+(4b) = -X
(47r) p+ —e+ k+k'+k"+ (p —k —k' )(p —k —k' +k" )

which can be rewritten as Eq. (5.2). At y =0 the infrared-singular contribution to A+(4a) is

I 2

A+(4a)&R= Ao+ —(lna) —lna ln
4~ m

(D10)

(D 1 1)

(D12)

where X" is given in Eq. (D5), and A, in Eq. (D6). Note that here the photon is produced by the annihilation of a for-
ward moving electron and positron. Simplifying further we find

d k
A+(4b)

2y r —~ (2') (k~+x m )(k~+.g2m )

where gz =x (2 —x —y)/(1 —y). Thus the UV-singular contribution is

A+(4b) = f (1—x)[x —2x +2+y (x —2)] .
y 8~'e

(D13)

(D14)

The diagram in Fig. 4(c) receives two identical contributions from operator ordering, together with a minus sign.
One gets

d ki p+ dk+
A+(4c) = (

—2)k
(4~) p+ —~+ k'+k"+(k+)

&0+ 1 ~ dx
1 —x x+y —1

4m y &
—yx

y+( g" + m )y "(g'+ m )y+

p —k —k" —
q

(D15)

Combining Eqs. (D14) and (D15), and performing the x integration yields Eq. (5.3). The calculation of Figs. 5(a), 5(b),
5(c), and 5(d) closely parallels the calculation of the fermion self-energy in Sec. III, and the result is very similar:

p+ d ki
A+5(a) —5(d)= --f dk+ f2 0 (2~)

2

+— dk+p d ki p —m Qp /p
(2~) p+k+D

(P+m)y+
ym

(D16)

where

G:— + + —(1—y),y x+y 1

2x (1 —x) 2x

ki+m x g

2p +x (1—x)

(D17)

(D18)
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x g =—x(x+y —xy) . (D19)

For y =0 (viz. , G =g = 1), the object in the square brackets is just X(p ).
For the mass counterterm in Fig. 5(e) it is convenient to use an oversubtraction procedure since we are only looking

at divergent contributions. We will take this mass counterterm to be —X(p ), hence,

ym
(D20)

Since we are using a dimensional-regularization procedure, Eq. (D20) is not sensitive to g&1. Only the dilference be-
tween G and 1 contributes. Finally, adding Eqs. (D16) and (D20), we obtain

A (5)= m j dx(1 —x)(G —1)
y+ q» (8+m)y+
p+ 8~ e o ynz

Doing the integration and using Eq. (Al 1) we find

A+(5) =y+ ——2 f8~~g 2 0 x

This can be rewritten as Eq. (5.7).
The integrand of the diagram in Fig. 6(a) has the form u (p, s)y u (p, s')n, where

n =——,'d &(q)tr[(lE+m)y~(k —m)y+] .

Using Eq. (C7), one obtains

(D21)

(D22)

(D23)

n = —d (q) 2x(1 —x)q~q++ m —(k +m ) 1 —— +a 4 a/3
1 —x x

dP+(q) (k2+m 2)gP+ (D24)

However d &(q)q~=0, d~+ =0, d &g~+ =d =0; therefore, the contribution of Fig. 6(a) vanishes.
The diagram in Fig. 6(b) receives two identical contributions from operator ordering:

d k~ dk+
A+(6b) =2Ao

(4 )3 k+kr (++ )2

2Ao
~

d ki Ip+ 2p+x (1 —x)y
(q+)' (2~)' o k,'+m'g '

tr[y "(k+m )y+ (k'' —m ) ]

p —k —k'

o+

A+(6b) =—
1277 6'

where g '=x y +1, k+ =xyp+, k'+ =(1—x)yp+, q+ =yp+, and@=(1 —y)p+. Integrating, one finds

(D25)

(D26)
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