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We develop local expressions for the contributions of the short-wavelength vacuum modes to the
one-loop vacuum energy. These expressions significantly improve the convergence properties of
various "brute-force" calculational methods. They also provide a continuous series of approxirna-
tions that interpolate between the brute-force calculations and the derivative expansion.

I. INTRODUCTION

There has been much effort to develop techniques for
performing one-loop calculations in static, nonuniform
background fields. This is because such techniques are
needed to perform relativistic bound-state calculations in
the semiclassical limit. ' At the one-loop level, the vacu-
um consists of occupied negative-energy fermion states
and the zero-point fluctuations of the meson field. The
presence of a background field, for instance, that generat-
ed by valence particles, perturbs the vacuum modes and
generates a nonzero energy density in the vacuum. The
induced energy in the vacuum (E„,) is known as the
Casimir energy; its calculation is the subject of this pa-
per.

Schematically, calculating the Casimir energy means
performing a sum of the form

E„„—lim g (e; —e;)+E„(A),
P-~ oo p

, &A

where e,- are the energies of the vacuum modes in the
presence of the background field and e, are the energies
in the absence of the field. This bare sum, which is
equivalent to the sum of one-loop diagrams with external
legs corresponding to the external field, is divergent due
to the associated divergences in the one-loop diagrams.
The finite physical energy is determined by combining the
bare sum with the energy contribution of the one-loop
counterterms E„(A).

Many techniques have been developed to evaluate the
induced energy density. One is to use a derivative expan-
sion of the effective action. When this series converges it
provides a rapid means of calculating the vacuum energy.
When it diverges, many have resorted to various "brute-
force" computational techniques that involve calculating
explicitly either Eq. (1.1) or some equivalent equation.
Typically, a rather large value of A is required to achieve
convergence. At this value of A, the energy sum and the
counterterm can be individually much larger than the
final answer, meaning that high numerical precision is re-
quired.

In this paper, we develop techniques that greatly ac-
celerate the convergence of the brute-force calculations.
The basic idea is to use various approximations, which
we generically call WKB approximations, to describe
the short-wavelength vacuum modes with energy above
some cutoff A. This results in the decomposition

E&&& lim g ( E'& E& ) +EwKB( A )
P —woo pe. &A

i

(1.2)

where

Ew~B(A) —lim g (e; —e; )+E„(A) .
P —+ oo

A &a,. &A

(1.3)

A comparison of Eqs. (1.2) and (1.1) shows that we have
effectively introduced a WKB-improved counterterm. As
a finite part of this improved counterterm contains much
of the finite part of the final answer, the WKB-improved
sum converges at a significantly lower energy than does
the "brute-force" sum. This reduces the computational
burden required and provides us with an analytical ex-
pression for the contribution of the high-energy states to
the vacuum energy.

We apply this idea to two types of brute-force calcula-
tions. The first uses the standard mode sum given in Eq.
(1.1). After expressing this sum as an integral over the
phase shifts of the continuum states, we use the WKB ap-
proximation to these phase shifts, thereby generating a
local approximation for the short-wavelength modes.
The second type, which is known as the Green's-function
method, uses an expression obtained by performing the
energy integration of the one-loop effective action along
the imaginary energy axis. In this case, we develop two
different techniques for generating local approximations.
The first is based on the WKB approximation to the
Green's function for the short-wavelength modes; the
second uses a derivative expansion of this same Green's
function.

Our presentation is organized as follows. Section II re-
views the one-loop formalism and the various computa-
tional techniques. Section III applies the WKB approxi-
mation to the mode sum (first type) calculation and Sec.
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IV applies the WKB approximation to the Green's-
function (second type) calculation. In Sec. V, we develop
the derivative expansion approach for the Green's-
function calculation. In all these sections, we illustrate
our methods for (1+1)-dimensional boson-loop calcula-
tions and indicate how they work for other types of one-
loop calculations. Section VI summarizes the paper.

II. FORMALISM

In this section, we review the one-loop formalism and
various computational techniques. In particular, we will
illustrate our methods by concentrating on a self-
interacting scalar field in 1+1 dimensions as described by

I

the Lagrangian density

(2.1)

where V is the classical potential and X„((I)) represents
the counterterms. We assume that the potential V has a
minimum at P=P„which is chosen as the classical vacu-
um state for the theory, and define M = V"(()), ). The
quantum theory is renormalized so as to maintain the
vacuum expectation value of p to ()II, . Our primary in-
terest is to calculate the one-loop effective action for spa-
tially varying fields (t&„(x ) that have the property
V"(p,](+ D(& ) ) =M so that the background field causes a
finite perturbation to the total energy.

The one-loop eft'ective action for a background field P,]
is given by'

Vrr(d„&= f dx dt ))dr'& dr—„—(re„)+ V(Q, )+—x I In[ —II —V"(d„)]—In[ —II —V"(d, &] x t) +C„(d„&

(2.2)

where the logarithms arise from the boson loops and X„represents all the one-loop counterterms of the theory. In
1+1 dimensions the only divergent one-loop graphs are those with one vertex. A specific form of the counterterm is
then

C.,(d)= —x, t t x, t)[V"(dl —V"(Q. )] .—8 —V"(P, )+i@
(2.3)

In this expression, we have chosen the finite part of the one-loop diagram with one vertex to vanish at zero external
momentum.

In this paper we will study only the effective action for time-independent fields, in which case the effective action can
be written as

1,[[(P„)= E(P„)J dt —.

It is convenient to isolate the vacuum contribution to the energy by writing

E($,])=E„(P,)]+E„„(q,)],

(2.4)

(2.5)

where

(2.6)

is the classical energy of the background field. After some standard manipulations of Eq. (2.2) the vacuum energy can
be written as '

E ( ):di rf rn f ( dDx(rnxd r) D( d) xr)nf dxC

where

(2.7)

D(co, (t&(x)) = 1

co +V' —V"((t)+i&e

Note that the counterterm can be written in terms of D as

f d d:., (d„. )=ixf mr'f dx(x D'(rn, d, )[V"(d.r) —V"(d, l] x) .

(2.8)

(2.9)

All of the above expressions are purely formal until a means of regularization is specified.
The mode sum expression for the boson-loop energy is derived by placing the system in a large box, thereby discretiz-

ing the spectrum, and expressing the spatial traces of D in terms of a sum over a complete set of eigenstates of the spa-
tial part of the inverse propagator:
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1 (co„—co„)—f dx X„(p,i) .
arg(, cu ) & ~

(2.10)

Here co; are the square roots of the eigenvalues of the spatial part of the mean-field and vacuum propagators,

[ —V + V"(P, )]i),(x)=co; i);(x),

[
—V + V"(P„)]i);(x)=co;g;(x),

(2.11a)

(2.11b)

and the energy integration has been performed by closing the contour and using the residue theorem. The taking of the
box size to infinity is implicit.

Physically, this expression shows that, in the one-loop approximation, the energy of the boson vacuum is the sum of
the zero-mode fluctuations of the boson fields. The presence of an external source that moves the expectation value of
the field away from P, disturbs these oscillations and thereby alters the energy of the vacuum. There may be eigenstates
with co; &0, which contribute an imaginary amount to the energy and result in a complex total one-boson-loop energy.
In such cases, the one-loop approximation has broken down.

This expression for the vacuum energy is purely formal since it involves two separately infinite terms: the mode sum
and the counterterm. To regulate these expressions, we truncate the mode sum at some value co; =A and perform the
counterterm integrations with the same cutout to obtain

(2.12)

where [see Eq. (2.3)]

1
ln

4m.
(2.13)

and A =A —M
In practice, calculations with the mode-sum formula are performed by placing the system in a large box, numerically

solving for the lowest n eigenstates of Eq. (2.lib), and explicitly performing the eigenvalue sum in Eq. (2.12). Increasing
eigenvalues are calculated until the mode sum converges. As the convergence can be very slow, various extrapolation
techniques are generally used. ' We will refer to this method as the brute-force mode-sum method.

An alternative to the mode-sum method is the Green s-function method, derived by performing the energy integra-
tion in Eq. (2.7) along a different contour. ' As long as the boson-loop energy is well defined (in the sense that all the
co„)0), the contour of the energy integral in Eq. (2.7) can be deformed to run along the imaginary energy axis. This is
equivalent to the replacement co~i 0 in the integrand and allows the vacuum energy to be written as

E„„(P,&)= lim f dQQ f dx[(x~D(i', Q„)~x)—(x~D(iQ, Q, ) x)
2& A~ oo —A co

(2.14)

where we have explicitly included the counterterm in the energy integral and the integrals are evaluated directly, not by
using the residue theorem.

The matrix elements of D(i Q, , P,&) in coordinate space are easily evaluated in terms of the solutions of

[V —0 —V"(&P„)]g(x)=0 . (2.15)

These solutions diverge exponentially at x =+~. If the solution that is regular at x = —~ is un(x) and the solution
that is regular at x = + oo is un(x), then

(x'~D(iQ, (b„)~x ) = [0(x' —x )un(x)un(x')+0(x —x')un(x)un(x')]/8'n,

where 8'z is the x-independent Wronskian:

IVn =un(x)vn(x) —Un(x)uii(x ) .

(2.16)

(2.17)

The matrix elements of D (iII, P, ) can be evaluated analytically using Eq. (2.16) since the solutions of Eq. (2.15) are pure



43 LOCAL EXPRESSIONS FOR ONE-LOOP CALCULATIONS 3403

exponentials when P„(x)=P„yielding

u „(x)Un(x) 1E„,(P„)= lim d Q A~ dx +
2& A~ oo —A —oo 2[Qz+ V (P )]ii2

4[n'+ V"(y, )]'" V"(,))—V"(, ) (2.18)

An advantage of this expression is that it is simply an in-
tegral over a smooth function, as opposed to Eq. (2.12),
which is a sum over discrete eigenvalues.

Green's-function method calculations are performed
by determining the appropriate solutions of Eq. (2.15) on
a sufficiently fine grid of energies, up to some maximum
energy, that the integral in Eq. (2.18) can be evaluated ac-
curately. The maximum energy is then increased until
the boson-loop energy converges. As with the mode sum,
the convergence is usually slow enough that extrapola-
tion techniques are required. ' We will refer to this com-
putational method as the brute-force Green's-function
method.

The preceding results are all exact expressions for the
boson-loop energy for arbitrary fields. In general, they
must be evaluated numerically, but in some cases an ana-
lytic solution is possible. For uniform fields, P,~(x)=P,
the boson-loop energy density is easily evaluated to be the
effective potential:

V,tr(P) = V"(P) —V"(P„)

—V"(P)ln
V"(P)
V"(P„)

(2.19)

+„J V"(pd)

+O((dldx) )

d V"(P„)
dx

(2.21)

for the Lagrangian density (2.1). When this expansion
converges, it provides a convenient local expression for
the vacuum energy. The convergence of this series has
been studied by several authors and although a simple
convergence criterion does not exist, this expansion will
typically converge if

Observe that if V"(P)(0 then the eS'ective potential is
complex and the one-loop approximation has broken
down.

For finite systems, if the field is suSciently smooth,
then the energy can be evaluated adequately using the lo-
cal density approximation

~;.D"(~.~) = J (2.20)

Improved approximations can be obtained through the
derivative expansion, which yields

(P )
—ELBA(P )

I

Satisfying this criterion requires that the spatial varia-
tions of the background field be small compared to the lo-

cal mass scale, QV"(P„). These derivative expansion
expressions are especially useful when many evaluations
of the loop energy are required, as in self-consistent cal-
culations, where the background field is adjusted to mini-
mize the total energy of the system. "'

III. LOCAL EXPRESSIONS
FOR MODE-SUM CALCULATIONS

In this section, we derive our method for improving
the mode-sum calculations. The method is based on the
realization that the higher-energy vacuum modes are less
perturbed by the background field than are the lower-
energy vacuum modes. This allows us to develop a local
formula for the vacuum energy contribution of the high-
energy vacuum modes, so that only the low-energy modes
need be treated explicitly.

Our method is derived by expressing the vacuum ener-
gy in terms of the phase shifts of the continuum states.
The vacuum is a uniform state corresponding to P=P,
where V'(P, ) =0 and V"(P, ) =M )0. We are interested
in calculating the energy of a finite perturbation, P,~(x),
where V"(P,~(+ ~ ))=M . In the vacuum, the energy
spectrum is given by Eq. (2.11a) and consists of a contin-
uum of states with energy greater than M. The eigerx-
states are the plane waves sin(kx) and cos(kx) where the
energy co and momentum k are related via m =M +k .
In the presence of P,~(x), the energy spectrum is given by
Eq. (2.11b) and consists of some discrete states with ener-
gy less than M and continuum states with energy greater
than M. Although these continuum energy eigenstates
are no longer momentum eigenstates (as are the vacuum
states), it is nonetheless convenient to assign a momen-
tum to these states via the energy-momentum relation
e) =M+k.

The difference in structure between the continuum
states of Eqs. (2. 1 la) and (2.11b) is refiected in the
difference between the density of states in the two sys-
tems. This difference is finite and can be calculated in
terms of the relative phase shift 5(co) between respective
continuum solutions. In all cases of interest the potential
V"(P,&) is symmetric in x so that solutions of Eqs. (2.1la)
and (2.11b) can be classified by their parities. If
r),„,„(co,x) and r),dd(co, x) are the solutions of even and
odd parity with energy co, then their phase shifts are
defined from the asymptotic behavior as x ~ ~:

d V"(P,t(x)) «1.
V"(P )) ~ dx

(2.22)
i),„,„(co,x )~cos[kx + —,'5,„,„(co)],
7),dd(co, x ) sin[kx+ —,'5,„d(co)] .

(3.1)
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E„,(p„)= lim [EMs (A, p„)+E„(A,p„)], (3.2)

where

In general the antisymmetric and symmetric phase shifts
at a given energy will be different, so we define
5 = ( 5„,„+5,dd ) /2. In terms of these phase shifts,
Dashen, Hasslacher, and Neveu have shown that the vac-
uum energy can be written as'

calculations, the convergence of the answer with respect
to increasing the upper limit of integration can be
sufficiently slow that extrapolation procedures must be
used. We will refer to this technique as the brute-force
phase-shift method.

We now introduce our method for improving the
brute-force phase-shift calculations. For high-energies,
the solutions to Eq. (2.11b) can be approximated by the
WKB approximation'

EMs(A, P,l)= —g (co; —M) — f 5(co)dm
~. &M

(3.3) 1 X(x)= exp i f k(co, z)dz
&k(cok) . 0

E„(A,P„)= f 5„(co)den,
2& M

in terms of which the vacuum energy is

E„,(P„)=—g (co; —M)1

,. &M

(3.4)

—lim f [5(co)—5„(co)]der
A~ oo 2' M

(3.5)

For the counterterm given by Eq. (2.13),

5„(~)=— dx [ V"(P„)—V"((b„)] .
2+co —V"((f, )

is the contribution of the bare mode sum and E„(A,P„)
is the counterterm contribution defined in Eq. (2.13).

Equation (3.3) involves an explicit sum over the ener-
gies of the bound states of Eq. (2.11b) and an integral
over the phase shift of the continuum states. It is con-
venient to define 5„(co) such that

where

k(co, x ) =+co —V"((5„(x)) (3.8)

is the local wave number. These solutions are expected to
be accurate if

1 dk 1 dV (i) l(x)) «1.
dx Q7 dx

(3.9)

Evac(fcl) I [EMS(A 0 l)+ MWKB(A Ncl)] (3.11)

A comparison of this criterion with that of the derivative
expansion, Eq. (2.22), shows that here the variation in the
fields must be small compared to a global energy scale, as
opposed to the local mass scale.

The phase shift obtained from these solutions is

5 " (co)= f [k(co,z) —k(co, cc)]dz . (3.10)

Using the exact phase shift for energies below A and the
WKB phase shifts for higher energies allows the vacuum
energy to be written as

(3.6)
where

Equation (3.5) is an alternative formulation of the
mode-sum technique that can be more efficient to use
than the mode-sum formula, Eq. (2.12). Here one need
calculate explicitly only the bound states and the phase
shift at enough energies to enable an accurate evaluation
of the phase-shift integral. Again, as in all brute-force The energy integral of the WKB phase shift is

(3.12)

EMwKB(A&kcl) lim f 5 (~)d~+E l(A)
27T A

A+ QA —V"(P,i)f 5 (co)=f dx —A+A —V"(P„)—A+A —V"(P, )
—V"(P„)ln

A —oo 2 A+ +A ' —V"(y„)

A+ +A' —V"(y, )+ V"(lI), )ln
A++A' —V"(y, )

—A+A ' —v"(y., )+A+A ' —v"(y, ) (3.13)

Note that the logarithmic divergence in A is identical to that of the counterterm. Combining this phase-shift expres-
sion with the counterterm and taking the limit A~ ~ gives

EM (A, Q„)= f d —
[ V"((5„)—V"(P„)]+A+A —V"(P,l) —A+A —V"(Q, )

V"(, )+ V"(P„)ln
A+ QA ' —v"(y„)

—V"(P, )ln
V'v" (y, )

A+ QA ' —v"(y, )
(3.14)
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which is minimized at /=+1. We choose P, =1, imply-
ing M = V"(P, ) =2.

First consider the background field associated with the
kink soliton

P„(x)=tanh(x/&2), (3.16)

which is a static solution of the classical equation of
motion. For this background field, the boson-loop energy
can be evaluated analytically. ' Equation (2.11b) is found
to have two bound states at co =0 and —,

' and a phase shift
of

5,„„,(co ) =2n —2 arctan[ (/ 2( co —2) ]
1/2

co 2—2 arctan (3.17)

resulting in a vacuum energy of

~ kink
vac

1 3

2&6
= —0.471. . . (3.18)

The bound states contribute —0.802 to the energy, and
the continuum states and counterterm contribute 0.331 to
this energy.

Figure 1 shows the WKB phase shift calculated using

B

Equation (3.11) is of the same form as Eq. (3.2), imply-
ing that we have calculated a "WKB-improved" counter-
term. For large A, EMwKB(A, P„)~E„(A,P„), while,
for small A, these energies differ; the bare counterterm is
built out of plane waves, while the WKB term is built out
of distorted plane waves. For the WKB term to be use-
ful, it must allow calculations to converge more rapidly.

We now test this method for several boson-loop calcu-
lations in 1+1 dimensions. To illustrate our method, we
choose the standard kink potential

(3.15)

Eq. (3.10) plotted along with the exact phase shift. At
co=M the exact phase shift is 2~, corresponding to the
existence of two bound states in this reAectionless poten-
tial, while the WKB phase shift is about 25%%ug larger. The
two phase shifts rapidly approach each other with in-
creasing cu and by the time m-1. 5M the two are nearly
equal. The dotted line shows —5„plotted vs co. The
difference between this phase shift and 6 corresponds to
the finite contributions to the vacuum energy. The WKB
phase shift converges to the exact phase shift much faster
than 5„, since the WKB phase shift contains a significant
amount of information about the finite part of the vacu-
um energy. Using the WKB counterterm should improve
the convergence relative to using the bare counterterm.

We now calculate E„„(P„)using both the brute-force
method, Eq. (3.2), and the WKB improved method, Eq.
(3.11). This allows us to compare the convergence rates
of the two methods. Table I shows both
+MS(A ( cl) +Ect(A 0 1) and EMS(A ( cl)+EMWKB(A&( cl)
for various values of A. The WKB-improved calculation
converges more rapidly. In fact, using the WKB approxi-
mation for the entire continuum [EMs(M, (t „)
+EMwKB(M, &t„)] gives an answer already accurate to
2%. Typically the brute-force method requires an order
of magnitude larger cutoff to achieve the same accuracy
as the WKB-improved method. This improvement in
convergence is typical for any background field.

Now consider a wide class of background fields
parametrized as

(t„(x ) =1-
1+exp[(x —R )/T ]

(3.19)

This functional form allows an arbitrary adjustment of
the depth and surface shape of the background field. In
particular, we can vary parameters from the regime
where the local density approximation is valid to where
the boson-loop approximation itself breaks down. Table
II shows the results of boson-loop calculations for fields
of varying depth at fixed R and T. We tabulate the exact
one-boson-loop energy, calculated as above and with two
approximate methods. The first uses the local density ap-
proximation defined by Eq. (2.20), which involves integra-
tion of a local formula in the fields over the spatial extent
of the soliton. The second calculates the bound-state en-
ergies exactly, but uses the WKB formula, Eq. (3.11),

TABLE I. Comparison of the brute-force calculation
[E (MAs, P„)+ E(A, P„)] with the WKB-improved calculation
[EMs(A, P„.~)+EMwxs(A, P,~)] of the one-boson-loop correction
to the kink soliton using the phase-shift technique for various
values of A.

I

1.2 1.4 1,6 1.B
u/M

FIG. 1. Phase shifts as a function of co for the kink soliton.
The solid line is 6,„„„the dashed line 6M~K&, and the dotted
line is —6«.

A/&2

1.0
1.1
2.0
4.0
8.0

16.0

—EMS —EMw

0.479
0.474
0.471
0.471
0.471
0.471

—E —EMS ct

0.802
0.607
0.495
0.477
0.472
0.471
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0.2
0.4
0.6

0.8

Evac

0.021
0.083
0.188

0.354

2
cops

1.52
0.90
1.97
0.39
1.89
0.05

ELDA

0.024
0.106

EMS~~) EMWKB~~)

0.030
0.092
0.186

0.352

TABLE II. Comparison of the exact boson-loop energy
[E„„(P„)]with that calculated by the WKB method for the en-
tire continuum [EMs(M, P„)+EMwxa(M, P„)] and with the lo-
cal density approximation method [ELo~($„)] for the back-
ground field given by Eq. (3.19) with R =1 and T=0.5. The
column labeled co&, lists the values of co corresponding to the
discrete eigenvalues of Eq. (2.12b) for each field configuration.

one-loop approximation breaks down. Up to this point,
however, using the WKB approximation for the entire
continuum provides an accurate description of the full
one-loop result.

The WKB method can be generalized straightforward-
ly to fermion loops in 1+ 1 dimensions and to spherically
symmetric background fields in 3+ 1 dimensions where a
partial wave decomposition allows the (1+1)-dimensional
technic, .&e~ to be appl&ed. ' In each of these cases, the in-
crease in computational eKciency is comparable to that
seen in the (1+1)-boson-loop calculation.

IV. LOCAL EXPRESSIONS FOR
GREEN'S-FUNCTION CALCULATIONS

with A =M to approximate the entire contribution of the
continuum states.

For small field strengths, the local density approxima-
tion provides an adequate evaluation of the boson-loop
energy and approximates the exact boson-loop energy
better than the WKB calculation with A=M. However,
as the field strength increases, the local density approxi-
mation becomes worse, while the WKB calculation with
A=M becomes better. When the field becomes strong
enough that 3P„—1 &0 for some value of x, the local
density approximation breaks down and can no longer be
used. The A=M WKB calculation has no such limita-
tion and continues to provide an increasingly good ap-
proximation as the field strength increases. Eventually,
the eigenvalue of the most bound state has cu (0 and the

1 X
u wKB(x) = exp 1~(z)dz

&Ir(x) . o

1 X
U „(x)= exp — a.(z)dz

Ir(x) . o

where

(4.1)

1~(x)=QQ + V"(P„) . (4.2)

The Wronskian for these solutions is —2, so the resulting
Green's function in the WKB approximation is

In this section, we use the WKB approximation to cal-
culate local formulas for the Green's-function method.
Recall that the Green's-function method requires solu-
tions of Eq. (2.15) that are regular at x =+~, respective-
ly. In the WKB approximation, these two solutions are
of the form'

I(x'ID" '(i&, y., )Ix &=— 9(x' —x )exp I Ir(z)dz +H(x —x')exp J a(z)dz
2&le(x )1~(x ') (4.3)

(4 4)

We now use this WKB Green s function to approximate the contribution to the boson-loop energy integral, Eq.
(2.14), for energies greater than some value, A. Explicitly, we write

E„„(p,))= lim EoF(A) p,))+EowKB(A) p, t)

where

2'TT' —A —oo 2[0 + V"(P, )]'~~

is calculated using the exact solutions and

4[n'+ V"(y, )]'" V"(,))—V"(, ) (4.5)

[0'+ V"(P )]'" [0'+ V"(P )]'"

2[0 + V"(P, )] i V"(,))—V"(, ) (4.6)

is calculated using the WKB solutions. Note that, in contrast with the strategy followed in the preceding section, we
have split the counterterm between the exact and WKB expressions. As a consequence Eow&B(A, Q,&)~0 as A~ ~.

A brute-force Green s-function calculation consists of simply using Eo„(A,P,&) to approximate the boson-loop ener-
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gy, which is exactly Eq. (2.19), while the WKB-improved calculation consists of using Eq. (4.4). Explicitly,

EowKg(A, Pd)= J dx —,'[V"(P,))—V"(P„)]+A[+A + V"(P,)) —QA2+ V"(P, )]

A[v"(P„)—V"(P„)] A++A + V"(P„)—V"(P,))lnQA'+ v"(y, )
'

A+ QA'+ v"(y, )
(4.7)

Note that, for A=O,

ErwKB(0~le]) = I dx V"(P,~)
—V"(P, )

—V"(P,&)ln

v"(p, ))
v"(p, )

LDA ( (('cl ) (4.8)

un(0)un(0)
8'~

—0 1

2+0 + V"(0)

Thus, at zero cutoff the WKB method exactly duplicates
the local density approximation. Hence as the cutoff is
increased, the exact answer is approached from an initial
value corresponding to the local density approximation.
The WKB method thus provides a smooth interpolation
between the brute-force calculation and the local density
approximation. Note, however, that just as the local den-
sity approximation can only be used if V"(P,&) )0, the
WKB method can only be used if A + V"(P,&) )0.

We now illustrate this method by applying it to the
kink soliton background field, Eq. (3.15). Since
3tt —1 ) —1 for the kink soliton, the WKB formula
given in Eq. (4.6) can only be used for A) 1. To compare
the exact and WKB wave functions, we compare the vari-
ous contributions to the integrands in Eqs. (4.5) and (4.6)
at x =0. Figure 2 plots

0 1

2[0 + V"((t, )]'~~

4[n'+ v"(y, ) ]'"
V"(0)—V"(, )

as functions of Q. The first quantity is the contribution
of the exact wave functions at x =0, the second quantity
is the contribution of the WKB wave functions at x =0,
and the last quantity is the contribution of the counter-
term at x =0. Any difference between the first quantity
and the last quantity corresponds to a finite contribution
to the boson-loop energy. As with the mode-sum
method, the WKB wave functions converge to the true
ones long before the true wave functions converge to the
counterterm, showing that the WKB wave functions con-
tain much information about the finite part of the boson-
loop energy. Similar results are seen at all other values of
X.

and

2.0

A comparison of the WKB and brute-force methods
for the entire energy at various values of A is shown in
the second and fourth columns of Table III, respectively.
As expected, the WKB method converges much more
rapidly than does the brute-force method. This advan-
tage persists for a wide range of background fields.

1.5

C)

A
CO

C!

1.0

0,5

A/&2 EGwKB EGF —EDE —EGwKq —EG

TABLE III. Comparison of the WKB-improved
[EoF ( A, P,~) +Eowxs( A, P, ~

) ] and derivative-expansion-
improved [Eo„(A, P„)+ EowKB( A, P, i) + EoE( A, P„)] calcula-
tions with the brute-force calculation [Eo„(A,P„)] for the one-
boson-loop correction to the energy of the kink soliton using the
Green's-function technique for various values of A.

p p I .l. &
'

I I I I I I I I l I I I I I

0 0.5 1 1.5
0/M

I

2 2.5 3

FICr. 2. Values of 0 (x =O~D(iQ, P„)~x =0) as a function of
co for the kink soliton. The solid line is the exact value, the
dashed line is the WKB approximation, and the dotted line is
the contribution of the counterterm.
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0.471
0.471
0.471
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0.471
0.471
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0.471
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V. DERIVATIVE EXPANSIONS
FOR GREEN'S-FUNCTION CALCULATIONS

The WKB expression derived in the preceding section
agrees with the local density approximation when A=O.
The local density approximation can be improved by add-
ing in derivative terms generated by a derivative expan-
sion of the effective action. This suggests derivative

corrections to our WKB approximation such that our ex-
pressions will agree with the full derivative expansion
when A=O. Such a procedure is straightforward if, in-
stead of correction the WKB approximation, we apply
the standard techniques for deriving a derivative expan-
sion of the effective action to the matrix elements of the
Green's functions corresponding to the short-wavelength
modes. The derivative expansion for the Green's func-
tion D is

f dx x x = f dx f P (x~p)
00 V —Sl —W(x )

p2 Q2 P7
dp

p2 —n2 —8 x+1
dp

4

(5.1)

We insert this result into Eq. (2.14) to approximate the contribution to the boson-loop energy for 0)A. Keeping only
the first term in this expansion duplicates the results of the preceding section. Including the second term represents the
leading derivative correction to these results, which allows us to write the derivative expansion approximation to the
boson-loop energy as

E„ac(p,)) —hm [EGF(A, p, ))+EGwKB(A, Q,))+EDF(A~Nci)] (5.2)

where

EDF(A, „)= dx dQ
64~ — ~ [~'+ V"(y, ) ]'»

d V"(,))
dx

+O((dldx) ) . (5.3)

For A=O, EDF(0,$,1) reproduces the derivative expan-
sion correction to the total energy, Eq. (2.21).

The above expression generates the exact boson-loop
energy as A~ ~. If the derivative expansion is conver-
gent, then it will also generate the exact result for A=O
as long as a sufhcient number of derivative terms are in-
cluded. If the derivative expansion is not convergent,
then we need to increase A to a nonzero value in order to
evaluate the boson-loop energy. The criterion for conver-
gence of the derivative expansion for the energy is rough-
ly

d V"(P„(x)) «1,[A'+ V"(P )]' ' (5.4)

which becomes increasingly satisfied as A increases.
Once the expansion converges, then a value of A corre-
sponding to this convergence should yield the correct full
boson-loop energy when inserted into Eq. (5.2). The utili-
ty of this method then depends on how the point at
which the derivative expansion converges compares to
the point at which using the pure WKB expression gives
the desired accuracy.

We illustrate the derivative-expansion-improved calcu-
lation with several examples. First we calculate the ener-

gy of the kink soliton using the derivative-improved for-
mula, Eq. (5.2). The results are shown in the third
column of Table III. Observe that a fixed A, the WKB
result lies below the actual answer and the derivative-
improved results lies above the actual answer as is typical
of the behavior of the derivative expansions. ' The
derivative expansion is apparently convergent for A )&2
allowing the derivative expansion expression to give a
more accurate result than the bare WKB calculation.
Hence, in this case the derivative-improved formula con-
verges more rapidly than the WKB formula.

This need not always be the case, however. Consider
the background fields of Eq. (3.19) in which the radius
and strength of the field are fixed and the thickness is
varied. This allows us to control the slope of the surface,
and hence the convergence of the derivative expansion.
The convergence of the full derivative expansion, Eq.
(2.21), has been previously studied for these background
fields by Li, Perry, and Wilets. Results of calculations
using our high-energy derivative expansion for these
fields are shown in Table IV.

For the largest thickness tabulated (T = 1.0), the
derivative expansion converges quickly at small A and
therefore the derivative-improved series converges faster
than the WKB series. In fact, if we add in the next-order
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1.0

0.5

0.1

0.0
1.0
2.0
3.0
0.0
1.0
2.0
3.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0

owaB —EoF

0.0148
0.0143
0.0141
0.0140
0.0242
0.0222
0.0215
0.0213
0.0290
0.0257
0.0242
0.0239
0.0238
0.0237
0.0237

—EDE —E~wKB —E~F

0.0138
0.0140
0.0140
0.0140
0.0191
0.0209
0.0213
0.0213

—0.0857
—0.0042

0.0198
0.0228
0.0234
0.0236
0.0237

derivative correction then we get the correction answer
to the precision shown in the table even with A=O. As
the thickness is decreased, the convergence of the deriva-
tive expansion becomes worse at small A, and for T=0.5,
the full derivative expansion is barely divergent. The
first-order derivative corrections bring slightly better
agreement with the actual answer, but the higher-order
corrections make the agreement worse. Hence, we need
to use a finite A to get a convergent result. Eventually
the derivative expansion begins to converge and the
derivative-improved result converges to the actual answer
faster than the WKB result. For T=0. 1 the derivative
expansion is badly divergent at A=O and, at the level of
precision displayed in the table, the WKB-improved cal-
culation converges to the correct value before the deriva-
tive expansion has begun to converge. In this case, the
WKB-improved calculation con verges to the actual
answer faster than does the derivative-improved calcula-
tion.

In summary, this method involves computing, for each
A, a derivative expansion for the contribution of energies
higher than A to the boson-loop energy integral. This ex-
pansion becomes increasingly convergent as A is in-
creased and, once it has converged to the desired level of
precision, it can be combined with a brute-force calcula-

TABLE IV. Comparison of WKB-improved
%GwKB ( A (( 1)+EGF ( A, P, ~ ) ] and derivative-expansion-
improved [EoE(A, Q„)+Eo„(A,p,~)] calculations as a function
of A for the background field of Eq. (3.19) with pb =O. p and
R =1.

tion of the contribution of the energies less than A to give
a final value at that same level of precision. Since the
derivative expansion is generally an asymptotic series, in
some cases one will get more accurate results by only
keeping lower-order terms and obtain faster convergence
to a given level of precision by using this lower-order
series.

This method is very straightforward to generalize to
fermion loops and to higher dimensions. The same
method used above for the (1+ l)-dimensional boson loop
to derive the derivative expansion for energies above A
works for these cases as well.

VI. SUMMARY

We have discussed various approximate methods for
treating the perturbations of the short-wavelength vacu-
um modes by a background field. These methods allow
us to significantly accelerate the calculation of one-loop
corrections to the energy. Several approaches were im-
plemented successfully.

The first method improved the convergence of mode-
sum calculations by using the WKB approximation to
calculate the phase shift of the short-wavelength vacuum
modes. The other methods improved the convergence of
the Green's-function method by using either the WKB
approximation for the high-energy wave functions or a
derivative expansion for the high-energy Green's func-
tions. The latter method is particularly attractive since it
reduces to the conventional derivative expansion when
applied at all energies. When this expansion diverges,
then our model requires the use of exact solutions up to
an energy at which the expansion begins to converge,
above which we can use our derivative expansion to cal-
culate with high accuracy the remaining contribution to
the vacuum energy.

All of these methods involve analytically determined
local expressions that are added to the results of a brute-
force calculation to rapidly improve the convergence.
Thus, it is easy to modify any existing brute-force code to
incorporate these improvements.
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