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Trace anomaly via stochastic quantization
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We analyze the trace anomaly for a scalar, self-interacting, field theory in four-dimensional
space-time in the framework of the stochastic quantization method. We adopt a regularization
scheme at the Langevin equation level, obtaining the regularized expression for the anomaly, for a
wide class of regularizing operators.

I. INTRODUCTION

(2)

Here u(x) is the parameter of the conformal transforma-
tion:

g 2a(x)g
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Let us consider the self-interacting scalar field theory,
described by the action

s[y]= ' fd'xv—' ga ya—&y 'zy'+——
2 12

(4)

where R is the scalar curvature. Now, as a consequence
of the conformal transformation (3), the scalar field must
transform as

p(x)=e '"'p(x) .

A well-established result in field theory is that sym-
metries at the classical level cannot be conserved after
quantization, giving rise to anomalies. Examples of this
effect have been studied by using various techniques. '

One of these anomalies, the confor mal anomaly, is
present in those massless field theories that exhibit con-
formal invariance at the classical level, which means that
the energy-momentum tensor has a null trace at this lev-
el, but this is not preserved by quantum Auctutations.
In these cases, the quantum expectation value of T„" is
not zero, even at the first quantum correction. This is the
so-called trace anomaly.

In the curved-space-time case, we can apply the
method developed by Fujikawa: starting with the gen-
erating functional

z[g,.]=fDye "(~) (l)

with

s [p) = f d xv' gL (tI)) . —

The quantum expectation value of T„"can be expressed
as

It is easy to see that the action (4) is left invariant under
transformations (3) and (5), but the generating functional
is not, since the measure DP changes with (6). This is the
origin of the anomaly in Fujikawa's analysis. This effect
can be understood in the following way: classically, the
trace T„"is proportional to the mass and energy density.
To calculate its quantum expectation value by using (l)
and (2), one has to integrate over all possible "trajec-
tories" P(x) in addition to the solution of the classical
equation, which corresponds to m =0. The contributions
of the nonclassical trajectories lead to a nonzero quantum
expectation value for the trace of the energy-momentum
tensor. In this approach, the anomaly in Aat space-time
is obtained by taking the zero-curvature limit, after all
the calculation has been done. However, we cannot use
(2) to compute directly the anomaly in Euclidean space-
time because, in this case, the generating functional (l) is
a constant, commonly normalized to one.

The stochastic quantization method (SQM) proposed
by Parisi and Wu, ' affords a very interesting framework
to analyze the anomalies problems. In this method, Eu-
clidean quantum field theory is considered as the equilib-
rium limit of a statistical system, coupled with a thermal
reservoir. This system evolves in a fictitious time direc-
tion ~ until it reaches the equilibrium limit as ~—+~.
Also, in the context of the SQM it is possible to imple-
ment various regularization schemes that arise from
properties of the stochastic calculus. ' In recent years,
there have been some works dedicated to analyzing the
conformal and Weyl anomalies, in different cir-
cumstances, within the context of the SQM. " ' In this
paper, we present the complete calculation of the trace
anomaly, for the scalar field theory described by the ac-
tion (4), in both fiat and curved space-times, by using
purely stochastic techniques. This is performed by intro-
ducing the regularization scheme proposed by Bern
et al. ,

' which has the advantage of being more widely
applicable, including when gauge symmetries are present.
We will see that in this framework the trace anomaly is
computed directly as a quantum expectation value of the
expression for the trace of the energy-momentum tensor,
getting the regularized version in both cases. Also, we
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discuss the freedom of choosing the regularizing opera-
tor, showing how the SQM is able to drive us to different
schemes, namely, the Fujikawa (heat kernel) and the neg-
ative power kernel.

Our interest in studying the self-interacting scalar field
is, as we will see; because in the one-loop approximation,
there will be a classical background, in addition to the
gravitational one. The anomaly arises from the interac-
tion between the quantum fields and these backgrounds.
So, all theories that we have to linearize with the one-
loop expansion will have this interaction and will yield
the anomaly, even in the fiat-space-time case.

In the second section, we present the general frame-
work for the calculations. In the third and fourth sec-
tions, we analyze flat and curved space-times, respective-
ly. Finally, we write some conclusions and remarks.

In this paper we are interested in calculating the trace
anomaly for the system (4). In order to do this, we work
in the one-loop approximation, which allows'us to to deal
with linearized equations of motion and Langevin equa-
tions. Therefore, we decompose P in

4'=0. +v'

where P, is the solution of the classical equation of
motion, and y represent the quantum fluctuations. With
this decomposition, one obtains the effective one-loop
equation of motion:

h=g 8"B+—P +—R .2 1

II. THE GENERAL FRAMEWORK

Let us consider a physical system on a d-dimensional
space-time described by a field p(x) and an action S[/].
The SQM ' introduces an extra dimension supplied by a
fictitious time r, so that the field P now takes values in a
(d+1)-dimensional space-time. Then one imposes that
the r dependence of the field P=P(x, r) be governed by
the Langevin equation

ay(x, r) 5S [y]
a

(6)

lim &F[P„])„=fDQF[&]e

As has been mentioned, in the SQM it is possible to in-
troduce various regularization schemes arising from
properties of the stochastic processes. ' In this work
we adopt the method proposed by Bern et al. ,

' which is
not an action regularization, preserving the Markovian
character of the stochastic processes and avoiding some
troubles, that are present in the stochastic regularization
by fifth-time smearing, in the quantization of gauge
theories. This method consists in the introduction of a
regularizing operator R ~ in front of the white-noise
source, in the Langevin Eq. (6), where A is a parameter so
that, for a certain limit of it, R~ becomes the identity
operator.

where i)(x, r) is white noise, and a is a constant that is
equal to 1 when one is dealing with Euclidean space-time,
or (

—i) in general non-Euclidean space-time, ' as we shall
see in Sec. IV. The fundamental assertion of the SQM is
that, for any function F [P], one can obtain its quantum
expectation value by evaluating the stochastic average of
the random function F [P„],where (]]]„aresolutions of Eq.
(6), in the limit r~ ~:

a (x, r) =any(x, ~)+R,rt(x, ~),a7.

& ~(x,r))„=O,
& rt(x', r')rt(x, r))q=25(x —x ')5(r —r'),

(12)

(13)

and all other higher correlation functions are zero. Here,
we have already introduced an appropriate regularizing
operator R„' and we suppose that it is independent of
the field y. After the calculation has been done, one must
take the limit value of e for which R, becomes the identi-
ty operator.

With this prescription we proceed to calculate the
quantum expectation value of T„",Eq. (11), following the
fundamental assertion (7). Then, the stochastic average
of T„"[p„]is

& &„"[q„(,)])„=&(p„(, )bq„(, ))„.
Inverting the Langevin Eq. (6), we get

(14)

y„(x,r)= f dt e' ]' "R,rt(x, t) .
0

(15)

Introducing this in & T„[(p„])„, it is possible to explicitly
calculate the stochastic average (14):

At this order, we shall see that, in the general case, the
trace of the energy-momentum tensor can be written as

T„"=ghee,
where one can see that T„"is null on shell.

In order to get the quantum expectation value of (11),
we introduce the SQM as a stochastic process, evolving in
a fifth time ~, so that in the equilibrium limit will describe
the quantum fluctuations cp. Then, our stochastic scheme
1s

I

(q„( x, x)kq„( x, x]]„=(fd x'l(x )f xdt&dtz(e
' R', (( t&]]dx(ex'R, g( t )])x„.2

0

Taking into account that the g average acts only on the q noise, one gets

&pz(x, r)Ay„(x, r))„=f d x'5(x —x') f dt, dt2(e ' R,')b(e ' R, )&i)(x', t])g(x, t2))„.
0

Now, we can use the second correlation function (13), obtaining

(16)
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&y„(x,r)by„(x, r))„=f d x'5(x —x') f dt 5(t)f dTe' ' ' 'R, b, 5(x —x'),

(y(x)hy(x) ) = lim f d x 5(x —x') g P„(x')R,g„(x),
e~O n

which can be written as

( T„l') = lim lim(q)„(x, r)hq&„(x, r))„
wah oo e~O

=lim Tr(R, ) .
e~O

(19)

Here, Tr means functional trace and a=0 is the limit
value for which R, =I. Then, we have arrived at the final

expression for the trace anomaly, by using only purely
stochastic techniques shown as the regularized expression
for the anomaly arising by regularizing the noise source.

Consistently with the one-loop approximation, one can
see that the Fokker-Planck equation, for the stochastic
system given by Eqs. (12) and (13),

Pfy, r]= d x a +R, P[p, ]r,4 5 5S [cp] 5

5y x) 5y x '5y x

(20)

where we have performed the rotation &2t =(t, —t2) and
&2T =(t&+t2). Now, the t and T integrals are immedi-

ate, obtaining

(p„(x,r)b, qr„(x, r) )„
= f d x'5(x —x')(1 —e ' ')R, 5(x —x') .

Now, as we shall see, the second term on the right-hand
side (RHS) behaves as a dumping factor that becomes
zero in the limit ~~ oo, surviving only the first term.
Then, performing this limit and expanding the 5 distribu-
tion in some complete basis of eigenfunction P„(x), one

gets

which lead us to the Fujikawa (heat kernel) scheme, and

R, =A (2&)

which corresponds to the negative-power kernel regulari-
zation. In both cases, in the limit @~0one recovers the
identity operator.

III. TRACK ANOMALY IN FLAT SPACE-TIME

In this case we can work in Euclidean coordinates for
which the stochastic process, (12) and (13), with a = 1, is
well defined and reaches the right equilibrium limit.
Evaluating the functional trace (19), with R, =e' and
using the plane-wave basis, the calculus of the Weyl
anomaly is immediate. " Deriving the energy-momentum
tensor from the Euclidean version of the action (4), we

get

(26)

where the last two terms have been added to ensure that
the trace will be zero on shell. It is easy to see that in the
one-loop approximation e„can be written as in Eq. (11):

Observe that expression (19) is the usual result, ob-
tained by the introduction of a regularization in the 5(0)
arising in the naive calculus of the anomaly. This has
been attained by regularizing the white noise source, re-
sponsible for the quantum Auctuations, with the operator
R,. By choosing, the appropriate R„we get difFerent fa-

miliar results, such as, for instance,

(24)

5S[y] 5()'5() (21)

This equation leads to the equilibrium distribution

P,q[q ]=e
where S,s.[y] is the effective action:

S,tr[y]= —,
' f d x y(x)R, E@(x) .

(22)

(23)

can be solved at the equilibrium limit

P[y, r~ oo ]=P, [y]=0 by analyzing the integrable
first-order equation:

with b, = —( A, /2 )P, .
Then, introducing the plane-wave basis in (19), and

after some algebra one arrives at

(y( )[ —(&/2)P', ]q( ))
2 4 2@[ —(A. /2)p —k ]= lim lim dke

~-~ ~-o (2')4

2 t
—(k/2)tI5 —k ](v.+ e)—e

Here we can see that, as we have mentioned, the second
—k eterm in the RHS contains the dumping factor e

Then, after a bit of algebra,

In the limit e—+0 one recovers the one-loop contribution
to the quantum effective action. We remark that this for-
mal manipulation must require some particular cares in
nonEuclidean space-time, in order to dealt with a well-
defined stochastic process. This will be explained in Sec.
IV.

(y(x) [
—(A, /2)P, ]y(x) )

4 —2 —k' k 2=lim d ke e "exp
0 (2') 2

(27)
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where we have only conserved those terms that will not
cancel when the k integration is carried out, and the lim-
its ~~ ~ and e~O are taken. Developing the exponen-
tial of 6, and taking the limit e—+0 we get the regularized
expression for the trace (Weyl) anomaly:

(28)
PP CS 8 2

In this expression, we are considering only the finite
terms because in this case, in the absence of gravitation,
only energy di6'erences are observable. Thus, there is no
problem in disregarding any quantity, even infinite, to
write the energy-momentum tensor or its trace.

IV. THE CURVED-SPACE-TIME CASK

Taking into account the limit e—+0, we are interested in
the short time (e) behavior of this kernel. Then, we can
use the asymptotic expansion

D' (x,x')
Q(x x &) &

u(x, x')/2E g & (x x')&n
(4~@)'~

(31)

1
( R+R R" —R R" ~ )

15 PV PVPO

D(x, x') and o(x,x') are bidensities' and contain the in-
formation of space-time. The coefficients a„(x,x'), in the
limit x'~x are the Seeley coe%cients. ' Introducing the
asymptotic expansion (29) in the heat equation (28), one
obtains a recurrence equation for the a„'s. The finite part
of the final result is obtained taking the limit e —+0:

When one is dealing with non-Euclidean space-time,
some cares must be taken in the application of the
SQM. ' Because in non-Euclidean space-time the Feyn-
man path-integral shares the complex distribution e' ~~~,

one must choose a = i in th—e Langevin Eq. (6), in order
to ensure the right distribution in the equilibrium limit.
However, new problems arise from this modified
Langevin equation. In its solution Eq. (15), and in Eq.
(18') one can see the crucial role played by the drift term.
In the Euclidean case, the exponential of the drift term
behaves as a dumping factor, dissipating the "energy"
supplied by the noise source and driving the system to the
equilibrium limit. In the present case we are dealing with
imaginary exponentials that oscillates indefinitely, trou-
bling the convergence. This fact also complicates the cal-
culus of stochastic average, as those performed in the
Sec. II, leading to nonconvergent expressions. A way to
overcome this problem is by adding an imaginary mass
term in the initial action, and, after a11 the stochastic
averages have been done, it must be zero.

With this prescription and adopting the heat-kernel
regularization (24), we start the calculus of Sec. II with
the operator

Then, we will get the result (19) containing the opera-
tor 6 . Performing the limit v~O, we obtain

(T„p') = lim Tr[e ']=lim Tr[e' ]
E', K~O e~o

(29)

dF(x, x', e)
dE

(3O)

with 4 defined as in Eq. (10).
The expression (27) is the usual result and, in order to

obtain the explicit form of the conformal anomaly, we
proceed to analyze it from the "heat-kernel" approach.
In Ref. 13, the calculus is made by using the plane-wave
basis and expanding the metric g„around the Aat-

space-time case, but this is not possible for arbitrary
metrics.

By substituting t =A one can calculate (27), by
means of the heat equation, the integral kernel F (x,x', t):

+A, H ——P, (32)

Also, one gets an infinite quantity that must be ab-
sorbed in a renormalization scheme. The general motiva-
tion for the curved-space-time treatment for the theory
(4) is to connect the expectation value of T„with
Einstein s equation. In this case, the renormalization of
the cosmological and gravitational constants give us finite
results for the full theory.

In an analogous way we can regularize the noise with
the negative-power kernel, which leads to the same result
(32), but without the infinity quantities. ' For this
reason, the negative-power kernel is also called "regulari-
zation without renormalization. "

V. CONCLUSIONS

We have analyzed the calculus of the trace anomaly in
the framework of stochastic quantization, adopting a reg-
ularization scheme proposed by Bern et al. ' This
scheme has the benefit that it is widely applicable, includ-
ing the dynamical gauge and gravitational field cases. We
have showed that, starting from the regularized Langevin
equation, one arrives straightforwardly at the regularized
expression for the anomaly, which is given by the func-
tional trace of the regularizing operator introduced in
front of the white noise source. It is worthwhile em-
phasizing the general character of our calculus. More-
over, an analogous scheme can be applied in other types
of anomalous theories, for instance, in the axial anoma-
ly, ' leading to the same familiar result: the anomaly is
given by the functional trace of the regularizing operator
introduced in the Langevin equation. The relevant fact
of this scheme is that, due to the fact that the Markovian
character of the stochastic process is preserved, one is
dealing with a second-order (in functional derivatives)
Fokker-Planck equation. Then, one is able to study the
evolution of the probability distribution. Furthermore, in
our case, at the one-loop approximation, we have showed
the correctness of the equilibrium limit. The stochastic
calculus proved how the quantum Auctuations, represent-
ed by the noise source, generate the anomaly and also
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how, by regularizing them, one can extract its finite part.
With respect to the specific model, in Secs. III and IV

we have presented some particular facts of Oat- and
curved-space-time cases, showing that the nonzero con-
tribution to the quantum expectation value of the trace of
the energy-momentum tensor comes from the self-
interaction term, considered as a classical background in
the same spirit we use when the space-time is not Oat.
The anomaly arises, in both cases, from the backgrounds.

ACKNOWLEDGMENTS

We are grateful to Dr. C. Farina and Dr. J. Barcelos-
Neto for reading the manuscript and useful suggestions.
H.M. thanks the FAPERJ (Fundaqao de Amparo a
Pesquisa do Estado de Rio de Janeiro) for financial sup-
port, and Departamento de Fisica Teorica of UFRJ and
Departamento de Campos e Particulas of CBPF for hos-
pitality.

R. Jackiw, B. Zumino, and E. Witten, Current A/gebra and
Anomalies (World ScientNc, Singapore, 1985).

2T. Fulton, F. Rohlich, and L. Witten, Rev. Mod. Phys. 34, 442
(1962).

3N. D. Birrell and P. C. Davies, Quantum Fields in Curved
Space (Cambridge University Press, Cambridge, England,
1985).

4K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979); Phys. Rev. D
21, 2848 (1980);22, 1499(E) (1980);29, 285 (1984).

5M. S. Alves and J. Barcelos-Neto, Mod. Phys. Lett A 4, 155
(1989).

G. Parisi and Y. S. Wu, Sci. Sin. 24, 483 (1981).
7For a good review, see, for example, P. Damgaard and H.

Huffel, Phys. Rep. 152, 227 (1987).
8M. B. Gavela and N. Parga, Phys. Lett. B 174, 319 (1986); R.

Kirshner, E. R. Nissimov, and S. J. Pacheva, ibid. 174, 324
(1986); J. Alfaro and M. B. Gavela, Phys. Lett. 1588, 473
(1985); J. A. Magpantay and M. Reuter, Phys. Lett. B 199,
519 (1987); J. Webb, J. Phys. G 13, 1307 (1987};M. Namiki,
I. Ohba, S. Tanaka, and D. M. Yanga, Phys. Lett. B 194, 530
(1987); H. Montani and F. A. Schaposnik, Ann. Phys. (N.Y.)
181, 161 (1988); H. Montani, Phys. Rev. D 38, 3 (1988).

B. Sakita, in Lattice Gauge Theory, Supersymmetry and Grand

Unification, proceedings of the 7th Johns Hopkins Workshop
on Current Problems in Particle Theory, Bad Honnef, Ger-
many, 1983, edited by G. Domokos and S. Kovesi-Domokos
(World Scientific, Singapore, 1983); J. D. Breit, S. Gupta, and
A. Zaks, Nucl ~ Phys. 8233, 61 (1984).

' Z. Bern, M. B. Halpern, L. Sadun, and C. Taubes, Phys. Lett.
1658, 151 (1985); Nucl. Phys. 8284, 1 (1987);8284, 35 (1987);
8284, 92 (1987).

' M. B. Halpern, Ann. Phys. (N.Y.) 178, 272 (1987); Phys. Lett.
B 185, 111 (1987).

2J. W. Jun and J. K. Kim, Phys. Rev. D 37, 2239 (1988).
' M. Namiki, H. Soshi, and S. Tanaka, Phys. Rev. D 38, 1346

(1988).
'4H. Huffel and H. Rumpf, Phys. Lett. 1488, 104 (1984); E.

Gozzi, ibid. 1508, 119 (1985); H. Hiiffel and P. V. Landshoff,
Nucl. Phys. 8260, 545 (1985).

'58. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon
and Breach, New York, 1965); Phys. Rep. 19C, 295 (1975).
R. T. Seeley, Am. Nat. Soc. Proc. Pure Math. 10, 288 (1967)~

' M. S. Alves, C. Farina, and C. Wotzaseck, Phys. Rev. D (to be
published); T. F. Treml, ibid. 35, 2036 (1977).

8C. Farina, H. Montani, and L. C. Albuquerque, Phys. Rev. D
(to be published).


