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In unimodular gravity, an unspecified cosmological constant appears as a variable canonically
conjugate to a four-volume variable, the cosmological time. It was suggested that this time sets the
conditions of quantum measurements and solves thereby the interpretation problems of quantum
geometrodynamics. By analyzing the relationship of the cosmological time to hypertime (the collec-
tion of spacelike hypersurfaces), we highlight the difficulties of such a position. The constraint sys-
tem of parametrized unimodular gravity implies that the cosmological time labels only equivalence
classes formed by hypersurfaces separated by a zero four-volume, while individual spacelike hyper-
surfaces within an equivalence class are physically irrelevant. As a result, unless complemented by
a hypertime variable, cosmological time does not uniquely set the conditions for measuring
geometric variables either in the classical or in the quantum theory.

I. INTRODUCTION

In the same paper in which he set the foundations of
the general theory of relativity, Einstein remarked that
the law of gravitation can be simplified by a special
choice of coordinates. To illustrate this point, he
evoked the unimodular [det(y„tt ) = —1] coordinate con-
dition. Several years later, he proposed a relaxed law of
gravitation which admitted an unspecified cosmological
constant. Such a law can be obtained by imposing the
unimodular condition before rather than after the varia-
tion. The problem which the cosmological constant (or
rather the experimental lack of it) presents to quantum
cosmologists helps to explain why a number of authors
have recently rediscovered, revived, and reviewed
Einstein's procedure. ' Concurrently, an alternative
method of introducing an unspecified cosmological term,
based on variational principles with an auxiliary three-
form field, appeared in the literature.

Unimodular gravity was cast into canonical form by
Henneaux and Teitelboim and by Unruh. The cosmo-
logical constant appears in the formalism as a canonical
momentum; it is accompanied by a canonically conjugate
coordinate, the "cosmological time. " Henneaux and
Teitelboim have shown that the change of the cosmologi-
cal time equals the four-volume enclosed between the ini-
tial and the final hypersurfaces. (In a related develop-
ment, Sorkin used the four-volume time in a path-integral
approach to quantum gravity. ) The unimodular condi-
tion breaks the diffeomorphism invariance. Nevertheless,
the canonical formulation of unimodular gravity leads to
covariant spacetime action principle with auxiliary scalar
and vector density fields. The action principle of general
relativity can be regarded as analogous to the Jacobi form
of this new action principle.

The appearance of the cosmological time in unimodu-
lar gravity raised hopes that this theory can solve the
problem of time in quantum geometrodynarnics. In the

canonical formulation of general relativity, . the problem
of time arises because nothing in the structure of the re-
sulting constraints helps us to distinguish the true
dynamical degrees of freedom from the quantities which
determine the hypersurface. Such a formalism does not
ofter a suitable framework for describing experiments
which would measure a given dynamical variable at a
given instant. In the Dirac constraint quantization, the
constraints yield the Wheeler-DeWitt equation. This is a
second-order functional di6'erential equation for the
states %[g] considered as functionals of the three-
geometry. It resembles the Klein-Gordon equation for a
relativistic particle on a curved background. Like the
Klein-Gordon equation, the Wheeler-DeWitt equation
leads (at least formally) to a conserved current. Howev-
er, such a current gives a positive-definite inner product
only on stationary backgrounds. ' Superspace, which
plays the role of the background for the Wheeler-DeWitt
equation, is not stationary, " and the probabilistic inter-
pretation of the state functional %[g] becomes question-
able.

Unruh and Wald suggested that unimodular gravity
avoids these difficulties. ' They argued that any reason-
able quantum theory should contain a parameter (which
they called Heraclitian time) whose role is to set the con-
ditions for measuring quantum variables and provide the
temporal ordering of such measurements. They surmised
that the cosmological time of unimodular gravity is such
a parameter. ' Because the Hamiltonian constraint is
linear in the cosmological constant, its imposition on the
state functional gives a Schrodinger equation in the
cosmological time ~. The Schrodinger equation implies
that the ordinary quadratic norm is conserved in ~. It is
thus tempting to interpret qt(r;g] as the probability am-
plitude for the outcomes of measurements carried on
geometric variables at a given instant of ~. '

The problem with this suggestion is that the cosmolog-
ical time is not in any obvious way related to the standard
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concept of time in the theory of relativity. In classical re-
lativity, time is a foliation of the spacetime M by hyper-
surfaces, while space is a congruence of worldlines in M.
A spacelike hypersurface is an instant of time, a timelike
worldline is a point of space. Time (and space) are rela-
tive, because neither the time foliation nor the space
congruence are unique. To deal with all possible instants
of time at once, it is best to identify time with a collection
of all spacelike hypersurfaces. We shall call such a col-
lection hypertime, or many-fingered time. To label the
elements of hypertime, one needs to use functions of
three coordinates rather than a single real parameter of
Newtonian mechanics. ' The basic canonical variables
g,b(x) and p' (x) which unimodular gravity shares with
geometrodynamics are always supposed to be measured
on a single spacelike hypersurface rather than at a single
value of the cosmological time. It thus remains obscure in
what sense the cosmological time "sets the conditions of
quantum measurements. "' Our aim is to clarify its rela-
tion to hypertime and, by doing that, to show that the
claim that unimodular gravity solves the problem of time
is misleading.

The basic tool of our analysis is the technique which
we developed for discussing quantum gravity obtained by
imposing a set of coordinate conditions prior to variation.
The technique was introduced in conjunction with Gauss-
ian coordinate conditions' and later applied to harmonic
coordinate conditions. ' The coordinate conditions are
adjoined to the action with a set of Lagrange multipliers.
The additional terms in the action break the
diffeomorphism invariance of the theory and introduce a
source into the Einstein law of gravitation. The source
can be interpreted as a material system, the reference
Quid, which is coupled to gravity. Di6'eomorphism in-
variance is then restored by parametrizing the action.
The privileged coordinates stipulated by the coordinate
conditions are expressed as functions of arbitrary label
coordinates and promoted to field variables side by side
with the metric. These functions play the role of poten-
tials whose variation yields the equations of motion of the
reference Quid.

The Quid potentials mark the spacetime events. In
their role of canonical coordinates, they specify an
embedding in the encompassing spacetime, i.e., they
represent hypertime. For suitable coordinate conditions
(like the Gaussian or the harmonic coordinate conditions)
the diffeomorphism-invariant parametrized action leads
to the familiar super-Hamiltonian and supermomentum
constraints on the phase space of the geometric variables
g,b, p' extended by the embedding variables X, P~.
These constraints can be resolved with respect to the
embedding momenta P„and then imposed on the states
%[X,g,b]. This yields a functional Schrodinger equa-
tion which, with some qualifications, can be said to solve
the problem of time.

We then apply the same procedure to the unimodular
coordinate conditions and show why it does not work.
We adjoin the unimodular condition to the Hilbert action
with a Lagr ange multiplier A and restore the
diffeomorphism invariance by turning the unimodular
coordinates X into field variables (Sec. II). The

parametrized action S [X",A, y &] is then cast into
canonical form on the extended phase space g,&, p'", X
P~ . The Lagrange multiplier A becomes thereby a
dynamical variable on the embedding sector of the phase
space. The embedding variables are subject to 3~ (pri-
mary) supermomentum constraints. The variation of the
lapse and the shift leads to 3~ (secondary) gravitational
supermomentum constraints and ~ (secondary) super-
Hamiltonian constraints. The total system of constraints
is first class. It is related to the Henneaux-Teitelboim
system by a canonical transformation (Appendix).

The constraints can be split into 4 ~ —1 constraints on
the embedding variables, 4 ~ —1 constraints on the
geometric variables, and one single constraint coupling
the geometric variables to the embedding variables. This
count is radically different from a single set of 4~ con-
straints of the Gaussian or harmonic gravity. It explains
why unimodular gravity does not solve the problem of
time (Sec. III). The 4~ —l constraints on the embed-
ding variables generate displacernents of embeddings un-
der which a displaced embedding is separated from an
old one by a zero four-volume. The 4~ —1 constraints
on the geometric variables generate changes of the intrin-
sic geometry and the extrinsic curvature under such dis-
placements. The embedding constraints can be cast by a
canonical transformation into the form in which they as-
sert that 4~ —1 embedding momenta vanish. The con-
jugate embedding coordinates label the embeddings
within an equivalence class 6 of embeddings with a zero
four-volume separation. Because the 4~ —1 constraints
on the embedding variables are totally independent of the
4~ —1 constraints on the metric variables, the displace-
ments of embeddings which the former constraints gen-
erate are in no way correlated to the changes of
geometry. This is to be interpreted as the statement that
the coordinates canonically conjugate to the 4~ —1 new
embedding mornenta, i.e., the individual embeddings
within an equivalence class 8, are physically irrelevant.

The single remaining embedding momentum is the
cosmological constant and its conjugate coordinate is the
cosmological time. The cosmological time labels the
equivalence classes 6', by giving the four-volume separa-
tion of an arbitrary embedding in 6, from a fiducial
embedding in Wo. The single remaining constraint which
couples the embedding variables to the geometric vari-
ables correlates the changes of geometric variables to the
change of ~, i.e., to the passage from one equivalence
class 6, to another. The only new physical objects intro-
duced by unimodular gravity are thus the equivalence
classes 8, (labeled by the cosmological time ~), not the in-
dividual embeddings [labeled by the hypertime X (x)].

When imposed on the state functional %'[ Xg, ],bthe
4~ —1 embedding constraints tell us that 4 can depend
on the unimodular embeddings X only via the cosmo-
logical time ~. The single constraint which couples the
embeddings with geometry yields the Schrodinger equa-
tion for 4 as a function of ~. If this were the only equa-
tion on the state, one could interpret 4 as the probability
amplitude that the metric g,b(x) has a given distribution
at a time ~. However, + must also satisfy the additional
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4~ —1 geometric constraints. The three-metric opera-
tor (or, rather, the three-geometry operator) does not
commute with these constraints and the interpretation of
+ as the probability amplitude becomes untenable. The
4~ —1 geometric constraints are actually a Wheeler-
DeWitt equation which describes the evolution of states
between embeddings of a single equivalence class D. The
cosmological time does not set the conditions of the mea-
surement uniquely because it does not tell us on which
one of the infinitely many hyper surfaces of the
equivalence class the geometric variables are to be mea-
sured. The hypersurfaces with different values of ~ are al-
lowed to intersect and the cosmological time thus even
does not provide the causal ordering required of the
Heraclitian time. The fundamental reason why unimodu-
lar gravity does not and cannot solve the problem of time
is simple: time in relativity is a collection of all spacelike
hypersurfaces (hypertime) and no single parameter, like
the cosmological time ~, is able to label uniquely so many
instants.

II. PARAMETRIZED UNIMODULAR GRAVITY

Unimodular gravity is obtained by varying the Hilbert
action

S [y„s]=f d"x Idet(y„~)l' R [y„~]
M

under the auxiliary condition

—Idet(y„~)l' +1=0 .

(2.1)

(2.2)

The coordinates X =(T,Z") in which Eq. (2.2) holds are
called unimodular coordinates. We choose them so that
they satisfy the Hilbert conditions: The hypersurfaces
T =const are spacelike and the reference lines Z"=const
are timelike.

One can incorporate Eq. (2.2) into the action principle
by adjoining it to the Hilbert action by a Lagrange multi-
plier A:

S[y,A]=S [y ~]+f d XA( —Idet(y„s)l' +1) .
M

(2.3)
I

The additional term breaks the diffeomorphism invari-
ance of S . The invariance is restored by parametriza-
tion: The privileged (unimodular) coordinates X are ex-
pressed in terms of arbitrary (label) coordinates x and
turned into field variables. ' The parameterized action
S[X,y &, A] is defined by requirements that it be invari-
ant under transformations of x and reduce to the old ac-
tion (2.3) when the unimodular coordinates are used as
labels:

S[X"=6"x,y p, A]=S[y„~,A] . (2.4)

These two conditions fix the form of S [X",y &,A] to

where

(2.6)

is the Jacobian of the transformation x ~X
The diffeomorphism invariance of the action (2.5) en-

sures that the field equations obtained by varying X"(x )

follow from those obtained by varying y &
and A. The

variation of y f3 yields the Einstein law

R ~——'R y ~+ —'Ay ~=0 .
2 2

(2.7)

The Bianchi identities imply that —,A is a spacetime con-
stant. This can be identified with the cosmological con-
stant. The variation of A leads to the parametrized uni-
modular condition

Idet(y ~)l'i'=X[X ] . (2.8)

Let us bring the parametrized action into canonical
form. We assume that M =R XX, where X is compact.
We subject the label coordinates x =(t,x') to the Hilbert
conditions and decompose y &

into the lapse N, shift X',
and the induced metric g,b. We introduce the momen-
tum p conjugate to g,b and arrive thus at the action

S[X",y p, A]

=f d x(ldet(y p)
'i (R [y p]

—A)+AX[X "]),
(2.5)

S[X";g,b,p'", N, N';A]= f dt f d x(p'"g, b N(H +Ag' —
) N'H, +AX[X—"]) .

R
(2.9)

The dynamical variables H and H, are the standard
gravitational super-Hamiltonian

The space-time vector density ~ has the components

'"(p'p 'p') g'"R [g—, —]—(2.10) r =(zo, r )=(TZ, TZZkZ"), (2.13)

and supermomentum

a.G= —Zp" (2.1 1)

X=~ with z:= TgaPr&Z Z'Z 5, a~ 3f P r 5 klm (2.12)

To handle the embedding variables, we rearrange the
Jacobian X[X ] in two different ways. The aim of the
first rearrangement is to express X as a divergence,

where Zk is the inverse to Z,":=Z", and Z:=det(Z, ).
Equations (2.12) and (2.13) are the starting point for pass-
ing to the Henneaux-Teitelboim action (&ppendix).
They enable us to determine the volume v &N of the
spacetime region between two embeddings X&&(x ') and
XF~&N(x'). To get FLYNN, we connect the embeddings by a
foliation X~(r,x') and integrate the parametrized unimo-
dular condition (2.8) from &&N to &FtN.
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F' = f ""dtf d'x Ng'"
IN

3 0dt d x r o(t, x) =rFtN —r
IN X

r:=f d x Z(x)T(x) .
(2.14)

jugate to X~:

P~ =An~ . (2.17)

P, :=X,Pq=0. (2.18)

We see that the tangential projection of Pz must vanish:

The variable ~ is the four-volume between the fiducial hy-
persurface T(x)=0 and the embedding X (x).

The second rearrangement exhibits X as a linear func-
tion of the embedding velocities X

=1
X[X "]=n„X", n„:=

3( 5qscDZqZ, Zd 5"'" . (2.15)

n~ =Z(1, Zk T, ) . (2.16)

From Eqs. (2.9) and (2.15) we get the momentum P„con-

The spacetime covector n~ is normal to the embedding.
It behaves as a scalar density under Diff. Its corn-
ponenis are A=Z 'Pz- . (2.19)

By substituting this A into (2.9), we cast the action into
the canonical form

This is a primary constraint on the embedding variables.
Inversely, Eq. (2.18) implies that P„ is directed along the
normal, i.e., that there exists a A which yields Eq. (2.17).
Up to the terms in P~, Eq. (2.18) determines A as a
dynamical variable on the embedding phase space. We
choose a particular solution for A which does not depend
on Pq..

$[X",P„,g, ,p'";N, N'j= f dt f d x(P„X"+p' g, N(HG+—g'~ A) N'H—G) .
R X

(2.20)

and

H =0a (2.21)

The variation of the lapse and the shift yields the con-
straints

constraints is first class.
The constraints (2.25) ensure that the gravitational

super-Hamiltonian g
' H and the dynamical variable

A are constant on X. They can be written in an integral
form

g -'"H:=g -'"H'+A=0 . (2.22) Ho (x):=H(x)+A.-g' (x)=0 (2.26)

In Eq. (2.22), the scalar g
'~ H depends only on the

metric variables and the scalar A=Z 'P~ only on the
embedding variables.

The supermomentum constraints (2.18) and (2.21) gen-
erate the Lie derivative change of arbitrary dynamical
variables on the embedding sector and the metric sector
of the phase space. Each set thus represents LDiffX and,
moreover, the constraints (2.18) have vanishing Poisson
brackets with the constraints (2.21). The scalar con-
straints (2.22) close into the supermomentum constraints
(2.21),

fg
'~ H(x), g

'~ H(x')f

Po(x):=Pr(x) —XZ(x) =0, (2.27)

where A, and k are the dynamical variables

&:=—f d x H (x) f d3x g'~2(x)

A, = f d'x P, (x) f d'x Z(x) .
X X

(2.28)

The constraint (2.22) then reduces to a single global rela-
tion

=g ' '(x)g' (x)H, (x)6 ~(x,x')g '~'(x') —(x~x') . =0 (2.29)

(2.23)

However, because H, (x ) and P, (x ) generate LDiff, and
g

' H (x) and A(x) are scalars under Diff,

[g '~ H(x), H, (x)) =H, (x)5(x,x'),
[A(x),P, (x)J =A, (x)5(x,x') .

(2.24)

The constraints (2.18), (2.21), and (2.22) thus imply
secondary constraints

(g '~ HG(x)), =0 and A, (x) =0 . (2.25)

With these additional constraints, the total system of

among the metric variables and the embedding variables.
To summarize, the complete constraint system consists

of the supermomentum constraints (2.18) and (2.21), the
integral constraints (2.26) and (2.27), and the global con-
straint (2.29). In the supermomentum and integral con-
straints, the metric variables and the embedding variables
are completely separated. The only connection between
these two classes of variables is provided by the global
constraint (2.29).

The supermomentum constraints generate the Lie
derivative change under the shift N' within the hypersur-
face. We want to interpret the changes generated by the
integral constraints (2.26) and (2.27).
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The integral constraint (2.26) generates the normal
change of a geometric dynamical variable F [g,„,p' ]
within a class of hypersurfaces which have a zero four-
volume separation from each other. Indeed,

f d xNO(x)HO(x)=:Ho(NO)

=H (N):= f d xN(x)H (x),

(2.30)

where

III. INTERPRETATION OF CONSTRAINTS
AND THE PROBLEM OF TIME

To interpret the constraint system of unimodular grav-
ity, we shall compare it on one hand with the constraint
system of general relativity, and on the other hand with
the constraint system of Gaussian gravity.

In general relativity, the phase space (g,b,p' ) does not
contain any embedding variables. The geometric vari-
ables satisfy the usual super-Hamiltonian and super-
momentum constraints

N(x)=NO(x) f d—x'g' (x')No(x') f d x'g' (x'). H (x;g&„p ']=O=HG(x;gb„p '] . (3.1)

(2.31)

The integral constraint (2.26) smeared by No(x) thus gen-
erates the same change as the gravitational super-
Hamiltonian smeared by N (x). However, the four-
volume between the hypersurfaces separated by the lapse
function (2.31) vanishes:

Of course, we can artificially enlarge the configuration
space by the embedding variables X"(x) and parametrize
the Hilbert action. However, because the Hilbert action
is already invariant in the metric variables, its
parametrized version S[@ &,X ] does not actually de-
pend on the embedding variables. As a result, the embed-
ding momenta vanish:

f d x N(x)g'~ (x)=0 . (2.32) P~(x)=0 . (3.2)

Similarly, the integral constraint (2.27) generates the
change of the embedding along the worldlines Z =const
of the unimodular reference frame within a class of hy-
persurfaces which again have a zero four-volume separa-
tion from each other. To show that, smear Po(x) by an
arbitrary function M(x),

Po(M): = f d'x M (x )Po (x ), (2.33)

and determine the change of the embedding which it pro-
duces:

We thus end with two sets of constraints, (3.1) and (3.2),
in the extended phase space (X",Pz', g,b,p' ). The first
set depends only on the geometric variables, the second
set only on the embedding variables. Altogether, we have
2 X 4~ constraints for (12+8) oo canonical variables.

In unimodular gravity, the parametrized unimodular
coordinate condition is adjoined to the Hilbert action
with a Lagrange multiplier. The canonical analysis of the
last section leads to 4~ —1 constraints on the geometric
variables,

T= [T(x),PO(M)]

=M(x) —f d x'Z(x')M(x') f d x'Z(x'),
(2.34)

Z "(x)= [Z"(x),PO(M) J
=0 .

We see that Z (x) remains unchanged, and the four-
volume between the initial and the displaced hypersur-
faces determined from Eq. (2.14) vanishes:

dr=dt f d x Z(x)T(x)=0 . (2.35)

H, (x)=0, H (x)+A, g'~ (x)=0,
&:=fd xH (x) f d xg'~(x),

4~ —1 constraints on the embedding variables,

P, (x)=0, Pz (x)—AZ(x) =0,
A, :=f d x Pz(x) f d x Z(x),

X X

(3.3)

(3.4)

The supermomenta (2.18), (2.21) and the integral con-
straints (2.26), (2.27) keep us always within the
equivalence class 4 of ernbeddings separated by the zero
four-volume. To get from one such equivalence class to
another, we must evolve the data by the global constraint
(2.29).

The dynamical variables A, and A. given by Eqs. (2.28)
have vanishing Poisson brackets with all the constraints
(2.18), (2.21), (2.26), (2.27), and (2.29). They are therefore
constants of the motion. They are not independent, be-
cause the constraint (2.29) forces them to be the same.
The constant of the motion —,

'
A. = —,

' k is simply the
cosmological constant, once calculated as a functional of
the embedding variables, the other time as a functional of
the geometric variables. The canonical formalism repro-
duces thereby the result which followed from the Einstein
law of gravitation (2.7).

and one constraint coupling the geometric variables with
the embedding variables,

A, [X",P ]—A. [g,„,p' ]=0. (3.5)

Altogether, we have 2 X4 ao —1 constraints for
(12+8)~ canonical variables. To reduce unimodular
gravity to general relativity we must impose a single addi-
tional constraint

X[X",P~]=0 . (3.6)

Gaussian gravity follows the pattern of unimodular
gravity, the parametrized Gaussian coordinate conditions
replacing the unimodular condition. ' They are again
adjoined to the action with Lagrange multipliers. The
canonical analysis of the action leads to a single set of
4~ constraints which couple the geometric variables to
the embedding variables,
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P„(x)—n„(x;X,gb, )H (x;gb„p ']

+X„'(x;X,g, ]H, (x;g„„p ']=0 . (3.7)

g,b(x);p'"(x) ~ P "(x),g„(x);sr„(x),p "(x) (3.8)

should be accomplished by a canonical transformation.
The constraints (3.1) should then be resolved with respect
to the embedding momenta n~, i.e., written in the form

~„( x)+h~( xP, gp "]=0 . (3.9)

The functionals h~(x) represent a true many-fingered
Hamiltonian (the energy density and the energy fiux
through the embedding).

To quantize the system, we should turn the constraints
into operators and impose them as restrictions on the
physical states. When we apply this procedure to the
geometric constraints (3.1),

H, (x)%'[g,b ] =0, H (x)%[g]=0, (3.10)

we recover the familiar scheme of quantum geometro-
dynamics. The first equation (3.10) ensures that the phys-
ical states depend only on the three-geometry g. The
second equation (3.10) is the Wheeler-DeWitt equation.
As a second-order functional differential equation in g,
this equation (at least formally) yields a conserved
current, but not a positive-definite inner product. ' "'
The probabilistic interpretation of the solutions V [g]
thus remains problematic.

These difhculties motivated the quest for an internal
time (3.8). When the constraints are imposed on the state
functional in their resolved form (3.9), they yield a
many-fingered time Schrodinger equation

i54[p, g, ]

6P (x)
=h~(x;0', g, P"]q'[0',g, ] . (3.11)

The coefficients n~ and X~ have the meaning of the
normal and the tangent covectors to an arbitrary embed-
ding. By virtue of the Gaussian coordinate conditions,
these are quite definite functionals of the configuration
variables X"(x) and g,b(x). Altogether, we have 4oo
constraints (3.7) for (12+8)~ canonical variables. To
reduce Gaussian gravity to general relativity, we should
impose 4oo additional constraints (3.2).

The problem of time in general relativity arises when
one tries to implement the Dirac constraint quantization
in terms of the 4~ geometric constraints (3.1). The con-
straints generate the change of the 12~ geometric vari-
ables g,b(x),p' (x) under an arbitrary displacement of
the embedding, but the embedding does not enter into the
canonical description of the system. One would like to
say that 4~ combinations p"(x;g,b,p' ], A =0, 1,2, 3,
of the geometric variables specify the embedding and
2~ combinations g„(x;g,b,p' ], r = 1,2, describe the
true degrees of freedom of the gravitational field on that
embedding. ' The embedding variables P" ought to be
four independent spacetime scalars. They play the role
of an internal many-fingered time.

The transition

P„( )x%'=0 . (3.13)

The constraints (3.13) tell us that '0 does not depend on
external embeddings X"(x). The expression

q'*[X',g.b]+[X'' g.b]= q'*[g.b]+[g.b] (3.14)

is the same on every embedding, and thus automatically
conserved. However, it cannot be interpreted as the
probability density for the metric g,b(x) to have a given
distribution on the embedding X"(x) because 'II[g,b] is
subject to the old constraints (3.10) and the metric g,b(x)
is thus not a measurable quantity. At best, one can again
separate the internal embedding variables P "(x) from the
true degrees of freedom g„(x ), and interpret
%*[/",g„]%[/,g, ] as the probability density for the true
degrees of freedom g„(x) to have a given distribution on
an internal embedding P "(x). The internal embedding
P "(x) is in no way related to the external embedding
X"(x); when we know X"(x), we have no idea about
what P "(x) may be. The mere parametrization of the
Hilbert action does not help us in resolving the problem
of time.

The situation is entirely changed when we first break
the invariance of the Hilbert action by suitably chosen
coordinate conditions, like the Gaussian conditions, and
only then parametrize it by X"(x).' The constraints in
the extended phase space (X"(x),P&( );g,xb( ),px' (x))
are then not doubled, but form a single set of 4~ con-
straints (3.7) which couple the geometric variables to the

This equation, at least formally, keeps the norm of the
state +,

&+~+&= J' Dg, +*[0"g, ]q'[y', g, ],
independent of the embedding. The integrand of the
functional integral (3.12) can then be interpreted as the
probability density for the gravitational degrees of free-
dom g„(x) to have a given distribution on the embedding
yA( )

Unfortunately, one does not know a canonical transfor-
mation (3.8) for which the quantization program (3.9),
(3.11), and (3.12) would be technically feasible. More-
over, different splits (3.8) of the geometric variables into
dynamical degrees of freedom and a many-fingered time
are expected to lead to inequivalent quantum theories.
This constitutes the problem of time in quantum
geometrodynamics.

The parametrization of the Hilbert action by the exter-
nal embedding variables X (x) does not by itself resolve
the problem of time. The extension of the phase space
into (X",Pz, g,b,p' ) is counterbalanced by the doubling
of the constraints, Eq. (3.2). The constraints (3.2) on the
external embedding variables are totally separated from
the constraints (3.1) on the metric variables. The change
of an external embedding X"(x), generated by the con-
straints (3.2), is thus in no way correlated to the change
of the geometry generated by the constraints (3.1). In
quantum theory, the state functional %[X",g,b] (or, with
internal embeddings identified, %[X,p, g, ]), is subject
to a double set of constraints, (3.10) [or (3.11)],and
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embedding variables. The embeddings X (x) written in
terms of the Gaussian coordinates X describe the physi-
cal state of a material system, the Gaussian reference
Quid, which interacts with gravity. The Gaussian refer-
ence Quid has the structure of a heat-conducting dust.
The embeddings X"(x) are anchored in this material
medium. The embedding variables X (x) and the metric
are independent canonical coordinates and one thus does
not need to perform a canonical transformation (3.8) to
distinguish time from dynamical degrees of freedom. The
constraints (3.7) are already resolved with respect to the
embedding momenta, as in Eq. (3.9). The Dirac con-
straint quantization thus leads to a functional
Schrodinger equation

i 6%/5X (x)=h ~ (x;X,g,b,P' ]+ (3.15)

in the many-fingered Gaussian time X"(x). The expres-
sion

%'*[X,g, b ]4'[X,g, b ] (3.16)

can be interpreted as the probability density that, on the
embedding X (x)=(T(x),Z"(x)), the metric g,b(x)
[which is measured in the system of coordinates x' con-
nected to the Gaussian system of coordinates Z by the
transformation Z"=Z (x')] is found in the cell Dg, b(x).
The only difhculties arise from the energy conditions
which must be satisfied in order that the Gaussian refer-
ence Quid be realizable as a material system. These are
not relevant for our present discussion of unimodular
gravity.

The imposition of the Gaussian coordinate conditions
before parametrization thus solves (apart from the
difficulty posed by the energy conditions) the problem of
time in quantum gravity. Other coordinate conditions,
like the harmonic ones, serve the same purpose. ' The
crucial question which we are facing in this paper is
whether the unimodular condition works in the same way
as the Gaussian conditions or the harmonic conditions.
The answer to this question is no.

In parametrized general relativity, all 4~ external
embedding variables X"(x) are physically irrelevant be-
cause the conjugate momenta are subject to 4~ con-
straints. Their change is not correlated with the change
of geometry. In Gaussian gravity, all 4~ embedding
variables are physically significant. The embedding mo-
menta are not limited by any separate constraints, and
the constraints (3.7) perfectly correlate the changes of
X (x) to the change of geometry. In unimodular gravity,
the embedding momenta are subject to 4~ —1 con-
straints (3.4). This counting is much closer to
parametrized general relativity (which does not solve the
problem of time) than to Gaussian gravity (which solves
it). As a result, in unimodular gravity almost all embed-
ding variables, namely, 4~ —1 of them, are physically
irrelevant. Only one single variable is correlated with an
observable change of geometry.

To carry this argument to the bitter end, we must
separate the physically irrelevant part of X (x) from the
physical part of X"(x) by a point transformation. At the
same time, we shall cast the embedding constraints (3.4)

into new momenta.
The point transformation is performed in two stages.

The first one is a transition

T(x), Z (x) T(Z), Z"(x)
Pk(x) P(Z), P (x) (3.17)

Unlike P, (x), the dynamical variables Pi, (x) have vanish-
ing Poisson brackets among themselves,

[Pk(x),Pi(x') } =0 . (3.19)

This can either be checked directly, or can be shown to
hold by a general argument: Because the supermomen-
tum constraints close, and Pk(x)=0 are equivalent to
P, (x) =0, the Poisson bracket (3.19) must weakly vanish,
modulo the constraints Pk(x) =0. However, because
Pk(x) in Eq. (3.18) are separated from the remaining vari-
ables, the Poisson bracket [Pk(x), P&(x')} does not de-
pend on Pk(x). The constraint Pk(x)=0 thus cannot
help the bracket to vanish, and Eq. (3.19) must hold
strongly rather than weakly.

It is also easy to check that the embedding variables

Z (x)=Z (x) (3.20)

are canonically conjugate to the new momenta (3.18):

[Z"(x),Pt(x') } =615(x,x') . (3.21)

To complete Eqs. (3.18) and (3.20) into a canonical
transformation (3.17), we construct a number of dynami-
cal variables which commute both with the new coordi-
nates Z "(x) and the new momenta Pk(x). Let F(Z") and
G(Z") be arbitrary functions of Z". On an embedding
Z "(x), we turn them into smearing functions and define

TF:=f d x Z(x)F(Z "(x))T(x) (3.22)

and

P:=f d x G(Z (x))P (x) . (3.23)

These variables are invariant under Diff and hence their
Poisson brackets with the generators P, (x) of LDiffX
vanish. Because they do not depend on the Pk (x )'s,

[ TF,Z "(x)} =0= [PG,Z "(x)}, (3.24)

their Poisson brackets with the new momenta (3.18) also
vanish:

[TF,P„(x)}=0= [PG,P„(x)} . (3.25)

The Poisson brackets among the different pairs of the
variables (3.22) and (3.23) yield

and

[TF TG}=o=[PF PG} (3.26)

The new momenta Pk (x ) are obtained by multiplying the
supermomenta P, (x) by the inverse Zk to the matrix
Zk. Zk

)

Pk(x) =Zk(x)P, ( x) Pk(x—)+Zk(x)T, (x)PT(x) .

(3.18)
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I T~, PG I
= f d'x Z(x)F(Z"(x))G(Z "(x)) . (3.27)

We now pass to the limit in which we choose for
F(Z") a family of 5 functions labeled by three parameters
zk

F (Z&) =g(Z& —Z&) (3.28)

The corresponding dynamical variables (3.22) and (3.23)
are labeled by the same parameters:

T(Z")=f d'x Z(x)5(Z (x) Z)T-(-x)

P(Z")= f d'x 6(Z (x)—Z"}Pr(x) . (3.30)

Equation (3.29) tells us that T(Z") is a functional of
Zk(x) and T(x) obtained by solving the equation
Z"=Z "(x') for x' and substituting this solution back
into T(x'):

T (Z")= T(x'(Z") ) . (3.31)

Equations (3.24) and (3.25) reduce to the form

I T(Z), Z"(x) ] =0=
I T(Z),Pk(x)I

I P(Z), Z (x) I
=0= IP(Z), Pk(x) I,

and similarly, Eqs. (3.26) and (3.27) yield

I T(Z), T(Z') I
=0= IP (Z), P (Z') I,

IT(Z), P(Z')I =5(Z —Z') .

(3.32}

(3.33)

f d'Z T(Z)
r= fd Z T(Z), T (Z)=T(Z)— f d'Z

(3.35)

This is similar to decomposing the configuration of a sys-
tem of particles into the position of their center of mass
and the relative positions of the particles with respect to
this center.

The variable r is the four-volume (2.14) separating the
hypersurface T (Z ) from the fiducial hypersurface
T(Z)=0. It labels the equivalence classes 6, of hyper-
surfaces which have a zero four-volume separation from
each other, while To(Z) labels the individual hypersur-

They tell us that the transforination (3.17) given by Eqs.
(3.18), (3.20), (3.29), and (3.30) is a canonical transforma-
tion.

The variables T(Z) label the hypersurfaces by giving
the unimodular time as a function of spatial unimodular
coordinates. The variables Z "(x) are the mappings from
X into the unimodular coordinates; as such, they assign
the coordinates x' to the points of a hypersurface.

In the second stage of the canonical transformation, we
decompose T(Z) into its mean value, r/ fd Z, and the
deviation To(Z) from this mean value:

T(Z)=TO(Z)+w f d3Z, f d3Z To(Z)=();

(3.34)

faces within each equivalence class ~=const. As a new
canonical coordinate, To(Z) has a disadvantage that it
cannot be freely prescribed because its integral must van-
ish. To avoid this shortcoming, we overlabel the
members of each equivalence class by redundant coordi-
nates T(Z) which generate a To(Z) that automatically
satisfies the integral constraint. This we do by putting

To(Z)=T(Z) f—d'Z T(Z) f d Z . (3.36)

Through this formal device, we are able to write a point
transformation which meets our needs:

T(Z ), cr

P(Z),

We put

T(Z),
P(Z), (3.38)

T(Z)=T(Z) —f d Z T(Z) f d Z+~ fd'Z,
(3.39)

cr= f d Z T(Z),

and, inversely,

T(Z)=T(Z) f d3Z T(Z)—f d Z+cr f d Z,
(3.40)r= f d'Z T(Z) .

This induces the transformation of the momenta

P(Z)=P(Z) —f d Z P(Z) f d Z+7r,

X= fd'ZP(Z) f d Z .
(3.41)

We see that cr and vr on the left-hand side of Eq. (3.38)
are unphysical, corresponding to one unphysical degree
of freedom in the canonical pair T(Z), P(Z) on the
right-hand side of Eq. (3.38). As a compensation, the
pair ~, A, on the right-hand side of Eq. (3.38) is physical, r
being the four-volume variable and A. the cosmological
constant (2.28).

The canonical transformation (3.38) casts the old con-
straints (3.4) and (3.37) into a new constraint

P(Z)=0 . (3.42)

We have thereby achieved our aim of transforming all the

We see that two functions, T, (Z} and T2(Z), which
diA'er by a constant, label the same hypersurface. The
constant itself is unobservable. By comparing (3.36) with
(3.35},we see that the unimodular time T (Z ) diff'ers from
the redundant coordinate T(Z) by such an unobservable
constant.

Because of the redundancy, the mapping from the
m +1 variables T(Z), r to the ~ variables T(Z) can-
not be one to one. To have a one-to-one mapping, we
must extend the original configuration space T(Z) by an
unphysical degree of freedom 0.. We state that o is phys-
ically irrelevant by requiring that the momentum m con-
jugate to 0. vanish:

(3.37)
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~'P(cr;X "]= i —0'(o",X ] =0 .
Bo

(3.43)

As a result, V(o",X ] does not depend on o. and reduces
thus to an old state 'P[X "].

We now express the extended state in terms of the new
coordinates:

embedding constraints into the statement that the new
momenta, Pk(x) and P(Z), must vanish.

As in parametrized general relativity, this is to be in-
terpreted as the statement that the coordinates Z"(x) and
T(Z) are physically irrelevant. The individual hypersur-
faces within an equivalence class 6, of hypersurfaces with
a zero four-volume separation, as well as spatial unimo-
dular coordinates, are not physical elements of unimodu-
lar gravity. The only new physical objects introduced by
unimodular gravity are the equivalence classes them-
selves. These are labeled by the four-volume parameter ~,
the "cosmological time. "

This is naturally rejected in quantum theory. In the
Schrodinger representation, the states are taken as func-
tionals +[X,g, b ] of the unimodular embeddings and of
the metric g,b (which, for the time being, we suppress in
our notation). When we extend the embeddings by an un-
physical variable o., the state 4'[X "] is extended into
0'(cr;X "]. The extended states, however, must be subject
to the constraint (3.37).

and

] fd xH (x)
4(rg] .fd'x g'"(x) (3.50)

(4 4) = fDg 4'(r;g]N(r;g] (3.51)

does not depend on r. Then, if Eq. (3.50) were the only
equation for the state N, one could interpret the in-
tegr and

Equation (3.48) implies that 4 depends only on the
equivalence classes of metrics g, z (x ) modulo spatial
diffeomorphisms Diff, i.e., only on the three-geometry
g. We are thus entitled to use the notation &b(r;g] in the
remaining two equations.

Equation (3.50) has the form of a Schrodinger equation
in the cosmological time ~. The proponents of the view
that unimodular gravity solves the problem of time in
quantum geometrodynamics base their claim on this fact.
They propose that 4(r;g] describes the statistical distri-
bution of measurements performed at a given instant ~.

To see whether such a claim can be justified, let us
grant that one can factor order the Hamiltonian on the
right-hand side of Eq. (3.50) as a self-adjoint operator on
the space of square-integrable functionals of g. It follows
that the norm

%(o;X (x)]=4(r;T(Z),Z (x)] . (3.44) 4*(r;g]4(r;g] (3.52)

P(Z)N=O=Pk(x)N (3.45)

which tell us that 4 does not depend on the function
variables T(Z) and Z"(x). This means that N is actually
a function of a single real variable ~. In terms of the orig-
inal variables X (x),

r= f d'x Z(x)T(x) . (3.46)

The functional N is obtained from 4 by substituting for
the old arguments o", X"(x ) the expressions obtained
from the canonical transformation (3.17) and (3.38). The
functional N is subject to the new constraints

as the probability density that, when observed at an in-
stant ~, the three-geometry g has a given distribution.

However, besides the Schrodinger equation (3.50), the
states must also satisfy the constraints (3.49). Only those
states which solve Eq. (3.49) belong to the physical space
Vo. Unfortunately, the geometry operator g =g X throws
the state out of Vo. To show that, one must first define g
as a multiplication operator. This is done indirectly by
turning an arbitrary invariant functional G [g,b] of the
metric into a multiplication operator. Because G [g,b]
depends only on the equivalence classes of metrics modu-
lo Diff',

H, (x)G[g,&]=0, (3.53)
By putting Eqs. (3.43)—(3.46) together, we conclude that
'@[X "(x)] can depend on the unimodular coordinates
only through the combination (3.46), i.e., that

it can be interpreted as a functional G [g] of geometry.
An implementation of G as a multiplication operator

G:=G[g]X (3.54)
0'[X"]=0& f d x Z(x)T(x)

X
(3.47)

H, (x)@(r;gb, ]=0, (3.48)

H (x)+f d'x'JIG(x') f d'x'g'~'(x') q)(r;g]=0
X X

(3.49)

This takes care of all of the embedding constraints.
We now reintroduce the metric argument and impose

on C&(r;g, b ] the remaining constraints (3.3) and (3.5):

then amounts to defining g as a multiplication operator.
After this is done, it becomes clear that a generic 0

does not weakly commute with the constraint Ho(x) of
Eq. (3.49):

4&E Vo M [G,HO(x)]%=0 . (3.55)

Therefore, G&b does not necessarily lie in the physical
space 9'0, and (3.52) can no longer be interpreted as the
probability density for the geometry g.

One can easily see the reason why the three-geometry g
is not observable. The constraint (3.49) is actually a
Wheeler-De Wit t equation describing the evolution of
state between hypersurfaces separated from each other by
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a zero four-volume. Equation (3.50) describes then the
evolution of state from one equivalence class of such hy-
persurfaces to another. It is only this equation which has
the Schrodinger form; the remaining constraints (3.49)
are still of the Klein-Gordon type. The unimodular coor-
dinate condition (unlike the Gaussian coordinate condi-
tions) is much too weak to solve the problem of time.
The essential feature of canonical gravity engrained into
its formalism is that the fundamental variables g,b(x),
p' (x) must be given on a single spacelike embedding.
The embeddings X"(x) expressed in unimodular coordi-
nates fail to correlate with the geometric variables. Most
of the unimodular coordinates are just arbitrary labels
without physical significance; only one particular com-
bination of them, namely, the variable ~, is physically
relevant. However, no single variable can uniquely label

many spacelike hypersurfaces. Time is a functional
variable in general relativity, not a single variable as in
Newtonian physics. As a result, the cosmological time ~
does not label individual hypersurfaces, but only
( oo —1)-dimensional equivalence classes e, of such hy-
persurfaces. To say that the geometric variables are mea-
sured at an instant ~ does not tell us on which one of the
infinitely many hypersurfaces of the equivalence class 6,
they are going to be measured. The cosmological time ~
thus does not set the conditions of the measurement
uniquely. This is why the question about the distribution
of the geometric variables (like g or p) at a given "time"
w does not make sense. Unruh and Wald saw ~ as a pri-
mary example of their Heraclitian time variable which
was supposed to provide a causal ordering between the
measurements. ' This is exactly what the cosmological
time fails to do: The individual hypersurfaces of the
equivalence class ~=const must necessarily intersect, and
parts of them lie to the future and parts of them to the
past of each other. The hypersurfaces with different
values of ~ are also allowed to intersect: ~„,N )7,N is thus
no guarantee that a hypersurface from the equivalence
class ~„,N= const be entirely lying to the future of a hy-
persurface from the equivalence class ~&N=const. The
cosmological time ~ does not provide a causal ordering of
spacelike hypersurfaces in the embedding space time.

The cosmological time ~ can set the conditions of the
measurement properly only in conjunction with some
other ~ —1 time variables whose assignment uniquely
selects a single spacelike hypersurface from each
equivalence class 8 . There are two alternative ways of
providing such a supplementary time variable:

(1) One could devise supplementary coordinate condi-
tions which, in conjunction with the unimodular coordi-
nate condition (2.2), would uniquely fix the foliation of
the spacetime once the initial embedding is chosen. One
would then adjoin these supplementary coordinate condi-
tions together with the unimodular condition to the Hil-
bert action with Lagrange multipliers. Next, one would
parametrize the action by introducing the privileged
coordinates X expressed as functions of arbitrary label
coordinates x as additional field variables. The canoni-
cal version of the action should then yield a single set of
constraints of the form (3.7) encountered in Gaussian
gravity. The supplementary coordinate conditions would

make all of the embeddings X"(x), not only their particu-
lar combination ~, physically relevant. One would then
interpret the ensuing quantum constraints in full analogy
with those of Gaussian gravity.

Of course, the supplementary coordinate conditions
can be expected to introduce other source terms on the
right-hand side of the Einstein law of gravitation (2.7).
Such terms would lead us outside the simple geometric
picture of pure unimodular gravity. In effect, the supple-
mentary conditions introduce a material system, a refer-
ence Quid, and couple it to unimodular gravity. This is
the price to be paid for making the external embedding
variables X "(x) physical.

(2) One can try to identify the supplementary time vari-
ables from among the geometric canonical variables, i.e.,
as internal time variables. The general counting goes as
follows: Altogether, the classical constraints (3.3) impose
4~ —1 restrictions on 2X 3 ~ geometric variables g,b,
p' (x). One can surmise that there exists a canonical
transformation

g,„(x)
p'"(x)

P (x), P"(x); g„(x),

ir0(x), hark(x); p "(x), (3.56)

This equation would yield the evolution of state between
hypersurfaces separated by a zero four-volume, while the
Schrodinger equation (3.50),

(3.58)

would yield the evolution of state between equivalence
classes of such hypersurfaces, from one value of the four-
volume time ~ to another. In the k representation, the
solution of Eq. (3.58) is a stationary state in r,

which, like the transformation (3.8), separates the inter-
nal embedding variables P (x) from the true dynamical
degrees of freedom. The internal coordinates P"(x) as-
sign the coordinates x' to the points of space, the internal
time P (x) [which, like the external time variable TD(Z ),
should really have only ~ —1 independent components]
labels the hypersurfaces separated from each other by a
zero four-volume, and the 2~ +1 variables g„(x),A,

represent the true degrees of freedom of unimodular
gravity. Here, we have explicitly identified A, of Eq. (3.3)
as that single degree of freedom which unimodular gravi-
ty allows and Einsteinian gravity suppresses. Indeed, in
unimodular gravity, A, [g,b,p' ] can be freely prescribed,
while in general relativity it is constrained to vanish.

Following the canonical transformation (3.56), the
geometric constraints (3.3) should be resolved with
respect to the internal embedding rnomenta ~~ and in
this form imposed as restrictions on the state functional
&1&(&,A, ;P,g„]. Such a process would replace the con-
straints (3.48) and (3.49) by a (4oo —1)-fingered time
Schrodinger equation

M (r, 7.', y', g„]
i

& =h&(x, R;P,g„P"]g(~,g;P, g„] .
5(h "(x)

(3.57)
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4 (,k;P, g„]=8(A, ;$,g„]e' (3.59)

The amplitudes 8(A, ;P,g„] then satisfy the
independent Schrodinger equation (3.57).

With the usual proviso that there exists a factor order-
ing which makes the functional Schrodinger equation in-
tegrable and the Hamiltonian h ~ self-adjoint under the
norm

as four scalar fields on M. Let us replace these fields by a
vector density field r (x ) connected with X"(x ) by the
transformation (2.12),

&a TgagybZ kZ I Z™g
1

3'I P y 6 klm

This casts the action (2.5) into the Henneaux-Teitelboim
form

(e~e) = fdx'f Dg„e*(,x';y", g„]e(,x';y, g„],
(3.60)

the norin (3.60) does not depend on the hypertime
(r, P"(x)), and its integrand can be interpreted as the
probability density that the embedding (r, P "(x)) carries
the cosmological constant A, and the gravitational de-
grees of freedom g, .

The problem with such a proposal is that the construc-
tion of a supplementary time is as complicated, if not
more so, as finding an internal time (3.8) in general rela-
tivity. This reinforces our conclusion that unimodular
gravity, whatever other purposes it may serve, does not
help the least in resolving the problem of time.
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APPENDIX: UNIMODULAR GRAVITY
AND THE HENNEAUX- TEITELBOIM FORMALISM

The parametrized unimodular action (2.5) depends on
the unimodular coordinates X"(x~) which are considered

X(x i')X.'(xi') .
5X "(x~) (A4)

Because X" is a regular matrix,

6S 6S=Q ~ =Q
5r (x~) 5X (x~) (A5)

This establishes the equivalence of the parametrized uni-
modular gravity with the Henneaux-Teitelboim formal-
ism at the spacetime level.

The ADM (Arnowitt, Deser, and Misner) decomposi-
tion of the Henneaux-Teitelboim action (A2) leads to an
alternative canonical description of gravity with an
unspecified cosmological constant:

~[P~r', g.b,p";r']= f « f d'x(r'p+p "g., N(H pg'—") N'H—.+r'p. )—. (A6)

The cosmological field

po. =p:— A (A7)

(which we denote here as p, ) appears as the coordinate
canonically conjugate to ~, while ~' plays the role of a
Lagrange multiplier. The variation of X, X' and w' yields
the constraints

a G —pg'"=O,

on the physical space (p, r;g,b,p ). This system of con-
straints is first class.

%'e would like to understand the transition from
(X,P„) to (p, r ) as a canonical transformation. How-
ever, this cannot work, because the variables do not
match. At the very least, we should extend the new
phase space by a eanonieal pair (p„r'), and adjoin to the
constraints (A8) —(A10) the primary constraint

p, =O (A 1 1)

p, =O

(A9)

(A 10)

expressing the fact that ~ does not appear in the action
(A6). Even then, (X",P~) and (p, r ) cannot be con-
nected by a canonical transformation because the transi-
tion (Al) involves the embedding velocities Z". These
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must be determined from the equations of motion. The
only constraint containing Pk is P, =0 and hence

Zk=MaZk (A12)

H, =O. (A13)

where M' is the Lagrange multiplier with which we ad-
join the constraint (2.18) to the old action. We are thus
obliged to extend the old phase space by the canonical
pair (M', II, ) and enlarge the old system of constraints
by the primary constraint

in terms of the old coordinates X,M', the new coordi-
nates p, and the new momenta pk. The canonical trans-
formation generated by E is given by

r (x)= 5F—/5p (x), z "(x)=5F/5pk(x) (A18)

and

P„(x)=5F/5X (x), II, (x)=5F/5M'(x) . (A19)

Equations (A18) dutifully reproduce the transformation
equations (A14) and (A15). Equations (A19) complete
them into a canonical transformation:

To match the variables, we extend the new phase space
by the embedding variables PT= —Zp, (A20)

k Zk (A14) Pk =pk + ( T (p+ M "pb )ZZt', ), , (A21)

and their conjugate momenta pk. The transformation
(Al) then reads

(A15)

Our task is to complete the transformation (A14) and
(A15) into a canonical transformation

k
T, Z, M' P~ z ~ Pa

O a
T~ k& a, + & Pk&P (A16)

This is best done by writing the generating function

F[X",M';p, ,pk]= I d x( —TZp, TZM'p, +—Z"pk)

(A17)

H, = —TZp, . (A22)

The transformation (A14) and (A15) and (A20) —(A22)
connects the parametrized unimodular gravity with the
Henneaux-Teitelboim formalism at the canonical level.
It does so by casting the old constraints into the new con-
straints and vice versa. Equation (A22) maintains the
equivalence of the old constraint (A13) with the new con-
straint (A 1 1). Equation (A20) identifies —p with the old
cosmological field (2.19). It transfers the old constraint
(2.25) into the new constraint (A10) and the old con-
straint (2.22) into the new constraint (A8). Finally,
modulo the constraint p, =0, Eq. (A21) shows that the
old constraint P, =0 [Eq. (2.18)] is equivalent to the new
constraint

Pk =0

The only purpose of the constraint (A23) is to propagate
the new coordinate z by an arbitrarily chosen multiplier.
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