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We present a general way to define regular vacuum states of a quantized massless scalar
field in two-dimensional spacetimes with horizons. We discuss in more detail the cases of
Schwarzschild —de Sitter spacetime and especially the exterior of a massive shell that collapses
to form a black hole in a two-dimensional de Sitter spacetime. In the latter case a vacuum state
is defined using modes of positive frequency with respect to the past cosmological horizon's
affine parameter. In this vacuum static observers, long after the shell has collapsed, detect
thermal cruxes coming from both the cosmological and the black-hole horizons, and characterized
by the corresponding Hawking temperatures. The renormalized stress-energy tensor in this
vacuum state is regular everywhere and has precisely the form one would expect from prior
experience with de Sitter spacetime and with gravitational collapse spacetimes that have a
vanishing cosmological constant.

I. INTRODUCTION

During the sixteen years since Hawking discovered
that black holes should emit thermal radiation, a clear
understanding of the quantum-field-theory properties of
spacetime horizons has emerged. Among the horizons
that have been studied are those of Schwarzschild space-
time, Kerr spacetime, and de Sitter spacetime, as well

as gravitational collapse spacetimes that are asymptoti-
cally Schwarzschild or Kerr in the future. In each of these
spacetimes, when a quantum field is in an "Unruh-type"
vacuum state, the field's properties are remarkably sim-

ple and aesthetic: (i) Particle detectors at rest just above
the horizon, and also detectors at rest far from the hori-
zon ("static detectors"), measure the horizon to emit per-
fectly thermal radiation at the "Hawking temperature;"
(ii) the renormalized stress-energy tensor T"" is regular
at the horizon; (iii) far from the horizon T~' has the form
of outgoing, thermal radiation; (iv) near the horizon T""
has the form of downgoing thermal radiation, but with
negative energy density rather than positive —as is re-
quired by energy-momentum conservation; (v) the near-
horizon renormalized T" can be regarded as the naive
flat spacetime stress-energy tensor corresponding to the
quanta measured by static particle detectors, minus a
contribution from vacuum polarization which is precisely
thermal at the horizon's temperature.

Recently Hiscock has argued that there is a break-
down in these properties in the case of a body that col-

lapses to form a black hole in de Sitter spacetime. Such
a spacetime is more complex than those studied previ-
ously because it has two horizons, the black-hole horizon
and the cosmological horizon, with two different temper-
atures Th and T, . The temperature difI'erence, Hiscock
speculated, forces the renormalized stress-energy tensor
in every vacuum state to be divergent at least at one of
the horizons. Correspondingly, Hiscock implied, if nature
chooses a vacuum state that is well behaved at the cos-
mological horizons (as one would expect), gravitational
collapse will produce a black-hole horizon that has a di-
vergent renormalized T&". If true, this would mean that
quantum field theory produces an instability of the black-
hole horizon. As evidence for this speculation, Hiscock
enumerated several possible vacuum states for a massless
scalar field and showed that each of them had a divergent
T" at one of the horizons.

In this pap er we show that H iscock's conjec-
ture is incorrect: There do exist states in both
the "eternal" black-hole —de Sitter spacetime (other-
wise called Schwarzschild —de Sitter spacetime) and the
gravitational-collapse —de Sitter spacetime which are reg-
ular on all of the horizons, cosmological and black hole.
These states have the nice properties enumerated above,
including renormalized stress-energy tensors T&, , which
are regular at all of the horizons.

Throughout this p ap er we will restrict our attention to
two-dimensional model spacetimes in which the 0,$ de-
pendence of the metric is suppressed. Consider, first, the
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two-dimensional eternal black-hole —de Sitter spacetime. s

In this spacetime the left- and right-moving modes are
uncoupled. As an aid in defining our vacuum state we

choose two null geodesics which cross in the region be-
tween the black-hole horizon and the cosmological hori-
zon. For each of the left- and right-moving modes, we

define positive frequency with respect to the afIine pa-
rameters along these null geodesics. Since the aFine pa-
rameters are regular along each of these null geodesics as
they cross the horizons, the vacuum state defined with re-
spect to these afIine parameters will also be regular on the
horizons, leading to regular stress-energy tensors at each
of the horizons. One can easily see that this vacuum state
is not invariant with respect to the time translation isom-
etry of Schwarzschild —de Sitter spacetime. This property
is indeed inevitable according to Kay and Wald, who
have proved the nonexistence of stationary, nonsingular
states in Schwarzschild —de Sitter spacetime.

In the case of the gravitational-collapse —de Sitter
spacetime, to which we will devote more attention, we

define the vacuum state with respect to the aFine param-
eter along the past cosmological horizon. The positive-
frequency modes come into the collapsing star, reflect oA'

the origin r =0 within the collapsing body, and propagate
outward again. These modes will again be regular along
any null line traveling from the past cosmological hori-
zon into the future black-hole horizon. This regularity of
the outward propagating positive-frequency modes along
inward propagating surfaces at the horizon again ensures
that the stress energy tensor will be regular at the black-
hole horizon, in addition to being regular at the past and
future cosmological horizons —just as in the case of usual
black-hole spacetimes.

This paper is organized as follows. In Sec. II we ex-
amine the stress-energy tensor for "vacuum" states for a
massless scalar field in a static spacetime with a hori-
zon. As did Hiscock, we restrict attention to a two-

dimensional version of the spacetime in which the an-

gles (0, $) are suppressedi (this simplifies the calcula-

tions). We show that for the stress energy to be regular
on the horizon, the null coordinate used to define the vac-

uum state in the manner of Davies, Fulling, and Unruh

(DFU) must have certain smoothness properties across
the horizon. As mentioned above, the null coordinates
defined as the afIine parameters of a pair of crossing null

geodesics indeed have these smoothness properties. We
also briefly outline the application of these ideas to the
eternal black-hole —de Sitter spacetime. In Sec. III we

specialize to the geometry of the gravitational-collapse-
de Sitter spacetime. For simplicity we take the collapsing
body to be a thin, spherical, massive shell. In Sec. IV we

introduce the vacuum state which we designate by
~ V),

and in Sec. V we explore its properties at early times,
before the collapse begins, and at late times, after the
black-hole horizon forms. Among other things, we show

that in this vacuum state static particle detectors mea-
sure incoming modes to be precisely thermally populated
at the temperature of the cosmological horizon (which

is where these modes originate). Outgoing modes, by
contrast, are measured by static detectors to be popu-
lated in diA'erent manners before the collapse and after
the collapse: before, they are thermally populated at the
cosmological temperature; afterward, they are thermally
populated at the black-hole temperature. In Sec. VI we
evaluate the renormalized stress-energy tensor in the

~ V)
vacuum, and show that it has all the nice properties that
one might expect from prior experience: It is regular at
all horizons; and near each future horizon it is the T""
of radiation flowing into the horizon radiation that is a
superposition of perfectly thermal radiation at the black-
hole temperature and at the cosmological temperature,
with positive energy associated with the temperature of
the distant horizon and negative energy with that of the
nearby one. This T" has just the form that one ex-
pects from the "membrane paradigm:" ' it is the naive
stress-energy corresponding to the measurements made
by static particle detectors, minus that of perfectly ther-
mal radiation at the temperature of the nearby horizon.

II. REGULAR STATES
ON A STATIC HORIZON

(2)

where dr, = dr/f, we get the two-dimensional metric

ds' = f(r(v —u))du dv .

If we define new null coordinates

(4)

h„(v)dv

and

h„(u)du,

where h„(v) and h„(u) are some as yet unspecified func-

In this section we will be concerned with requirements
that a state must satisfy in order that the stress-energy
tensor be regular on a horizon. We will show that the
requirement is that the state itself be regular on the hori-
zon. We will work in a two-dimensional static spacetime,
with the field of interest being a massless scalar field.

By a suitable choice of the spatial coordinate r, we can
bring the metric into the form

dT2
ds' = f(r) dh2-

f r

where f(r ) is assumed to be zero at r = r r„(the horizon),
and to be smooth (have a power-series expansion in r-
rg) ileal' r = rh, .

Using the usual null coordinates in the region exterior
to the horizon,
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tions, we can rewrite the metric as h„(u)du,

1
Tv~ = — c'/'o~av c '/', -

12%

1
TUV —— CZ, (10)

where 'R is the curvature scalar for the spacetime.
This tensor obeys the usual conservation law

ds = dUdV = Cdt'/dV .
h„(v)h„(u)

As Davies, Fulling, and Unruhll (DFU) we can define
a vacuum state with respect to these UV coordinates
by choosing the positive-frequency modes of the Klein-
Gordon field to have the form e ' and e ' for ~ ) P.
The energy-momentum tensor in this U V vacuum is then
given in DFU by

1 c'/'aUo~c '/', -
127r

this becomes

h2 (u)
TUU TUU

h„'(u)

4»h2(u) i, f
e2Ku ( fllf

48m. r2
i 2

3—,—2 "+3„", ih„h„'
~

—2 "+3 ", , (17)
4 h„ h2 )

'

»"f f" =-fo'+O((r -»)') = --fo'+O(e "")

where fo ——df/dr ~„—„„.AVe must then have

where an overdot denotes a derivative with respect to
u. The horizon occurs at u = oo, and in order that
the stress-energy tensor be regular on the horizon, the
quantity in large parentheses must fall oA at least as fast
as e 2"". The terms in f go as

which in this case reduces to

UU&V 96»
h„ h2

0 + O(
—2P'u) 2+ O(

—2ru)
h„ h2 4

C
TV V ~U +~V

96vr

or

4hl/2g2h —1/2 2 + O(
—2ru) (2o)

in any null coordinate system UV. Thus along the null
ray V=const, we have Thus for the stress energy to be regular, we must have

0 1
UU UU+ 996~

CZ, ~dV .

or

h„(u) = e+""[const+ O(e '"")],

and similarly for T&& along a V=const ray.
We are interested in the behavior of the stress-energy

tensor at the horizon, r = rg. We define a UV coordinate
system in which the metric coeFicients are regular along
the horizon by

V = h„(u)du

= e+""[const + O(e "")]
= U+ [const'+ O(U )] . (22)

V=e"" . (14)

TUU — TUU

Writing

where K =
2 f'()»and where the prime denotes a deriva-

tive with respect to r. In these coordinates the horizon
r = » is located at t/ = 0. Using the relation (13), the
value of Tg & on the horizon can be found from the value
ofF the horizon in the interior region. Assuming that the
curvature Z. is regular everywhere, including on the hori-
zon, we see that Tg, & will be regular on the horizon if it is
regular in the rest of the spacetime. We thus need worry
only about the behavior of TUU on the horizon.

We have

U is the coordinate which is used to define the vacuum
state, while U is the coordinate regular on the horizon.
Thus this relation states that the coordinates defining
the state must be related to the coordinate regular on
the horizon either by direct or inverse proportionality.
Direct proportionality is easily obtained. Take any null
geodesic which intersects the horizon. Define the U co-
ordinate to be the afFine parameter along this geodesic.
This coordinate will obey the required condition.

The inverse relation is somewhat harder to arrange.
The simplest way is to place reflective boundary condi-
tions on the scalar Beld at some point r = r0 within the
spacetime. If we now choose the state such that pos-
itive frequencies are defined with respect to the aKne
parameter V along the U = 0 horizon, then the bound-
ary conditions at re ——r(v —u) = r[ln( —VV)/r] mean
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that positive frequencies in the U direction are given by
e' for u' ) 0, which is the required condition. The
state we shall examine below for the collapse —de Sitter
spacetime is of just, such a form.

This inverse relationship is a general one. If we have
two coordinates U and U where U = 1/U, then states
defined with respect to these two coordinates lead to ex-
actly the same stress-energy tensors,

T// —
~

T- — — U 4C ~~$2 C ~/~ — U sC~~ (U c7 )~C—~l2/U1

BU J 12~ 127r

1 1 ~—1/2—C'~ B~U B~
12~ U U

1 gl /2g2 ~—i j2
UU ~

while T~~ is obviously left unchanged, as is TU~i cx P~.

The energy-momentum tensor can be simply calcu-
lated everywhere in the static spacetime if we choose U
and V to be aKne parameters along some curves u = up

and v = vp. In the uv coordinates, the Ricci curvature Z,
depends only on v —u. Thus the conservation equation
reads

V2

96 '"
2

(29)

Thus in this afIine parameter coordinate system, this
component of the stress-energy tensor diverges as one
travels along the horizon, if Z. ,„ is not equal to zero at the
horizon. However, if we transform to the proper reference
frames of freely falling observers whose four-velocities are

T„„,„= R(v —u),„=— R(v —u), „96~ '"
96vr

(24) (30)

so that

Zdv
96m

(25)

1T„„=— f (v —u) Z(v —u) —f(vo —u) 7~(vo —u)
96

'u

f 'fRdv— (26)

and similarly for T„
Finally, we calculate the change in the energy-

momentum tensor component TUU along the U = 0 hori-
zon. We have

p
UU UU 96

CZ. , U dU . (27)

For our spacetime, 'R is a function only of r, and is in-
dependent of where one is on the horizon. Thus we can
write

C'R, ~
——'R,„Cf(r ) — e""

2K

= -C7Z, „(r—rI, )
e""

= ——CZ. ,„e
K

= ——O'R,„V,
K

along a u =const null surface. Now, along the surface
v = vp, we choose U to be the aKne parameter. Thus
the metric C = 2g~~ is independent of U along v

vo, and thus T~p ( and T„„) is zero along this surface.
Furthermore, f depends only on r, so that f,„= z f'f
We thus have

where fo is f at the points from which the observers
are dropped, we find the components of the stress-energy
tensor to be finite as V ~ 0. Specifically, at the horizon
we have the relation

1
Du oc =Br7

V

where 0„- is the U-directed proper null vector of a freely
falling observer. This ensures the finiteness of T„-„- as
V —+ oo along the horizon.

In order to examine the behavior of T„-„; where 0„- is

the V-directed proper null vector of a freely falling ob-
server, we need to see what happens along the null ray
u = up as v —+ oo. There we might app roach another
horizon, located at r = r& ) rp, whose surface gravity is
K . This is indeed the case in the Schwarzschild —de Sit-
ter spacetime. Here rh is the position of the black-hole
horizon while r& corresponds to r„ the position of the
cosmological horizon (see Sec. III). Alternatively, there
could be a future null infinity (r' = 0). Again using the
relations among V-directed vectors at the r = r~, horizon

Oo oc VBv oc 0„)
and the DFU formula we have

+66 — Tv v

—S/2

oce+" e+

and, since C is constant along the horizon, we finally get
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as v —+ oo. Here the upper signs correspond to the choice
of afFine parameters along u = up or v: vp rays. For
instance, near the v = oo horizon we have either U oc V'
or V oc 1/V' as discussed above in this section. Hence
h„(v) oc exp(~r'v). From Eq. (33) we see that T;„is -fi-

nite at the horizon located at r = rg even as V —+ oo. To-
gether with the finiteness of T„-„- and T„-; this guaranties
the regularity of the stress-energy tensor everywhere on
the horizon. Similar arguments can be applied to any
horizon that might exist at u = +oo or v = +oo.

The eternal black-hole —de Sitter spacetime can be re-
garded as a special case of the above analysis, By choos-
ing U' and V coordinates to be the afFine parameters of
null lines that cross at the point tp, rp (rh ( rp ( r, ), we
define a vacuum state whose renormalized stress-energy
tensor is, according to the above discussion, regular at
both the black-hole and cosmological horizons. We shall
return to this vacuum state at the end of Sec. IV, af-

ter first discussing vacua for the gravitational-collapse —de
Sitter spacetime.

III. THE GRAVITATIONAL-COLLAPSE-
DE SITTER SPACETIME

r=O

FIG. 1. Penrose diagram of a gravitational-collapse —de
Sitter spacetime. The shell in region I starts its collapse at
point t = 0, awhile the shell in region II remains static forever.

the black-hole and cosmological horizons, respectively.
The corresponding surface gravities are

1 df A(r, —rg)(r), —r )
2 dp

According to the generalization of BirkhofI"s theorem
to nonzero values of the cosmological constant A, the
exterior region of a spherically symmetric body of mass
M has the Schwarzschild —de Sitter line element

1 df A(r, —rh)(r, —r )
2 6r,

(39)

ds = f(r)dt'—

where f(r) is

f() =1—

—r2(d0 + sin 0dg ),
The Penrose diagram describing the causal structure of
the spacetime is shown in Fig. I. In this diagram one
sees the past (&, ) and future ('8+) cosmological hori-
zons as well as the future black-hole horizon ('8& ) which
is created by the collapse. Note that in this spacetime,
by contrast with pure de Sitter, r = 0 is uniquely deter-
mined: it is the center of the spherical shell.

g(r) = 1 — r—A

3 (37)

Requiring that the proper time as measured by a clock
on the shell be independent of whether it is calculated
using the exterior or interior metric, we obtain

(38)

For the sake of simplicity, we will assume that the massive
body is a shell of radius R whose interior is described by
the de Sitter line element

dp
ds = g(r)dt — —r (d0 + sin 0dg ),g(r)

where g(r) is

IV. THE VACUUM STATE
i P)

As in Sec. II, we will ignore the spherical coordinates
P and 0, reducing the spacetime to two dimensions.

In addition to u and v, Eqs. (2)—(4), we shall need a
second set of coordinates U and U defined as follows; see
Fig. 2.

We first define the aKne parameter of the past cosmo-
logical horizon

Then we choose an arbitrary point P at which the values
of U and V are to be defined. The value of V at which
the past-directed null ray propagating rightwards from P
hits '8, is the coordinate VP'). This construction gives

We suppose that the radius of the shell is fixed (R = Rp)
until the moment 1=0 when the shell starts imploding.
At the moment t = tI, it crosses its horizon radius ry, and
forms a black hole.

Of the three zeros of the equation f(r)=0 one, r, is
negative. The two others, r~ and r„are the locations of

(41)

everywhere outside the shell. Similarly, we extend
the past-directed, leftward-propagating null ray from 7
through the shell to r=0, and there we reflect it into a
past-directed, rightward-propagating null ray. The value
V at which this ray hits 'H, is the coordinate U(P).
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II
C)

FIG. 2. The definition of U and V coordinates. For sim-

plicity, only the region I from Fig. I is depicted.

Note that the coordinate U can be extended beyond
the future cosmological horizon Q+.

For u ( u, , where U;(u, ) and V, (v;) are the coordinates
of the beginning of the implosion, we have the simple
relation

natural generalization of a de Sitter —invariant vacuum of
de Sitter spacetime. Namely, in the case where the shell
has zero mass (pure de Sitter),

~ V) reduces to the confor-
mal de Sitter vacuum. s On the other hand, in the case
of a collapsing body in an asymptotically Hat spacetime
(A = 0), the past horizon affine parameter would be re-
placed by the advanced time at the past null infinity and
our state

~
V) would become the vacuum state originally

discussed by Hawking and subsequently by Unruh.
The vacuum

~
V) is closely related to the vacuum state

for the eternal black-hole —de Sitter spacetime discussed
in Sec. 1I. The vacuum defined there using the a%ne pa-
rameters of any pair of crossing null rays can be shown to
exibit late time behavior identical to that of the vacuum

~
V). By contrast with Schwarzschild —de Sitter, however,

in the gravitational-collapse —de Sitter spacetirne we need
only one null ray propagating from the past to the future
cosmological horizon to specify the vacuum state

~ V) .
This null ray is chosen to coincide with the past cosmo-
logical horizon, thereby defining the state s initial condi-
tions in t,he past relative t,o all static observers outside
the massive body.

From this relation and Eq. (38) we obtain

= = ——~ e-"'& -"&Ch R
Ch

(44)

near the point where the shell crosses its black-hole hori-
zon. Using Eqs. (43) and (44) we can, following the
past-directed ray through and out of the shell, " derive
the expression

(42)

However for u ) u; this relation is changed. As the
point P gets close to the future black-hole horizon, the
past-directed, leftward-propagating ray used to define the
coordinate U is strongly aA'ected by the collapsing shell.
In this region (r, ~ —oo, u ~ oo) the metric function f
has the following asymptotic behavior:

f K2gt e Kg(V —tl)

V. PROPERTIES OF
I V) AS MEASURED

BY STATIC OBSERVERS

Because the proper time r of a static observer (r = r, )
is proportional to the time coordinate h,

dr = Qf(r, )dt, (47)

and hence is also proportional to u = h —r, and to v = h+
r, , a particle detector carried by such an observer detects
particles that are of positive frequency with respect to
u and v. The corresponding vacuum state

~ S) (S for
"static observers") is one in which the particle detector
sees no quanta in the modes e ' " and e

The relation (41) between the null coordinates V of
the

~ V) vacuum and v of the
~ S) vacuum implies that

when the field is in the
~

V) state, static observers will see
the modes e ' " thermally populated a.t the cosmological

temperature
d ln( —U)

Cu
(45) c

Tc
27r

(48)

which implies

Ul ( U—e """oc —ln I

for values of U very close to Ug, the position of the black-
hole horizon.

We now quantize the real scalar field with respect to
the modes proportional to exp( —ice V) or exp( —iwU).
Both types of modes originate at the past cosmologi-
cal horizon &, , where they are positive frequency with
respect to the past horizon aKne parameter V. Thus,
they are a natural extension to our gravitational-collapse
spacetime of de Sitter —invariant modes in a pure de Sitter
spacetime. The quantum state which contains no parti-
cles in these modes we will call the

~ V) vacuum. It is a

Stated more precisely, when studying observables con-
fined to region I of the spacetime, one can regard the
pure state

~
V) as being equal to a mixed state that is

obtained from
~
S)(S

~
by populating all the incoming

modes e ' ' thermally at temperature Tc.
Similarly, the asymptotic relations between U and u

at early and late times imply that, for outgoing modes
e ' ", the

~ V) vacuum is seen by static observers as ob-
tained by populating

~
S)(S

~

thermally at the cosmolog-
ical temperature T, at early times (before the collapse),
and at the black-hole temperature

at late times (after the collapse).
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These thermal population properties of
~ V) shoiv up

not only in the mathematical expressions for
~

V} in terms
of

~
8},but also in the behavior of static particle detec-

tors. Consider, for concreteness, a model particle detec-
tor that is adiabatically switched on at late times (long
after the collapse). When the quantum field P(z) is in
the state

~ V}, its influence on the detector is described
by the %wightman function~

1 2 2 1T„= [~, y ~„—2F(r.)] — 7Zf + O(e """),
48m 48~

1 12K
rr —

f2 22+
4 f e

T,„= —(~2 —~h) + O(e """),

where

Using this wightman function and the asymptotic ex-
pression (46) for large u, we find that the transition rate
from the ground state of the detector to an excited state
of energy E is proportional to the response function

&(E) =
I +1 1 1

2E l, e+ &+" —1 e+ /T —1) (51)

Here n(i„) = gf(r„) is the "lapse function, " which
blue shifts the temperature. Expression (51) confirms
that the detector behaves as though it were bathed by
cosmological and black-hole thermal cruxes coming from
opposite directions and having the temperatures T, and
Tp„respectively. That this conclusion does not depend on
the position of the detector relative to the horizons is due
to the fact that in two spacetime dimensions the quanta
propagate freely, without encountering any centrifugal
barrier and without scattering oA'spacetime curvature. '

(55)

(55)

In that region the renormalized stress-energy tensor (54)
in a static observer's proper frame is

'jr
TA A

tt + h.o. ,

'7r
TA A

12
7Z+ +ho. , (57)

tr" r" t

At u )) u; static observers observe the thermal ra-
diation coming from the black hole, in addition to the
already existing cosmological Hawking radiation. Very
close to the black-hole horizon, i' ~ ri, (v —u ~ —oo)
we have

VI. THE VACUUM STRESS-ENERGY TENSOR

1 1 A

24ir f ' 3
z,

gpv )

7'.s + 47'

where Ip - is the unit 2 x 2 matrix.
As we approach the cosmological horizon (r ~ i, ) for

U & U; the first term in Eq.(52) vanishes and we are left
with the simple expression

Pv 48 gPv ~

This T» is obviously regular at the horizon.
Long after the collapse starts, at u )& u;, we have

The renormalized stress-energy tensor of the confor-
mally coupled scalar field in the

~ V} vacuum of our
two-dimensional spacetime is given by the DFU formulas,
Eq' (8)-(1o)

Before the collapse starts (U & U, ) this stress-energy
tensor, transformed to the proper reference frame of
a static observer, has the following time-independent
form:

where h.o. denotes terms of second order or higher in
~—:vf

The leading O(n ) terms in (57) have precisely the
form of ingoing thermal radiation in two-dimensional
spacetime, except that the sign of the component at tem-
perature Tg is negative rather than positive. This result,
obtained directly from the Davies-I"ulling-Unruh formu-
las, Eqs. (8)—(10), has a simple interpretation in terms
of measurements made by static observers —an interpre-
tation embodied in the "membrane paradigm" for black
holes: The static observers, near the horizon, measure
outgoing modes to be precisely thermally populated at
temperature TI„and incoming modes precisely thermal
at temperature T, . The rule for renormalization, in terms
of these static observers' measurements, is to subtract oA',

in all modes, a thermal contribution with temperature
Tg. Doing so leaves zero net renormalized stress energy
in the outgoing modes, and leaves in the incoming modes
the diAerence between a thermal fiux at temperature T,
and that at Tj„—which is precisely the O(n ) contribu-
tion to expression (57).

Turn attention now from the vicinity of the black-hole
horizon to the vicinity of the future cosmological horizon,
long after the collapse. Near the cosmological horizon,
2 —+ 2, (v —u ~ oo) we have

~(,) 2 + O( zr..(n u))— —
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TA A

tt —
12

7r
A

12

('-') - (-'-)'—

+ +}o, (59)

There the renormalized stress-energy tensor (54) in the
proper reference frame of a static observer takes the
form

(29), or use the late time expressions Eqs. (54), as well as
Eq. (56) (at the black-hole horizon) or Eq. (58) (at the
cosmological horizon), to verify that in a freely falling ob-
server's reference frame the stress-energy tensor remains
finite as the observer crosses any of the horizons, regard-
less of where the crossing point is located.

VII. CONCLUSION

TA T A + h.o. .

u= —+/fp —f~fp O O

f Ot Or
' (60)

Here fp is f at the starting point of the free fall, the plus
and minus signs pertain to the observer falling towards
the cosmological or black-hole horizons, respectively. We
can either repeat the argument presented following Eq.

Like the T» near the black-hole horizon, this has the
simple, standard membrane-paradigm interpretation of
being, at O(o; ~), the stress-energy tensor measured by
static observers, minus the contribution of perfectly ther-
mal radiation at temperature T, in all modes.

Expressions (57) and (59) exhibit the usual blueshift
of temperature (factors o, 2), which causes the stress en-

ergy as measured by static observers to become infinite
as either of the horizons is approached. This divergence,
however, is an artifact of the pathological behavior of
the static observers' reference frames at the horizons. To
verify that the stress-energy tensor is, in fact, regular at
both horizons, we can transform to the proper reference
frame of a freely falling observer whose four-velocity is

In this paper we have seen that quantum-field theory
does not induce an instability of the black-hole horizon
formed by gravitational collapse in de Sitter spacetime.
Rather, when a massless scalar field is in the natural
generalization of a de Sitter vacuum (also a natural gen-
eralization of the Unruh vacuum), it remains everywhere
well behaved —and, indeed, behaves in just the manner
one would expect from the study of quantum-field theory
in other horizon-endowed spacetimes.

After the original version of this paper was submitted
for publication, we received a paper by Shin-ichi Tadaki
and Shin Takagi which reaches the same principal con-
clusions as we derive in Secs. IV and VI—but describes
them in somewhat diA'erent language.
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