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We investigate a quantum cosmological model consisting of inhomogeneous massless minimally
coupled scalar field perturbations on a closed Friedmann-Robertson-Walker rninisuperspace model
with a spatially homogeneous massless minimally coupled scalar field. We discuss how to define a
reduced density matrix by summing over the perturbations in the full density matrix, using the ap-
proximate Hilbert-space structure that exists for the perturbation wave function when the minisu-

perspace part of the wave function is of the WKB form. We then concentrate on two particular
candidates for a reduced density matrix and discuss their relation to particle creation eftects in

quantum field theory on curved spacetime. Our results do not suggest that decoherence in the re-
duced density matrices could be directly identified as a lack of interference between the classical tra-
jectories that correspond to a WKB minisuperspace part of the total wave function.

I. INTRODUCTION

The Universe on the large scale behaves classically to a
high degree of accuracy. What is observed in cosmology
is mainly the electromagnetic field coming from stars,
galaxies, and clusters of galaxies. From it we deduce the
redshifts and the recessing velocities of the galaxies, their
masses, and their positions with respect to us. All this as-
sumes a classical Friedmann-Robertson-Walker (FRW)
model where galaxies are thought of as essentially point
particles. On the other hand, we believe that all matter
in the Universe is fundamentally described by quantum
fields, and we expect that also the gravitational field will
ultimately be described in a similar way. The bold hy-
pothesis made in quantum cosmology is that the whole
Universe is described quantum mechanically by a single
wave function. To make predictions for the large-scale
structure of the Universe from quantum cosmology, it is
of crucial importance to understand how and when this
wave function can describe phenomena that are perceived
as classical. A main problem here is to understand exact-
ly what is meant by "classical. " This has not yet been
solved satisfactorily, although important progress has re-
cently been made.

It has often been argued in quantum mechanics and
quantum cosmology that an essential ingredient of recov-
ering classical behavior from quantum theory is to have a
wave function of the WKB form. ' As the phase of a
WKB wave function approximately obeys the classical
Hamilton-Jacobi equation, it is expected that this wave
function should give rise to essentially the same correla-
tions between the configuration-space variables and their
momenta as what would be obtained by interpreting the

phase as Hamilton's principal function in the classical
theory. In this way one recovers from the wave function
a certain family of solutions to the classical theory, and it
is assumed that the quantum system at the classical limit
corresponds to a statistical ensemble of these classical
trajectories.

There have been some attempts to use the Wigner
function as a tool for justifying the above interpretation
of a WKB wave function in terms of the Hamilton-Jacobi
theory. This uses the suggestion by Geroch and Hartle
that predictions in quantum cosmology could be obtained
from peaks in the wave function of the Universe. ' A
more careful analysis, ' however, demonstrates that
there exist in general many peaks in the Wigner function
distribution which do not exhibit the expected classical
correlations. It was also shown ' that, adopting the
peaking interpretation, an essential element to predict
classical correlations in the WKB wave function was the
introduction of some form of coarse graining.

Another much more widely recognized characteristic
of classical behavior is decoherence or lack of quantum
interference between the classical configurations. " A
possible quantum-mechanical mechanism giving rise to
decoherence is the interaction of the system of interest
with an environment. This possibility has recently been
intensely investigated in the context of measurement
theory and might answer long-standing questions. ' '
Starting with a closed quantum-mechanical system, such
as in quantum cosmology of the whole Universe, one con-
siders a reduced density matrix or a coarse-grained
decoherence functional for a few "large" degrees of free-
dom, obtained by summing over all the unobserved or ir-
relevant degrees of freedom. The latter then eft'ectively
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act as a bath for the former ones. Even if the division be-
tween the system and the environment remains to some
extent arbitrary, this mechanism seems reasonable, since
we never observe but a small fraction of all the degrees of
freedom of the Universe.

It is also possible that decoherence could provide a
justification of the interpretation of a WKB wave func-
tion in terms of the classical correlations given by the
Hamilton-Jacobi theory. This is supported by the results
in Ref. 10, where it was shown that, in the simple cosmo-
logical minisuperspace model studied in Refs. 15—20,
summing over unobserved inhomogeneous degrees of
freedom for a scalar field is equivalent to doing a coarse
graining of the momenta of the Universe.

In nonrelativistic quantum mechanics described by a
wave function g(x, t) obeying the Schrodinger equation,
the usual tool for investigating decoherence is the density
matrix

Reduced density matrices may be constructed from p by
dividing the configuration-space variables x into "large"
ones and "small" ones and tracing p over the small vari-
ables. Although this procedure is applicable for arbitrary
t and t', the resulting reduced density matrix would usu-
ally be interpreted in terms of physical decoherence only
at the equal time limit t =t'. As the time parameter t in
the Schrodinger equation is in principle unobservable, it
may be possible to recover the same results also without
explicitly referring to the equal-time limit„but it
remains nevertheless true that the presence of the explicit
time variable in the reduced density matrix makes it easy
to make a connection between "configurations" and "tra-
jectories:" The latter may simply be thought of as the
evolutions of the former in the time parameter t.
Decoherence in the configuration-space variables x can
thus be interpreted in terms of decoherence between clas-
sical time evolutions.

In quantum cosmology the situation is different. The
wave function V(h,",P) is a functional of the metric h,"
and matter fields P on a three-dimensional surface. Nei-
ther the wave function nor the density matrix

p(h, , g; h, P') =4*(h;,P)%(h, (t ')

has an explicit time argument. It is again at least formal-
ly possible to divide the variables into large and small
ones and to construct reduced density matrices by tracing
over the small ones, but the relation between decoherence
in the configuration space and decoherence between tra-
jectories is now less clear. For example, if there is just a
single large variable and the wave function is rapidly os-
cillating in this variable, then this variable can be
identified with time in a straightforward way and the re-
sulting reduced density matrix is analogous to a
quantum-mechanical reduced density matrix with tWt'
but with all the configuration-space variables x traced
out. ' On the other hand, if there is more than one large
variable and the wave function is rapidly oscillating in
these variables, one can by the WKB approximation in-
troduce a vector field which can be thought of as

8/fjt, but this vector field does not single out a
unique time coordinate in the configuration space unless
one imposes further conditions.

Another important issue is what is meant by tracing
over the small variables. Even if one does not assume a
Hilbert-space structure for the full theory, tracing over
the small variables appears to require assuming at least
an approximate Hilbert-space structure for these vari-
ables. ' ' The resulting reduced density matrix may
then depend on how this approximate Hilbert space is
chosen. Another way to put this is that, whereas the full
density matrix is a biscalar on the full configuration
space, no apparent geometrical interpretation exists for
the reduced density matrix except at the limit where the
two arguments coincide.

Yet another important point is that when there are an
infinite number of small degrees of freedom, the expres-
sions for the reduced density matrices may have to be reg-
ularized. ' In quantum cosmology it is usual to take
the large degrees of freedom to consist of a spatially
homogeneous minisuperspace model and treat all the
remaining degrees of freedom as perturbations by a mul-
tipole expansion on this background. ' ' There may
therefore arise the need to regularize sums and products
over the infinite number of multipoles. As methods based
on 3+ 1 split mode sums can give misleading results for
the renormalized energy-momentum tensor in quantum
field theory on curved spacetime, one would ideally like
to strive for a covariant regularization of the multipole
sums also with the reduced density matrix. Although
such a four-dimensional regularization has been con-
sidered in the case where the two arguments of the re-
duced density matrix coincide, it appears uncertain
whether something similar can be done away from the
coincidence limit where the geometrical interpretation of
the reduced density matrix is less clear.

There have been proposals for treating the sums over
the multipoles in the reduced density matrix by introduc-
ing a cutoff in the number of the modes. One suggestion
was to let the cutoff go to infinity ' this leads to "per-
fect decoherence" in the model studied by Kiefer' and,
also, more generaHy at least for the total three-volume. '

One may, however, question the consistency of this sug-
gestion on the grounds that the semiclassical expansion of
the Wheeler-DeWitt equation already assumes either a
finite cutoff in the number of the multipoles or a regulari-
zation of the zero-point energy of the multipoles. Rough-
ly speaking, the reason is that the multipole modes con-
tribute to the potential of the minisuperspace Wheeler-
DeWitt equation by their zero-point energy. If this ener-

gy is not regularized, it becomes infinite when the cutoff
is pushed to infinity, and thus the assumption that the
multipoles are perturbations in the rninisuperspace
Wheeler-DeWitt equation is not satisfied.

A second possibility for a cutoff would be to use physi-
cally motivated arguments to introduce a natural limiting
scale for the multipole modes. One could, for example,
sum only over spatial wavelengths greater than the
Planck scale. ' A suggestion by Halliwell in the de Sitter
minisuperspace model was to sum over modes whose
wavelength is larger than the de Sitter horizon. ' This



43 REDUCED DENSITY MATRICES AND DECOHERENCE IN. . . 3319

suggestion could perhaps be generalized to more compli-
cated minisuperspace backgrounds by taking the cutoff to
be at the instantaneous Hubble radius, which is well
defined provided the minisuperspace part of the wave
function consists of a single rapidly oscillating exp(iS)
component. The appeal in this suggestion is that modes
larger than the instantaneous Hubble radius (which in the
de Sitter model coincides with the horizon) are certainly
unobservable, but it is perhaps hard to justify why one
should then be interested in the radius of the Universe
whose wavelength is the largest possible of all.

In this paper we shall investigate the above issues in a
quantum cosmological model whose minisuperspace part
consists of the closed Friedmann model with a spatially
homogeneous, massless, minimally coupled scalar field.
This minisuperspace model has thus two configuration-
space variables, which is the minimum number that al-
lows nontrivial minisuperspace dynamics: The general
solution to the rninisuperspace classical equations of
motion has two genuine constants of integration. The
role of the environment will be taken by another massless
and minimally coupled but inhomogeneous scalar field,
treated as a perturbation on the minisuperspace back-
ground. The inhomogeneous modes of the gravitational
field and those of the minisuperspace scalar field will be
omitted: This is self-consistent in the sense of the dynam-
ics, since the omitted modes would not couple to our en-
vironment scalar field to quadratic order in the action.
Also, the total reduced density matrix would factorize
into a contribution from our environment field and a con-
tribution from the omitted fields. Our motivation for in-
troducing the environment scalar field is that we expect
its contribution to the reduced density matrix to qualita-
tively reflect the properties of the contribution from the
modes we have omitted, yet without the technical
difficulties of having to couple scalar and gravitational
perturbations to each other. To examine the validity of
this expectation will be left a subject to future work.

The appeal of our model is that it combines nontrivial
minisuperspace dynamics to a nontrivial reduced density
matrix, but remains sufficiently simple to be solvable.
For any minisuperspace wave function of the Lorentzian
semiclassical form exp(iS) in our model it is possible to
find in an essentially closed form the solutions to the
next-to-leading-order functional Schrodinger equation in
the semiclassical expansion of the total Wheeler-DeWitt
equation. The reduced density matrix can then be ex-
pressed as a sum involving Legendre functions. One can
thus experiment with different choices for the perturba-
tion quantum state and different definitions of the re-
duced density matrix, and one can compare the resulting
reduced density matrices to the classical minisuperspace
trajectories obtained from the minisuperspace part of the
wave function by Hamilton-Jacobi theory. We find that
the suppression of the off-diagonal elements in our re-
duced density matrices is at its weakest when the pertur-
bations are chosen to be in their adiabatic vacuum state.
This supports the expectation that the reduced density
matrices in some sense do describe the interaction be-
tween the background and perturbations, since this in-
teraction is expected to be at its smallest for the adiabatic

perturbation vacuum. However, our models do not sug-
gest a direct identification of decoherence in the reduced
density matrix as lack of interference between the classi-
cal minisuperspace trajectories.

In Sec. II we present our minisuperspace model and
describe the quantum field theory of the environment sca-
lar field on a fixed classical solution of the minisuperspace
model. In Sec. III we quantize the full model consisting
of both the minisuperspace and environment. We per-
form the expansion of the Wheeler-DeWitt equation to
the next-to-leading order around the minisuperspace
model using the by now well-known technique, but
paying special attention to the factor ordering in the total
Wheeler-DeWitt equation and to the way the total wave
function is factorized into the minisuperspace and pertur-
bation parts. None of this would be important if the
eventual aim were a covariant regularization of the diver-
gent quantities, as with the energy-momentum tensor in
Refs. 2 and 33; however, we shall find that a discussion of
the factor ordering is essential when we wish to define a
reduced density matrix and discuss its interpretation in
terms of the geometry of superspace. We are able to give
a geometrical interpretation to the reduced density ma-
trix only when the arguments coincide, and we argue that
no purely geometrical definition exists away from this
coincidence limit. We first construct a reduced density
matrix using the definition which has appeared in most of
the previous literature. ' ' We then propose an alterna-
tive definition which we argue to be geometrically equally
consistent, but potentially more directly related to
particle-creation effects.

In Sec. IV we compute the two reduced density ma-
trices for three concrete examples with minisuperspace
wave functions of the Lorentzian semiclassical form
exp(iS ). The peaking in the reduced density matrices in
these examples bears no apparent relation to the classical
minisuperspace trajectories obtained by interpreting S as
Hamilton's principal function. Although the Lagrangian
of the total system contains no explicit coupling term be-
tween the minisuperspace scalar field and environment,
the reduced density matrices are seen to depend in gen-
eral on both of the two minisuperspace variables in a
nontrivial way. The reason is that the reduced density
matrix is affected not only by the explicit couplings in the
Lagrangian, but also by the form assumed by the minisu-
perspace wave function.

The results are summarized and discussed in Sec. V.
In Appendix A we show how a solution to the functional
Schrodinger equation on classical solutions to the minisu-
perspace model can be lifted into a solution to the more
general functional Schrodinger equation that appears in
the semiclassical expansion of the Wheeler-DeWitt equa-
tion. Finally, in Appendix B we discuss the definition of
the reduced density matrix away from the coincidence
limit both in quantum mechanics and quantum cosmolo-
gy-

II. MASSLESS SCALAR FIELD ON A
CLASSICAL MINISUPERSPACE BACKGROUND

We consider a minisuperspace model which consists of
spatially homogeneous closed (k = + l) Friedmann model
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with a massless, minimally coupled scalar field. The
metric ansatz is

this spac ctime an inhomogeneous massless minimally
coupled scalar field o. with the action

ds =p I N—(t)dt +a (t)dQ3], (2.1) S = —
—,
' f d x( —g)'~ g"'(a„o.)(a.a. ) . (2.8)

where dQ3 is the metric on the unit three-sphere and

p =2G/3'. The scalar field 0& is taken to be constant on
the spatial surfaces, 4=@(t). The action is a sum of the
Einstein-Hilbert- York-Gibbons-Hawking gravitational
action

S = f d x( —g)' R+ f d'x(h)' K1 1

16~G 8~G au

(2.2)

and the massless scalar field action

We decompose o. as

o.(t, x) =p 'g f„i (t)Q„i (x),
nlm

(2.9)

where x denotes the spatial coordinates and the scalar hy-
perspherical harmonics Q„& (x) are the normalized eigen-
functions of the scalar Laplacian on the unit three-
sphere. The index n takes the values 1,2, . . . , the corre-
sponding eigenvalues of the Laplacian being (n ——1).
Further properties of Q„& can be found in Ref. 41.

With the background ansatz (2.1), S takes the form

s = —f—d x( —g)'~ g""(8 &b)(B 4) .
1

(2.3) S =QS„, (2.10)

The cosmological constant has been taken to vanish. In-
serting the ansatz into (2.2) and integrating over the spa-
tial surfaces gives the minisuperspace action

2

S„=f dt a ——a(n —1)f„ (2.11)

2 2

—a — +aa 3 +a

SM= fLdt,
where the minisuperspace Lagrangian is given by

(2.4)

(2.5)

Here, and from now on, we suppress the degeneracy in-
dices I and m. In the subsequent sums and products over
n, each n will therefore stand for n separate terms. In-
serting the background solution (2.6) and writing
t =

—,
' lDlx, we obtain

The overdot denotes d /dt, and we have defined
P=(2' vrp)4. This minisuperspace action is well known
to reproduce correctly the full equations of motion for
our ansatz.

The classical solutions of the model are well
known. In the gauge %=a ', the general solution
can be written as

df„S„=lDl f dx (1—x )
dx

n —1

4

(2.12)

The classical equation of motion for f„ is the Legendre
equation of order —,

' (n —1):

2(t) (D2 4t2)l/2 (2.6a)
n —1(1—x ) f„+ f„=0.

dx dx " 4
(2.13)

P(t) =go+ —ln (2.6b)

N(t) = 1

a (t)
(2.6c)

(2.7)

Here D and Po are constants of integration, satisfying
lDl &0 and —~ &Po& m. The coordinate time t takes
the range —

—,'lDl &t & —,'lDl. All the solutions start and
end at curvature singularities at t = +- —,

' lDl, at which lPl
diverges. The maximum value of a (t) on a given solution
is v'lDl, and po is the value of p(t) at the moment of
maximum expansion. Note that D is the value of the
momentum conjugate to P. The proper time fN dt can
be expressed as a function of t in terms of elliptic in-
tegrals. 40 Eliminating t, a solution with given D and Po
traces in the configuration space the curve

cosh[2(P —Po) ]

d ~s„=

fdic

p„„"—H n (2.14)

where 7 is the proper time defined by d 7=%dt and the
Hamiltonian is given by

1 dxH„=—
2 d7

2 2

, +2IDI
"

4

(2.15)

The components of the functional Schrodinger equation
thus read

The two independent solutions for f„are the Legendre
functions P, (x) and Q (x), where v= —,'(n —1).

We quantize the field o. first in the functional
Schrodinger representation. The Hamiltonian form of 5„
1S

Let us now regard one of these minisuperspace classi-
cal solutions as a given background spacetime, with given
values of the constants (D, go), and let us introduce on

i „=H„g„,
Ct7

where

(2.16)
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1 dxH„=—
2 QV

1
2

2IDI(1 —x') ~f.'
2

+2IDI "

The total wave functional y is given by the product

x=Qx. .

(2.17)

(2.18)
X [P (x)+w*g, (x)], v= n —1

(2.25)

parametrized by the complex number w with Im(w)) 0.
One can verify by standard techniques that these states
are the no-particle states associated with the Heisenberg
picture "positive"-frequency mode functions

1
cp„(x)= & IDllm( w)

We shall limit ourselves to investigating Gaussian states
of the form

We shall call these states w vacua.
An especially interesting vacuum is obtained when

w =2i ln In t.his case y„(x) has the large-n expansion

F„'(x)
X„=A„(x)exp ilDI(l —x') " f„'

F„(x) (2.19)
1

cp„(x)=
[IDIIm(w)n (1—x )]'~

where the prime denotes a derivative with respect to x. It
would be straightforward to investigate also more general
states. Inserting this ansatz into the Schrodinger equa-
tion (2.16) gives two independent equations for F„(x)and
A„(x). One of these is the Legendre equation (2.13) for
F„(x), which implies that F„(x) must be a linear com-
bination of the Legendre functions P (x) and Q, (x) with
v = —,

'
( n —1 ). The remaining equation involving both

F„(x) and A„(x) can then be integrated, with the result
that A„(x) is proportional to (F„)

In order for the solutions for g„ to be normalizable, it
is seen from (2.19) that F„must contain both P, and Q
with nonvanishing coefficients. Without loss of generali-
ty we can set the coefficient of P to unity and take

X„=A„exp[ —(a„+iP„)f„],
where

I
D

I
Im( w )

p„=— (1 —x }»[IF„(x)l] .z

2 dX

(2.21)

(2.22a)

(2.22b)

For normalizability cz„must be positive, and we must
therefore have Im(w) )0. Taking X„ to be normalized to
unity according to

1=J df.x.*x. ,

we can choose the phase so that 2, is given by
1/4

2IDIIm(w)
n (2.24)

We have thus found in the functional Schrodinger pic-
ture a one-parameter family of Gaussian states,

F„(x)=P„(x)+wg, (x),
where w is a complex number with a nonvanishing imagi-
nary part. In general, w could be chosen to depend on n,
as well as on the suppressed degeneracy indices. For sim-
plicity we shall take w to be the same number for all the
multiple modes.

Using the Wronskian property of the Legendre func-
tions, y„can be written as

n 7T
X exp i —arccosx ——

2 4
+0 1

3/2

(2.26}

a = (1—x ) +02 1/2
n (2.27a)

IDlx 0 (2.27b)

where the omitted terms are slowly varying functions of
x. Note that the adiabatic vacuum is symmetric with
respect to the moment of maximum expansion, in the
sense that a„(x)=a„(—x), p„(x)= —p„( —x).

m. gUWNTIZWTluN O»HE F«& M»«
AND THE REDUCED DENSITY MATRIX

We shall now embark on quantizing the combined sys-
tem of the background minisuperspace model coupled to
the scalar field perturbations. The total action is

S=SM+S (3.1)

where S~ and S are given, respectively, by (2.4) and
(2.11). To be consistent, the quantization must respect
the assumption under which the action (3.1) has been de-
rived, namely, that the inhomogeneous scalar field o. be a
small perturbation on the minisuperspace background.
Although it is well known how to implement this as-
sumption (see, for example, Refs. 26—29), there are two
issues here that merit a brief discussion.

First, although the background model contains the

The expression on the right-hand side of (2.26) is the
zeroth-order adiabatic positive-frequency solution of the
mode equation (2.13) at n ~ ~. This holds for all values
of x, even though not uniformly, as the expansion given
in (2.26) is valid only for n (1—x )))1. The vacuum
with w=2i l7r is therefore an adiabatic vacuum for all
times.

If w&2i le, a„and P„ in (2.22) will for large n be rap-
idly oscillating functions of x. For the adiabatic vacuum,
w =2i /~, the oscillations cancel and we have the asyrnp-
totic expansions
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S= Jdt ap +Pp~+gf„p„ (3.2)

where the total super-Hamiltonian & is given by

&=&~+g&„, (3.3)

=
—,'[e '( —p'. +py) —e ],

&„=—,
' [e p„+e (n —1)f„] .

(3.4)

(3.5)

We have defined a =e . To promote & into a quantum
super-Hamiltonian operator &, one must make a choice
of factor ordering. We adopt here the usual geometrical
viewpoint that the ordering should be covariant in the
configuration space, so that the first- and second-
derivative terms should combine into the scalar Lapla-
cian with respect to the metric appearing in the total ac-
tion. " (The effective potential term which could arise
from the zeroth-derivative terms ' will not be impor-
tant to the order in which we shall expand the wave func-

spatially homogeneous mode of the massless scalar field
4, this field should not be thought of as a "large" homo-
geneous mode of the massless perturbation scalar field o.
The reason is that inhomogeneous perturbations in N and
in the metric would couple to each other already to quad-
ratic order in the action, and it would be inconsistent to
retain just the inhomogeneous perturbations in N while
setting the gravitational perturbations to zero. A more
appropriate interpretation of the action (3.1) is that the
inhomogeneous perturbations in both @ and the metric
have been set to zero, and o. is a new, separate massless
scalar field on this background. This is consistent for
describing the dynamics of o. to the extent that its back
reaction on the minisuperspace is neglected, since the in-
homogeneous perturbations in 4 and the metric would
not couple to o. to quadratic order in the action. This is,
however, not consistent for investigating decoherence,
since the inhomogeneous perturbations in N and the
metric would contribute to the reduced density matrix by
a factor which would be expected to be of the same order
of magnitude as the factor coming from o.. Our motiva-
tion for working with the action (3.1) is that S could be
hoped to model qualitatively the effects that would arise
from inhomogeneous perturbations in 4 and the metric,
while avoiding the technical complications of having to
couple gravitational perturbations to matter perturba-
tions.

Second, since our background model contains both
gravity and matter, the assumption that o. be small com-
pared with the background variables cannot be imple-
mented by an expansion with Planck mass as the large ex-
pansion parameter. Rather, the appropriate expansion
can be obtained, for example, by making in (3.1) the re-
placement SM ~MSM, regarding M as a "large" parame-
ter, and at the end setting M=1. The parameter M is
thus not to be identified with any particular constant of
nature, but it merely keeps track of the physical assump-
tion that the background action be large compared with
the perturbation action.

The Hamiltonian form of the total action is

where

1 -3- a'
eM

3m 3~ B
Ofd

$/2
(3.7)

e
—3a +ea(& 2 1)f2

df 2
(3.9)

The geometrical meaning of the various terms is as fol-
lows. The kinetic term in &~ is —

—,'V, where V' is the
Laplacian in the minisuperspace metric f &

which ap-
pears in the minisuperspace Lagrangian (2.5):

f t3dq dq~=e ( da +dP —) . (3.10)

Here, and in what follows, we denote by I q I the minisu-
perspace coordinates Ia, PI. The total kinetic term in &
is —

—,'V', where V' is the Laplacian in the metric f &

which appears in the total Lagrangian:

f t3dz dz~ = e —d a +d P +gdf„ (3.1 1)

Here, and in what follows, we denote by Iz I the coordi-
nates on the total configuration space, including both the
minisuperspace coordinates I q ] and the perturbation
coordinates I f„ I . The difference between —

—,
' V and

—
—,'V when operating on functions of the minisuper-

space coordinates is made up for by the cutoff-dependent
term &„d [Eq. (3.8)].

In the previous analyses of the reduced density matrix
in Refs. 15—18, the ordering adopted for the super-
Hamiltonian corresponds to omitting the term &„d. Al-
though appealing by virtue of the absence of explicitly
cutofF-dependent terms which would operate only on the
background variables, such an ordering cannot be
motivated solely by the geometry of the configuration
space. We shall return to this below.

The total Wheeler-DeWitt equation reads

Ae(a, P, If„]) =0 . (3.12)

We seek for solutions of the form

ql=C(a, g)exp[iS(a, g)]Qg„(a, g,f„), (3.13)

respecting the assumption that the perturbations be small
compared to the background. Expanding the Wheeler-

tion. ) The configuration space with all the perturbation
modes (f„] is infinite dimensional and nonflat, and a
problem of regularization therefore emerges already at
the formal level of writing down an expression for a co-
variantly ordered &. We shall treat this problem by in-
troducing an explicit cutoff I in the number of the per-
turbation modes. A possible physical interpretation of
this cutoff will be discussed later in this section.

The covariantly ordered super-Hamiltonian operator is
given by

&=&M +&„d+g&„, (3.6)
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(3.14)

DeWitt equation to next-to-leading order in the perturba-
tions (for example, by introducing the "large" parameter
M as described above) yields the two equations

2
as as
Ba B(t

p(z, z') =4'*(z)W(z') . (3.20)

Explicit examples will be given in the next section.
We now turn to a discussion of density matrices and

their reductions. To begin, let %(z) be a solution to the
full Wheeler-DeWitt equation (3.12). We define the full
density matrix p(z, z') as

Qx.2 aq aq~
We have for brevity dropped the indices from the coordi-
nates z. Clearly, p(z, z') is a biscalar on the full
configuration space. Since

p Xpg

p(z, z) = ~%'(z)
~ (3.21)

+ (3.15)
one can construct from p a coordinate-invariant
Hawking-Page "probability" I'z for a domain V in the
full configuration space by

where V is as above and we have defined

3A
g, =exp (3.16)

The factor exp(3a/4) between y„and y„arises from the
term &,„„in &. If&,„d were dropped, y„ in (3.15) would
be replaced by g„.

The leading-order equation (3.14) is the Hamilton-
Jacobi equation for the background minisuperspace mod-
el. In the next-to-leading-order equation (3.15), there is a
freedom in dividing the total phase of the wave function
into C(a, g) and into the perturbation wave functions g„.
We fix part of this freedom by setting the two terms in
(3.15) to be individually zero and the rest by demanding
the second term in (3.15) to factorize in the y„ in a stan-
dard way. This gives the well-known equations

O=CV S+2f
aq aq~

'

. . asif
aq aq~

(3.17)

(3.18)

(3.19)

The reason for this choice for the phases is that Eq. (3.17)
is the usual semiclassical prefactor equation in minisuper-
space, and the wave function O'M =C exp(iS) is therefore
a semiclassical solution to the covariantly ordered back-
ground Wheeler-DeWitt equation &~%M =0. Equation
(3.18), on the other hand, is the usual form of the func-
tional Schrodinger equation for the perturbation wave
functions g„. It should be emphasized that if one wishes
to discuss the back reaction of the perturbations on the
background using a covariant regularization method to
eliminate the cutoff, the total phase would need to be di-
vided between C and the perturbation wave functions in a
different way. '

Given an arbitrary solution of the background
Hamilton-Jacobi equation (3.14), solutions to Eq. (3.18)
can be generated in a way described in Appendix A, by
an uplift of the solutions found in Sec. II to the conven-
tional functional Schrodinger equations (2.16). These
solutions to (3.18) can be normalized to unity according
to

P~= J ( f )'i d—z p(z, z) .
V

(3.22)

Suppose now that +(z) takes the semiclassical form
(3.13)—(3.19). From the minisuperspace part of 4(z), one
can construct a minisuperspace density matrix po(q, q') as

po(q q') =q'o(q)+0(q'» (3.23)

where we have again dropped the indices from the min-
isuperspace coordinates. po(q, q') is clearly a biscalar on
the minisuperspace. We are interested in the relation be-
tween p(z, z') and po(q, q').

At the coincidence limit q =q', a relation between the
two density matrices can be easily written in terms of the
Hawking-Page probability. Let the domain V in (3.22) be
a product of a domain V in the minisuperspace and a full
infinite range in all the f„'s. Pz now reduces to

I~ dq po q, q (3.24)

p„,d(q, q') =po(q, q') V(q, q'), (3.25)

where the quantity V(q, q') is constructed from the per-
turbation wave functions y, by tracing over the perturba-
tion degrees of freedom. We shall refer to V(q, q') as the
inAuence functional.

For consistency, V(q, q') should be equal to unity at the
coincidence limit q =q, but it can in general be nontrivi-
al for qWq', where it would be expected to describe the
decohering effects of the perturb ations on the back-

which is the minisuperspace Hawking-Page probability
for +0(q). To arrive at (3.24), we have used the normali-
zation (3.19) and the fact that the nontrivial factor be-
tween ( f )' and ( ——f )' is cancelled by the factor ap-
pearing in (3.16).

When qWq', however, the relation between p and po is
less clear. The idea to be carried over from quantum
mechanics would be to form a reduced density matrix
p„,d(q, q') by taking a trace of p(z, z') over the perturba-
tions. As it is not clear whether the full quantum theory
should have a Hilbert-space structure, it. is usually as-
sumed that the trace over the perturbations can be taken
using the approximate Hilbert-space structure of the per-
turbation mode wave functions y„(q;f„). The reduced
density matrix would thus take the form
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ground. The issue now is how V(q, q') should be defined.
To our knowledge no geometrically motivated con-

struction of V(q, q') has been given in models of the kind
we are considering. One approach advocated in the
literature' ' is to consider the functional

' 2 1/4
CXn

20!n

2 —1/4

X 1+
2' n

&i(q q')=g Jdf.X.*(q;f.)X.(q', f. ) . (3.26) Aa,
=exp

2
b,/3„

2An

This functional would be obtained if one tacitly chose to
omit the factor-ordering term &,„d from the total super-
Hamiltonian and to integrate p(z, z') with f„=f„'
without any measure factors. In the presence of &,„d, V,
can be arrived at by integrating p(z, z') over the f, 's with
an added measure factor exp[3m(a+a')/4], which
could be argued to arise as a point-split version of the fac-
tor exp(3m a/2) between ( f )'~ —and ( f )' .—Howev-
er, neither of these ways of arriving at V& relies solely on
the geometry of the configuration space. We are there-
fore prompted to ask whether V& is the only conceivable
candidate for an inhuence functional that would corre-
spond to the intuitive idea of tracing over the perturba-
tions.

In defining V„one sums over the perturbations by set-
ting f„=f„'. Let us perform a coordinate transformation
on the full configuration space from the coordinates
{q, {f„]] to a new set of coordinates {q, {y„]], where
y„=af„. Suppose now we wish to sum over the environ-
ment by setting y =y'. As the full density matrix is a bis-
calar, the only freedom in this summing is in the measure
of the dyn integrals, and this is fixed by the requirement
that the inhuence functional be equal to unity at q =q'.
We thus arrive at an inhuence functional given by

(3.28)

where a„=(a„+a'„)/2, b,a„=(a„—a'„),
hp„=(/3„—p'„), and both a„and p„are functions of the
minisuperspace coordinates in the way described above.
For

~ Vz~ we obtain a similar expression with a„and p„
replaced, respectively, by a„/a and P„/a . Let us in-
troduce a new cutoff n „related to the cutoff I by

n,„(n,„+1)(2n,„+1)I= n
n=1 6

(3.29)

3n max—ln( V, )= ba K (bx)
a (1—x )

+O(n, „),

n, „K (bx)
, , +O(n'..»

12(1—x )

(3.30a)

(3.30b)

where a„=(a+a')/2, ba =(a —a'), x„=(x+x')/2, and
bx =(x —x'). The constant E is related to w by

so that the new cutoff corresponds to including all the
perturbation modes with n ~ n,„. For a generic pertur-
bation vacuum w%2i /vr we obtain

V2(q, q')=Q Jdy„(aa') ' X„* q; X„q',
a " 'a'

K = 1 (R"+ V )[(R +1) —4V ]

where

(3.31)

(3.27)

We propose that V2 can be understood as a result of trac-
ing over the perturbations by setting y, =y,'. Note that
although both V, and Vz are equal to unity at the coin-
cidence limit, they are not equal at generic values of the
arguments.

Further candidates for an influence functional could be
constructed by choosing yet different ways of summing
over the perturbations. We are not aware of consistency
criteria which would allow one to choose one of these
candidates over the others, and we shall argue in Appen-
dix B that a similar ambiguity may arise even in simple
quantum-mechanical models. The choice of an infIuence
functional becomes therefore an issue of recognizing the
relevant physical criteria. In the rest of this paper, we
shall confine our attention to V& and V2. The motivations
behind introducing Vz will be explained shortly.

When q and q' are close, it is a straightforward exercise
in the asymptotic expansions of Legendre functions to
find the leading form of V& and V2 at the limit of large
cutoff. From (2.21) we have

V= —Im(w),
'Tl

2

R= —
)w/ .

77

2

(3.32)

The O(n, „) terms in (3.30) are rapidly oscillating func-
tions of x. For the adiabatic vacuum, m=2i/~, K=O,
and we have

n,„(n,„+1)(2n,„+1)—ln( V ()=

(3.33a)+O(n,„),
n, „(hx )—ln(

~ V2~ ) = +const .
(1—x )

(3.33b)

These expansions are valid when the cutoff satisfies

n, „(1—x )))1 . (3.34)

A first observation is that for both Vi and V2 the
suppression of the off-diagonal elements is at its weakest
when the perturbations are in the adiabatic vacuum.
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This supports the expectation that the reduced density
matrices do in some sense describe the interaction be-
tween the background and perturbations, since this in-
teraction is expected to be at its smallest for the adiabatic
perturbation vacuum. Another way to say this is that the
adiabatic vacuum state is in our models the closest one
can get to a state which would contain no "particle
creation" on a curved background.

A second observation concerns the difference between
7& and V2. We see that V2 depends on the background
coordinates only through the functions x(a, P) and
x'(a', P'), which are determined by the background wave
function, whereas 7, contains an additional explicit
dependence on a and a'. This result is not restricted to
the approximative formulas (3.30), but holds, in fact, ex-
actly. The reason is that V2 only depends on a„/a and

P„ /a and the corresponding primed quantities, which

by virtue of (2.22) and (2.6a) are functions of, respective-
ly, x and x' only. We therefore see that ~22~ is peaked at
x =x' independently of the cutoff, with the cutoff
affecting only the sharpness of this peaking. With ~9'&~,

on the other hand, the cutoff affects the shape of the peak
in a more complicated way, since the divergent next-to-
leading terms in (3.30) depend on both b,a and bx. One
can verify that the exact

~ Vz~ is obtained from the exact
~ 2& ~ by setting b,a =0 in the explicit dependence on a and
a', but retaining the implicit dependence on a and a'
through x and x'.

The explicit dependence of ~7, ~
on a and a' is of purely

kinematic origin. It arises from the change in the three-
volume, but is unrelated to the choice of the background
wave function or perturbation vacuum. If one expects
the reduced density matrix to describe the interaction be-
tween the background and perturbations via particle-
creation effects, one might therefore be inclined to favor
V2 over V, as a candidate for a physically relevant
influence functional. This is our motivation for introduc-
ing 9'~. We shall discuss this issue further in Appendix B
in the context of conformally coupled scalar field pertur-
bations on a de Sitter minisuperspace model.

The suggestion that decoherence be related to particle
creation might also give rise to a natural cutoff. Roughly
speaking, a massless minimally coupled scalar field be-
comes unstable at wavelengths larger than the instantane-
ous Hubble radius. Taking the cutoff n, „ to correspond
to a wavelength of the order of the instantaneous Hubble
radius would thus correspond to tracing over only those
modes of the scalar field where one expects large interac-
tion between the scalar field and gravity. In the case of
de Sitter space, the Hubble radius coincides with the hor-
izon, and this cutoff is the same as the one advocated by
Halliwell, ' although for other fields or other spacetimes
it is different. For a more general scalar field, on a FRW
background it is possible to find a similar criterion for the
cutoff by examining the equation of motion for a mode of
wave number k in conformal time,

+k + W„(il)yk =0, (3.35)
dn'

where Pk =yk/a and Wk is the effective frequency given
by

Wk(rt)=k +m a +(g—
—,')Ra (3.36)

m being the mass and g the coupling constant to the Ric-
ci scalar R. Whenever 8'k is negative, this will lead to an
instability of the scalar field, and we can say that the
gravitational and scalar fields interact effectively. The
cutoff would thus be at the value of k separating positive
and negative values of 8'k. We note that a cutoff of this
kind would not give the result obtained in Ref. 16 where
a scalar or fermion field with a Planck mass in its ground
state decoheres the wave function of the Universe
e%ciently.

In our model the instantaneous Hubble radius cutoff
translates into

lllBx
( 1 P)]/P

(3.37)

Although this cutoff is too low for the asymptotic formu-
las (3.30) and (3.33) to hold, it is still possible to infer
some qualitative features of our influence functionals
with this cutoff from the above general discussion. In the
special case that x(a, P) is independent of P, we see that
~P, is peaked at a=a', whereas for a generic x(a, P),
~ V, is peaked at the full coincidence limit a =a', P=P'.
Similarly, we see that V2~ is always peaked at x =x'. It
is, however, difFicult to estimate the sharpness of the peak
in

~ V2~ and, for generic x(a, P), even the overall shape of
the peak in

~ V, .

IV. EXAMPLES

We have seen that the decoherence displayed by our
reduced density matrices depends on the form of the min-
isuperspace wave function in a nontrivial way. In this
section we shall illustrate this with concrete examples.
We shall in particular be interested in how the decoher-
ence in the reduced density matrices is related to the min-
isuperspace classical trajectories.

Let us first reiterate what happens for a generic minisu-
perspace wave function of the Lorentzian semiclassical
form exp(iS), where S is a solution to the minisuperspace
Hamilton-Jacobi equation (3.14). The corresponding
one-parameter set of classical solutions is found by solv-
ing the Hamilton-Jacobi equations of motion

(4.1)

This set can at least locally be expressed in terms of the
general solution (2.6) by giving one relation between the
two integration constants D and Pp. With this relation
Eqs. (2.6) and the definition t =

—,
' ~D~x can then be used to

solve for x as a function of a and P.
A picture of the situation is most easily drawn in the

minisuperspace null coordinates (u, U ) defined by
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2a2'
2a2'

(4.2)

A. Separation of variables in (a, P)

One set of exact solutions to the minisuperspace
Wheeler-DeWitt equation can be found by separating this
equation in the coordinates (a, P). We take the sepa-
ration constant negative and consider the solutions

2

gy —e l K/I+ a
+ ilKI &2 (4.3)

in which all the classical trajectories are straight lines. In
Fig. l we show a one-parameter set of classical solutions
corresponding to a "generic" choice for S. Since u and U

are linear functions of x on each of these classical solu-
tions, with x =+1 at the two ends on the boundary of the
configuration space, it follows that the curves of constant
x (a, P ) in Fig. 1 consist of points which divide the classi-
cal trajectories into two parts with a constant length ra-
tio. For example, the curve x =0 consists of the middle
points of the trajectories.

We shall now look at three specific examples for the
minisuperspace wave function.

(4.6)

a ~0, although at this limit we would no longer expect to
be able to treat the inhomogeneous modes as perturba-
tions. Even without taking the inhomogeneous modes
into account, the semiclassical form breaks down near
a = ~x ~, which is the transition region between oscillato-
ry and exponential behavior of I+;~,~/2(a /2).

The one-parameter families of classical Lorentzian
solutions corresponding to the wave functions 4,—,a&0,
can be expressed in terms of the general solution (2.6) by
setting D =jr and letting Po range over all real values.
However, from %'+ one recovers only the "expanding"
halves of these solutions, —

—,
'

~D~ & r (0. Similarly, from
one recovers only the "collapsing" halves of these

solutions, 0 & r & —,
' ~D~.

The trajectories corresponding to + are shown in Fig.
2 in the case ~)0. The trajectories start from a singulari-
ty at a =0 and "end" near the maximum expansion en-
velope a =~, where the Lorentzian semiclassical approx-
imation to 0—breaks down. The trajectories correspond-
ing to 4' would "start" near the maximum expansion
envelope and run into a singularity at a =0, thus giving
the missing halves of the trajectories shown in Fig. 2.

The function x(a, P) is given by
' 1/2

a4x=+ 1
K

where —~ & ~ & ~ and I+, l, l &2 is a modified Bessel
function of purely imaginary order. For ~ir~~ec with
fixed a, we have the asymptotic expansion

e+l ~~4e IKI~~4

exp(iS, )[1+O—((lr —a )
'

)j,Ic
( ) 1/2( 2 4) 1/4

(4 4)

where the upper and lower signs correspond, respective-
ly, to the upper and lower signs in 4+—. The surfaces of
constant x are therefore surfaces of constant a. Thus the
decoherence in both

~ 7, ~
and ~9'2~ is completely indepen-

dent of P.

B. Separation of variables in (u, v)

where

KS,—=leg+ arccosh—
2

&

(
2 4)J/2

a
(4.5)

As a second example, we consider background wave
functions obtained by separating the Wheeler-DeWitt
equation in the coordinates (u, v). The separation con-
stant is taken to be purely imaginary. These solutions
can be written as

Here S— is an exact solution to the Hamilton-Jacobi
equation (3.14). Matching (4.4) with a&0 to a semiclassi-
cal solution of the modified Bessel equation, one sees that

takes the Lorentzian semiclassical form for
0 & a ( ~Ir~. This semiclassical form remains valid as

4'~ =exp(iS~ ),
where

(4.7)

FIG. 1. "Generic" one-parameter family of classical trajec-
tories (2.6) in the coordinates (u, v). The configuration space is
the region of positive u and v. The surfaces of constant a are
hyperbolas uv=const, and surfaces of constant P are straight
lines through the origin.

FIG. 2. Classical trajectories corresponding to the wave
function 4+ (4.3) in the case v)0. The arrow points to the
direction of increasing coordinate time t in (2.6). All these tra-
jectories start from the boundary of the configuration space,
where they have a curvature singularity at a =0, and they end
near the maximum expansion envelope a =~, where the
Lorentzian semiclassical approximation to +—breaks down.



43 REDUCED DENSITY MATRICES AND DECOHERENCE IN. . . 3327

a
S& =+ sinh[2(P —Po)]

—2gp 2/0=+—,'(ve —ue (4.&)

Here S& are exact solutions to the Hamilton-Jacobi

equation (3.14). As the notation suggests, the classical
trajectories corresponding to 4— can be expressed in

&0

terms of the general solution (2.6) by setting the constant
Po equal to the value appearing in S

&
. For S

&
the con-

0 0

stant D ranges only over all positive values, so that P(t)
in these solutions increases in the same direction as the
coordinate time t (with the convention that the lapse is
kept positive). Similarly, for S& the constant D ranges

0

only over all negative values, and the solutions are time
inverses of those obtained from S&. In the coordinates

0

(u, v) these trajectories are given by parallel straight lines,
the common direction being related to Po (Fig. 3).

The function x(a, P) is given by

x =+tanh[2(P —Po)]
4' 0—+ U ue
4yU+ue

(4.9)

where the upper and lower signs correspond, respective-
ly, to the upper and lower signs in 0'& . The surfaces of

0

constant x are surfaces of constant P. Thus the decoher-
ence in ~Vz~ is completely independent of a, whereas the
decoherence in

~ V& ~
depends on both a and P in a non-

trivial way.

C. Point-source outside the configuraton space

As a last example, we consider a family of background
wave functions defined by

++ 1
(uP, Up) /~U Vp

exp[+i+(v —vo)(uo —u )], (4.10)

where up )0 and Up ~0 are Parameters. The square root
in the exponent is defined to be positive for
(v —vo)(uo —u ) )0 and positive imaginary for
(v —vo)(uo —u ) (0; this can be rephrased by writing the
square root as Q(v —vo)(uo —u )+ie with e —+0+. Al-
though 4[—„,] has an apparent singular source at

FIG. 4. Classical trajectories corresponding to the wave

function %',+„, , [Eq. (4.10)] in the case uo) 0, vo(0. The ar-

row points to the direction of increasing coordinate time. All
these trajectories would intersect at the fictitious point Q
(u =Op v vp), which lies outside the actual configuration
space.

(u, v ) =(uo, vo ), this source lies outside the configuration
space, and the wave function is a solution to the minisu-
perspace Wheeler-DeWitt equation.

For 0 (u & up, %~
—„,] takes a Lorentzian semiclassical

0' 0

form. The corresponding Lorentzian solutions can be ex-
pressed in terms of the general solution (2.6) as the one-
parameter set satisfying

2/0 —2/0D =+(uoe '+voe '), (4.11)

with the restriction that

4y Vp
e )—

up
(4.12)

uvp +Uup 2uv
X —+

Uup uUp
(4.13)

with signs again matching with those in 4'~
—„,]. For

0' 0

U p & 0 the surfaces of constant x are hyperbolas in the
(u, v) plane, and in the limiting case vo=0 they degen-
erate into surfaces of constant u. Thus, in either case,
both

~ 7& ~

and Pz ~
depend on both a and P in a nontrivial

way.

The upper and lower signs match with the upper and
lower signs in ql(—„,~. In the (u, v) plane these trajec-

O' 0

tories are straight lines whose extensions beyond the ac-
tual configuration space would cross at the singular
source at (u, v ) = (uo, vo ) (Fig. 4).

The function x(a, P) is given by

V. SUMMARY AND DISCUSSION

FIG. 3. Classical trajectories corresponding to the wave
function 4& [Eq. (4.7)]. The arrow points to the direction of in-

0
creasing coordinate time. All these trajectories have the same

4/0
slope, given by dv /du = —e

We have investigated the reduced density matrix in a
quantum cosmological model consisting of a closed
Friedmann-Robertson-Walker model with inhomogene-
ous minimally coupled scalar field perturbations. The
background was taken to include a spatially homogene-
ous massless scalar field, distinct from the perturbation
scalar field: This gives the minisuperspace model non-
trivial dynamics, but allows the perturbation functional
Schrodinger equations to be solved in terms of known
functions. After a general discussion of how to construct
reduced density matrices by summing the full density ma-
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trix over the perturbations, we concentrated on two par-
ticular choices. The first of these gives the reduced densi-
ty matrix which has been discussed in the previous litera-
ture, ' ' whereas the second one is constructed so as to
be independent of the nondynamical volume factor in the
wave function. In both of these reduced density matrices,
we found the suppression of the off-diagonal elements to
be at its weakest when the perturbations are chosen to be
in their adiabatic vacuum state. This supports the expec-
tation that the reduced density matrices in some sense do
describe the interaction between the background and per-
turbations, since this interaction is expected to be at its
smallest for the adiabatic perturbation vacuum.

The second one of our reduced density matrices was
found to be sensitive both to the choice of the minisuper-
space wave function and perturbation vacuum. In the
first reduced density matrix, the suppression of the off-
diagonal elements contains, roughly speaking, all the
suppression that is present in the second one, plus an ad-
ditional suppression factor. This additional suppression
arises solely from the nondynamical volume factor in the
wave function, and it is independent of both the choice of
the perturbation vacuum and the choice of the minisu-
perspace wave function. One might therefore favor the
second of our reduced density matrices as the one being
more directly related to the interaction between the back-
ground and perturbations.

%e have here only looked at wave functions whose
minisuperspace part consists of a single exp(iS) com-
ponent. It would be straightforward to generalize the
analysis to the case where the wave function is a linear
combination of such terms. Assuming the perturbation
vacuum is the same for a11 the components, the individual
terms in the total reduced density matrix are obtained
from the results in Sec. III by using for x(a, P) in each
term the function computed from the appropriate S. In
the cross terms, in particular, x(a, P) and x'(a', P') are
therefore different functions of their respective argu-
ments. In our second reduced density matrix, the cross
terms are again peaked at x =x, but what this implies in
the configuration space depends on the detailed form of
the respective S's. For our first reduced density matrix,
the peaking in the cross terms is, in addition, affected by
difference in the scale factors.

An issue that remained largely open was the interpreta-
tion of our reduced density matrices in terms of decoher-
ence between spacetimes. Although we saw in Sec. IV
how to relate graphically in the configuration space the
"minimum decoherence" surfaces x =const to the one-
parameter family of trajectories that correspond to the
minisuperspace part of the wave function, it is not clear
what the suppression or lack of suppression in the re-
duced density matrix should be understood as implying
about the interferences between the trajectories. The
problem is, as explained in the Introduction, that the ab-
sence of an explicit time variable prohibits interpreting
decoherence in the configuration space directly as
decoherence between different histories.

This suggests that a reduced density matrix of the kind
we have considered may not as such be the appropriate
object for identifying interference between spacetimes.
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APPENDIX A: SOLUTION TO THE
PERTURBATION SCHRODINGER KQUATIQNS

In this appendix we show how to write solutions to the
Schrodinger equations which arise in the expansion of the
Wheeler-DeWitt equation around a minisuperspace mod-
el, assuming that solutions to the perturbation
Schrodinger equations on a su%ciently large set of classi-
cal solutions to the minisuperspace background model
are known. The construction is straightforward, but it
has to our knowledge not been previously given.

Consider a system (minisuperspace) of n ) I degrees of
freedom, I q I, described by the action

S= q p —X dt, (Al)

,'f ~(q)p~p+ U(q) . — (A2)

Here, and in what follows, q in the arguments of the func-
tions will denote all the configuration-space variables

Iq I. Let x be a new degree of freedom, and let H be an
operator of the form H(q;x, r)/Bx ) acting on functions of
I q I and x. We wish to find solutions to the differential
equation

. . as aif ~ y(q;x )=Hy(q;x ),
aq aq~

where S(q) is a given nonconstant function on the
configuration space.

Let us co~sider the integra1 curves of the vector field
V=f ~(r)S/Bq )(~)/Bq~). We label these integral curves
by n —I constants IK; I, and we introduce along each of

An alternative possibility might be to try and construct a
density matrix as a point-split version of the Klein-
Gordon probability density and then to reduce this densi-
ty matrix by summing over the unimportant degrees of
freedom. ' The appeal in this suggestion is that the
Klein-Gordon probability density is more directly related
to the ordinary low-energy Schrodinger probabilities than
the squared absolute value of the total wave function. It
appears likely, however, that the reducing procedure of
such a density matrix would raise ambiguities similar to
those we discussed in Sec. III. A more drastically
different possibility would be not to start from a wave
function, but to adopt a spacetime, or history, as the fun-
damental element in the theory and construct a decoher-
ence functional which is defined directly in terms of his-
tories. ' ' It would be interesting to understand
whether any of the physical questions that can be posed
in the decoherence functional approach would be answer-
able in terms of reduced density matrices of the kind con-
sidered in this paper.
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the curves a parameter t satisfying

p 95 Bt 1

Bq Bq~
(A4)

q (t)=G ([K, j,t), (A5)

where [G j are n functions of the n —1 constants IK; j
and the parameter t.

Equations (A5) can be inverted to solve for [K; j and t
as functions of Iq j. Let the solution be given by

where N(q) is a given function. For simplicity we as-
sume that the integral curves of V are not closed (this will
be the case in the main text). We now make a smooth
global choice for the zeros of the parameters t along the
diA'erent curves; this can be accomplished, for example,
by introducing in the configuration space a surface of
codimension 1 which intersects each of the integral
curves once and setting t=O on this surface. We can
then write the integral curves as

values of the constants [K; j on the integral curve that
passes through q, and t(q) gives the value of the param-
eter t on this curve at q .

Assume now that there exists a function F([K;j, t;x)
which satisfies the equation

= [N(q )H(q;x, a/ax ) ]
. BF

Bt
(A7)

where the subscript G indicates that [q j in H and N are
taken to be functions of I K, jand. t by (A5). Consider the
function g(q;x ) defined by

y(q;x ) = [F( f K; j, t;x )], — -„, (AS)

and

f~ K()=0
aq aq~

(A9)

where the subscript (K;, t ) indicates that IK; j and t in F
are taken to be functions of I q j by (A6). Since

K; =K;(q),
t=t(q) .

(A6) .~ as a

Pq PqP
(A 10)

For a point q in the configuration space, K;(q) gives the by construction, we have, using (A7),

if ~ y(q;x)= F(IK, j, t;x)as a i a
aq~ aq~

'
N(q)

[ [N(q)H(q;x, a/ax ) ] GF( j K; j, t; x ) j ~z,-~N(q) t

=H(q;x, a/ax )y(q;x ) . (A 1 1)

Therefore, y(q;x) satisfies Eq. (A3), which is what we
wanted.

The situation of interest for the main text is when S(q)
satisfies the Hamilton-Jacobi equation

into a solution to the collective Schrodinger equation
(A3).

A situation of special interest is when the Schrodinger
equation., as as

Oq aq~
(A12) i p(q(t);x ) =N(q(t))H(q(t);x, a/ax )at

(A14)

and H is of the form of a quantum-mechanical Hamilton
operator for x:

$2H= ——g(q) +8'(q, x) .
2 ax2

(A13)

(Here x corresponds to the perturbation modes f„ofthe
main text. ) In this case the integral curves of V are solu-
tions to the classical equations of motion for tq j, with
proper time given by fN dt, and the differential equation
(A3) can be interpreted as a collection of Schrodinger
equations for x, one on each of these classical solutions.
In (A7) the dependence of these Schrodinger equations on
the classical solution has been isolated into the constants
[K, j, and the individual Schrodinger equations (A7) are
consequently easier to solve than the collective equation
(A3). The prescription given by (A8) tells how to lift the
solutions to the individual Schrodinger equations (A7)

can be solved for the general solution q (t) of the classi-
cal equations of motion, involving 2(n —1) constants of
integration. In this case one has at hand the solutions to
(A7) for every possible choice for the Hamilton-Jacobi
function S(q). This is the situation occurring in the main
text.

APPENDIX B: REDUCED DENSITY MATRIX

In Sec. III we defined the reduced density matrix by
summing the full density matrix over the unobserved de-
grees of freedom. In this summing there remained a free-
dom which we were not able to fix by geometric argu-
ments alone, except at the limit where the two arguments
of the reduced density matrix coincide. In this appendix
we shall illustrate this phenomenon in a simple
quantum-mechanical example and discuss the relation of
this example to a closely analogous situation in quantum
cosmology.
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Consider a quantum-mechanical system consisting of
two uncoupled harmonic oscillators with unit mass and
unit frequency, with position coordinates x and y. The
metric from which the kinetic term of the action can be
derived is just the Aat metric

ds =dx +dy (81)

Let the system be in its quantum-mechanical ground
state described by the wave function

(xy)e(x+y)/21 — 2 2

i/Yr
(82)

This obviously is a density matrix corresponding to a
pure state in x, signaling the absence of interactions be-
tween x and y. The probability measure for x becomes
just

2
e X

dx

Suppose now we make a coordinate transformation in
the configuration space by

U =x
(85)

where n is some positive integer. The metric (81) reads
now

ds =(1+n u u " )du 2nuu " —'du du

+u 2~du2 (86)

with determinant f=u ". We now write the full densi-
ty matrix in the new coordinates, set U = U ', and integrate
over U, and recover a new reduced density matrix given
by

p„d(u, u') = 2

~(u "+u' ") e
—(Q +Q' )/2 (87)

(The pure phase coming from the time dependence of the
wave function is here inessential and can be omitted. )

Suppose now we wish to regard the variable x as a "sys-
tern" and the variable y as an "environment" and form
the reduced density matrix in x. A natural way to do this
would be to form the full density matrix from (82), set
y =y', and integrate over y, with the result

i
)

—(x +x )/22 l2

red
'I7

As the new coordinate u is simply the old coordinate x,
p„d and p„d both depend only on the system, but not on
the environment. Further, it is easily seen that the proba-
bility measure for u obtained from the diagonal part of
p„d with the determinant factor &f =u agrees with
the probability measure (84); however, the ratio of the
off-diagonal terms to the diagonal terms is different in

pred and pred' Thus having changed the way of summing
over the environment has changed the reduced density
matrix. Geometrica11y, this goes back to the observation
that summing over y =y' with fixed (x,x') does not corre-
spond to the same configurations as summing over U =U'

with fixed (u, u'). Another way to see this is to realize
that, although x =u, their momenta are not equal.

In this simple example it is obvious that the relevant
reduced density matrix is the one given by (83), indicat-
ing no correlations between the two oscillators and no
decohering from summing over the environment. We did
not attempt above to rigorously justify (87) as arising
from a quantum-mechanical tracing, and we paid no at-
tention, for example, to the singularity of the transforma-
tion (85) at x =0. In quantum cosmological situations it
is, however, less clear how to choose a reduced density
matrix which could be understood as a result of a
quantum-mechanical tracing, one reason for this being
that the total wave function may not live in any Hilbert
space. One may therefore ask whether the reduced densi-
ty matrices obtained in the quantum cosmological models
investigated in Refs. 15—18 should be interpreted in
terms of physically observable decoherence.

Consider, for example, the de Sitter minisuperspace
model of Ref. 17 with scale factor a, and let the environ-
ment consist of a massless conformally coupled scalar
field P. If we now do the summing over the environment
in the multipole coefficients of the field P itself, we get a
result analogous to (87), having an appearance indicating
"decoherence. " However, if we instead do the summing
in the multipole coefficients of the rescaled field aP, we
get a result analogous to (83), having an appearance indi-
cating "no decoherence. " To interpret either of these re-
duced density matrices in terms of physically relevant
decoherence, it would thus appear necessary to relate
them to more directly observable quantities. If, in partic-
ular, we expect the reduced density matrix to be related
to particle creation in curved space, the conformal invari-
ance of the environment in this model suggests that the
physically correct answer should be "no decoherence. "
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