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Stability of Aat space, semiclassical gravity, and higher derivatives
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Flat space is shown to be perturbatively stable, to first order in A, against quantum Auctuations
produced in semiclassical {or 1/N expansion) approximations to quantum gravity, despite past indi-
cations to the contrary. It is pointed out that most of the new "solutions" allowed by the semiclassi-
cal corrections do not fall within the perturbative framework, unlike the effective action and field
equations which generate them. It is shown that excluding these nonperturbative "pseudosolu-
tions" is the only self-consistent approach. The remaining physical solutions do fall within the per-
turbative formalism, do not require the introduction of new degrees of freedom, and suffer none of
the pathologies of unconstrained higher-derivative systems. As a demonstration, a simple model is
solved, for which the correct answer is not obtained unless the nonperturbative pseudosolutions are
excluded. The presence of the higher-derivative terms in the semiclassical corrections may be relat-
ed to nonlocality.

I. INTRODUCTION

Our everyday experience tell us that Oat space is stable
(or at least very metastable) against small perturbations
in matter or curvature. Theoretically this has been
shown to be the case for classical general relativity (and
matter obeying the dominant energy condition) by the
proof of the positive-energy theorem. ' It has been sug-
gested, however, that quantum corrections to classical
general relativity might change this result. Issues of sta-
bility in quantum mechanics can be trickier and more
subtle than in classical mechanics, but nonetheless there
have been several strong indications of the instability of
gravity when coupled to quantum fields.

Attempts to examine quantum effects on gravity have
been made using semiclassical and 1/X expansion ap-
proximations. In semiclassical approximations, it ap-
peared that the gravitational curvature could either grow
very large on a time scale of order of the Planck time or
generate large-scale radiation production with this fre-
quency. ' In 1/X approximations, where gravity is
quantized as well as the matter fields, it appeared that the
expectation value of the energy could be lowered from
that of Aat space, and that the gravitational propagator
contained tachyonic modes, both of which imply instabil-
ity. These calculations are particularly disturbing be-
cause they hint that Bat space is unstable against quan-
tum perturbations, in contradiction with our everyday
experience. Because the field equations for the semiclas-
sical and 1/X systems contain terms that are higher
derivative than in the classical Einstein system, the solu-
tion space is potentially larger than in the lowest-order
case (here, lowest order means lowest order in A', even if
there is also an expansion in powers of 1/N). New solu-
tions arising only from the presence of higher derivatives
describe the instabilities found above.

Recent work, however, sheds new light on the relation-
ship between the higher-derivative terms and the full,

nonperturbative system from which they arise. The semi-
classical analyses ' begin by assuming that it is appropri-
ate to perturbatively expand the effective action describ-
ing geometry in the presence of matter fields (and so also
the field equations) in powers of fi. In the case of gravity,
to lowest (zeroth) order in iit, the efFective action is just
the classical Einstein-Hilbert action. The first-order
correction contains terms that are second order in time
derivatives [see Eq. (1)j. These give rise in their field
equations to terms that are fourth order in time deriva-
tives, and therefore to entirely new families of solutions
not present in the lowest order, second-order differential
equation. Most of these new solutions are not perturba-
tively expandable in fi (where "perturbatively expandable
in fi" is defined as analytic in fi as tri~O), and so, if used,
violate the initial perturbative ansatz. In fact, neither the
expanded action nor the expanded field equations, if eval-
uated at a new, nonperturbative solution, remain pertur-
bative expansions in A. To be internally consistent, the
solution space must be restricted to only solutions pertur-
batively expandable in fi. It had been hoped, or perhaps
tacitly assumed, that, despite this inconsistency, the ap-
parently new solutions would give insight to the behavior
of the solutions of the full, nonperturbative effective ac-
tion. While this cannot be explicitly ruled out, a more
likely explanation is that the higher-derivative terms are
not related to nonperturbative behavior of solutions of
the full action, but instead arise from perturbatively ex-
panding a nonlocal expression. This is a common feature
of perturbatively expanded nonlocal actions, as the exam-
ples below will show. In these cases the higher-derivative
terms that arise do not correspond in any way to nonper-
turbative behavior of the full action, but they would give
rise to false, nonperturbative "pseudosolutions" if the
perturbative ansatz were abandoned halfway through the
calculation. These pseudosolutions are never perturba-
tively expandable in A, even in the case where the action
and field equations are perturbative expansions. A self-
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consistent method for restricting solutions to remain
within the perturbative framework is presented below.

Even if the nondynamical higher derivatives appear for
reasons other than nonlocality, the nonperturbative pseu-
dosolutions must still be excluded for self-consistency, if
the action itself is a perturbative approximation. What-
ever the full quantum theory of gravity may be, it is ex-
pected to possess a low-energy effective action, of which
the first few terms of the truncated perturbative expan-
sion in A would be semiclassical gravity. By remaining
within the perturbative framework, although nonpertur-
bative information is lost or hidden, at least self-
consistency is maintained. If one were to abandon the
perturbative ansatz once new solutions were found out-
side the domain of formal perturbative expansions, false
conclusions could easily be drawn, and because self-
consistency would be lost, the relationship between the
effective theory and the full theory would be lost as well.

The case of 1/N expansion is perhaps more subtle,
since the higher derivatives occur to first order in A but
lowest order in 1/N. Requiring that solutions be pertur-
batively expandable in 1/N, but making no restrictions
based on analyticity in A, does not modify the original
predictions of the model. There may be nothing incon-
sistent in this, but the prediction of instability of Oat
space still remains. By additionally requiring that all
solutions be perturbatively expandable in A' (as well as
1/N), we change the predictions of the model (as will be
demonstrated below). Furthermore, if we adopt this ad-
ditional requirement, the behavior of solutions of both
the semiclassical and 1/N models will be similar (in this
linearized approximation). We will impose the ansatz of
perturbative expandability in A' on the 1/N model, and so
we need not further distinguish between the semiclassical
and the modified 1/N case.

It is shown below that, to first order in A, semiclassical
corrections do not engender instabilities. This result is
twofold. First, we show that the calculation itself can be
done within the self-consistent perturbative framework.
Second, we show that the particular result obtained is
that fiat space remains stable (to first order in A). This is
in contrast with physical systems that do develop true in-
stabilities when perturbative quantum corrections are
considered (e.g., tachyonic mass corrections to a classi-
cally massless particle). The final conclusion is that semi-
classical gravity does not contradict experiment in nearly
Hat regions of spacetime.

II. QUANTUM CORRECTIONS TO GRAVITY

Some quantum corrections to gravity can be calculated
without the full quantum theory. One approach is the
semiclassical method, in which purely classical gravity is
driven by the expectation value of quantum matter. This
approximation should be valid in many interesting cases,

where the gravitational part of the wave function of
spacetime behaves strongly semiclassically, but quantum
effects are important for the matter fields. Important ex-
amples are the backreaction of Hawking radiation on the
metric of a large evaporating black hole, and the backre-
action of particles created in the transition from an
inflationary era to a radiation-dominated era. The semi-
classical approximation would be expected to break down
in situations where the effect of the quantum matter on
gravitation is to drive it into a regime of high (Planck
scale) curvature, such as the final stages of an evaporating
black hole, or at very early times in the Universe. Solu-
tions produced by the semiclassical approach that make
predictions in such a regime should not be considered
physical results.

One quite general approach to semiclassical approxi-
mations of quantum gravity was implemented by
Horowitz, using Wald's stress-energy axioms to con-
strain the form of the semiclassical field equations.
Another method, even more general in some respects, is
the 1/N approximation of Hartle and Horowitz, which
quantizes gravity coupled to N matter fields, and then ex-
amines the large-N limit. The first term in the 1/N ex-
pansion gives a semiclassical-like field equation (where
the terms lowest and first order in A are both lowest order
in 1/N), but higher-order corrections in 1/N are (in prin-
ciple) calculable as well, a feature lacking when gravita-
tion is kept strictly classical.

All of these approaches to quantum corrections to
gravity share common features. The effective field equa-
tions are higher order in time derivatives than the classi-
cal equation, and these higher-order terms have small
coefficients (proportional to fi) If taken se. riously, higher
derivatives mean that twice as much initial data must be
specified to evolve the system forward in time, or, in the
variational formulation, twice as much data must be
specified on the boundaries. In the initial data formula-
tion, not only must the metric and its first derivative be
specified, but also the second and third derivatives. In
the variational formulation, not only must the metric be
specified on the boundary (or boundaries), but also its
first derivative. It would make semiclassical gravity very
different from almost all other physical dynamical
theories, which are almost always second order in time.
Furthermore, as higher-order corrections are considered
when the gravitational field is also quantized, terms pro-
portional to higher powers and higher derivatives of cur-
vature are expected. This would have the bizarre effect of
requiring more and more initial data to be specified as
terms of (supposedly) less and less importance are con-
sidered.

For the moment, let us consider only corrections first
order in A, which make the field equations fourth order in
time. The effective action takes the form

1S,tr= d x&g [ —2A+R +aR +PR,bR'b+y(terms nonlocal in curvature) j+(surface+terms),
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where a, P, and y are all proportional to fi (the terms
nonlocal in curvature in the action lead to purely local
terms in the field equations; they should not be confused
with nonlocality in the equations of motion discussed at
length below). We use the conventions c = l,
g, b

= ( —+ + + ), R ',„=B,I' „+,and R ' („=R
In the semiclassical case were found tachyonic and ex-
ponentially growing Auctuations, both of which strongly
indicate an instability of Oat space. In the 1/N expan-
sion were found fluctuations of negative energy and also
tachyonic poles in the gravitational propagator. In all
such cases, choosing certain values of some parameters
could lessen some of the unstable behavior, but for no
combinations could the instabilities be made to vanish
(this is true even if the probably unphysical Landau ghost
discussed by Hartle and Horowitz is discounted as an in-
stability ), with the exception of the case a) 0, /3=0,
y=0, which is less interesting due to its nonrenormal-
izability and the absence of the trace anomaly.

An insufFiciently stressed property of the solutions con-
tributing to the above instabilities is that, despite the fact
that both the effective action and the field equations
governing the quantum corrections are perturbative ex-
pansions in A, most of the solutions are not perturbatively
expandable in A' (i.e. , not analytic functions of A' as Pi~0).
This can be seen from the field equations, which for a
metric g are roughly

(2)

where overdots represent time derivatives. In order to in-
vert this equation for the highest derivative of the metric,
it is necessary to divide by A. On dimensional grounds,
the natural time scale is the Planck time t p&

=(GA')'~ and
solutions generally behave as functions of t/t pj. We are
faced with the prospect of nonperturbative solutions to a
perturbative expansion. The presence of still higher
derivatives in still-higher-order corrections makes the sit-
uation look even stranger.

Short of giving up completely, on the grounds that
semiclassical gravity might be irredeemably inconsistent,
there are two directions to proceed. The first is to accept
the new nonperturbative solutions as valid. This has been
the more popular path historically. There is some hope
that the nonperturbative solutions are actually giving
some (unexpected) insight into the nonperturbative be-
havior of the full quantum gravitational theory. There is
little motivation for this, since semiclassical gravity is
only expected to approximate a perturbative expansion of
the full theory. In any truncated perturbative expansion,
nonperturbative behavior has necessarily already been
lost.

The second path is to take the perturbative expansion
seriously and exclude all solutions not perturbatively ex-
pandable in fi as fictitious. This is the approach we put
forward in this paper. The primary advantage of this ap-
proach is self-consistency: the effective action is a formal
perturbative expansion, the field equations are formal
perturbative expansions, and so should be the solutions.
Furthermore, the action and the field equations lose their
interpretation as a perturbative expansion if evaluated at

nonperturbative extrema. That is, the "higher-order"
terms are not higher order when evaluated on a nonper-
turbative "pseudosolution. " Unless the perturbative ex-
pansion holds at the extrema, there is no reason the
effective action should be expected to approximate the
full action in any sense, evaluated near the extrema. The
applicability of perturbation theory to the stability of
action-based physical systems is discussed in the Appen-
dix. The second benefit to taking the perturbative expan-
sion seriously is that the solution space does not grow as
the perturbative order is increased. A result of Jaen,
Llosa, and Molina shows that, to any order, the same
amount of initial data wil1 suffice for all solutions analytic
in the perturbative expansion parameter of any system of
the form

L= —g mj, + QE'V( q,

+0( n +1) (3)

where c. is the perturbative expansion parameter and m,
is the mass of particles a =1, . . . , N, and the matrices
0 Vl /Bq,'"Bqb" are regular. Their proof demonstrates
that all but N of the momenta of this system cannot be in-
verted within the formalism of perturbative expansions,
corresponding to the presence of constraints, which are
shown to be second-class constraints. The constrained
system has the same number of degrees of freedom for
any n, including n =0. This result can be generalized to
more complicated systems, as will be done below for
linearized gravity, which potentially has additional fields
present in the first-order correction not present in the
classical action.

To reiterate, the advantage of taking the perturbative
expansion seriously is self-consistency: (l) the initial ac-
tion and field equations are formal perturbative expan-
sions and now the solutions are also formal perturbative
expansions; (2) the number of degrees of freedom of the
system is fixed and does not depend on the order to which
the expansion is taken; (3) the system plus the constraints
necessary to exclude the nonperturbative pseudosolutions
is strongly equivalent (in the sense of Dirac constrained
systems) to a second-order system, and thus has none of
the pathologies of unconstrained higher-derivative
theories. The consequences of losing self-consistency are
the appearance of spurious solutions to the truncated
series, not related to any solutions of the full action.
These spurious solutions occur even in simple examples
(as shown below), and must be excluded if solutions to the
truncated expansion are to approximate solutions to the
full action.

Even if the more consistent, perturbative direction is
taken, one might still reasonably ask why the extra solu-
tions that must be excluded arise at all. What is the pur-
pose of the higher derivatives in the effective action and
field equations? There may be several answers to this
question, but an answer common to many theories based
on effective actions is that the higher derivatives come
from nonlocality. This is discussed next.
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III. NONLOCALITY, PERTURBATIVK
EXPANSIONS WITH HIGHER DERIVATIVES

Nonlocality is a feature often displayed in theories
based on effective actions, i.e., a theory made simpler by
integrating out some subset of its degrees of freedom.
Effective actions describe theories with "action at a dis-
tance" since some fields have been deprived of their
dynamical status. One example of a theory described by
an effective action is semiclassical electrodynamics, where
the electromagnetic fields are classical but the quantum
nature of the matter fields are retained. Another is the
Wheeler-Feynman theory of classical electrodynamics, in
which electrons interact nonlocally via half-
retarded/half-advanced potentials, without dynamical
electromagnetic fields. Since Einstein gravity is non-
renormalizable, it is likely that it is not a fundamental
theory but, rather, the low-energy limit of an effective
theory based on some larger, fundamental "theory of
everything" (perhaps string theory). The effective low-
energy theory predicted by superstrings will be discussed
below.

Nonlocal theories for which the nonlocality is regulat-
ed by a small, dimensionful parameter can produce
higher derivatives when perturbatively expanded in that
parameter. For instance, a function that is nonlocal in
time, such as x (t +Et'), can be expanded in powers of E.
For example,

(Et')" d "x (t)x t +Et
„—o dt" (4)

In this way an infinite sum of individually local, higher-
derivative terms can represent a nonlocal expression.
The full nonlocal theory may or may not contain behav-
ior usually associated with purely higher-derivative
theories (e.g. , additional degrees of freedom, lack of a
lowest-energy state; see Eliezer and Woodard' for a lucid
presentation of higher derivatives and nonlocality). If
such an expansion is used for a nonlocal action, any finite
truncation of the sum may behave very differently from
the full theory. In particular, the number of degrees of
freedom of the truncated sum appears to depend on the
degree of truncation, whereas the number of degrees of
freedom of the full theory is fixed. The only solution to
this problem is to agree that for any finite truncation one
will only examine consistent perturbative solutions. Such
an agreement does not deny the existence of possible non-
perturbative behavior of the full theory, but it does ac-
knowledge that such behavior is inaccessible in the per-
turbative expansion already performed. At the very least,
nonlocal theories demonstrate how higher derivatives
may appear in an approximate theory and not represent
dynamical degrees of freedom.

A simple example of a nonlocal theory can help devel-
op some intuition for the subject. The model is of a non-
local harmonic oscillator (for a fuller treatment, includ-
ing quantization, see Simon" ). The potential of this har-
monic oscillator is nonlocal in the sense that it depends
not only on the position of the spring at a specific instant,
but also on the position in the past and future, with
heavier weighting of times near the present. This model
simply displays the effects of nonlocality and the appear-
ance of higher derivatives in a perturbative expansion,
and it has the important advantage of being exactly solu-
ble. The model's equation of motion is

x(t)= co—o f ds e '
—,'[x(t+Es)+x(t —Es) j, (5)

where Ecop(1. In the limit E~O, we regain the simple
harmonic-oscillator equation x = —copx. The two-
parameter family of exact solutions is given by

x = 3 cos(cot +P ),
where 3 and P depend on the initial conditions and

2 2( ]+1+1+4 2 2) —1

=coo(1 E coo+2E coo+ ' ' ' )

is the new effective frequency due to nonlocal effects.
One may also solve the system perturbatively and com-

pare the result with the exact solution. Since both the
equation of motion and the general solution are perturba-
tively expandable in E, there should be no obstacles. The
equation of motion becomes

x = —coo(x +E x+8 x' '+E x' + ) .

There appears to be an arbitrarily high number of degrees
of freedom due to the infinite sum of higher derivatives.
In fact, we know that the exact solution has only two ar-
bitrary parameters, so all other degrees of freedom must
be excluded implicitly in demanding that the sum con-
verge. If we truncate at any finite order, though, we lose
the implicit constraints, and we must then explicitly ex-
clude nonperturbative solutions. Truncating (8) at E or
c, and solving gives no trouble because the equation of
motion remains second order and gives the correct
answers,

x = 3 cos(coot+/),

E: x = 3 cos(co2t+P),

to the appropriate order in c., where
~~=no(1 —e coo+ )=co +O(E ) is an easily calcul-
able function of E and coo. Truncating (8) at higher or-
ders, however, gives extra "pseudosolutions" occur that
are not perturbatively expandable in c.:

e: x = 2 cos(co4t+p)+B cos(yt+ltt), y ——1 1

E CCOp

E: x = 3 cos(co6t+P)+B+ cos(y+t+g+)+B cos(y t+P ), y+ ——6. 1 1

E Q+iEcoo
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x+coox +E coox+E coox' '=0(E ) .

Dividing by c. is forbidden if the equation is to remain a
perturbative expansion to 0 (e ). Instead we multiply by

4

E x+E coax =0(s ),
take two time derivatives,

e4x '4'+ E4co~2" =0 (c.'),
and substitute back into (11) to get

x(1+s coo —E coo)+coax =0 (E ) .

(12)

(13)

(14)

We are still forbidden to divide by any expression con-
taining c, but we may still multiply by the reciprocal if it
exists. Since

and so on, where co&„=~ +0(E "
) is a calculable

function of c and coo in each case.
Thus, this simple model is an explicit example of how

abandoning the perturbative formalism for the solution
simply gives the wrong answer. Retaining the perturba-
tive formalism (that is, excluding, by the appropriate con-
straints, all nonperturbative results) gives the correct
answer, to any order. We see that when the order of
derivatives grows with the order of expansion, it is an ob-
vious symptom of nonlocality. It alerts us that the higher
derivatives do not represent dynamical degrees of free-
dom but are an artifact of the expansion. Keeping only
perturbative solutions is the only self-consistent path
available. '

Solving for all exact solutions of the truncated expan-
sion and then discarding those not perturbatively expand-
able, while a valid procedure, is computationally wasteful
and may not always be possible. A more feasible
prescription is to solve the equations of motion while
remaining, at every step, strictly within the perturbative
formalism.

"Strictly within the perturbative formalism" means
that, in solving the field equations, all expressions must
be polynomials (formal expansions) in the perturbative
constant, up to the specified order of the truncation.
Only operations which preserve the formal expansion are
permitted. One may consider the perturbative expansion
parameter to be not an ordinary number, but an abstract
object with no multiplicative inverse (once the perturba-
tive order is set). Division by terms containing the per-
turbative constant is forbidden (though multiplying by a
reciprocal, if it exists, is allowed), once the perturbative
order is set. Note that the strictly perturbative formalism
implies that if f (x)+Eg(x)=0+0(E ), and f and g are
both zeroth order in e, then both f and g must vanish in-
dependently. Note also that the vanishing of the product
of two terms does not guarantee that either must vanish
[e.g., EXE=O+0(E )]. Algebraically speaking, the sys-
tem is a commutative ring with zero divisors, where the
role of zero element is played by 0 (E +').

To make these ideas more concrete we will solve the
example system above by this method, truncated to
powers of E . The equation of motion is

(1+E coo —s too)(1 —E coo+ 2e too) = 1+0 (E ), (15)

the final form of the equation of motion is

x +coo(1 —E too+2e coo)x =0 (E ) . (16)

Compare this with (7) to see that this gives the correct
answer to the full equation of motion (to order E ), and
compare with the first line of (10) to see that this also
agrees with the method of solving for all solutions and
afterwards excising all nonperturbative pseudosolutions.
That we are not missing any perturbative solutions is
guaranteed by (3).

IV. QUANTUM CORRECTIONS
TO GRAVITY REVISITED

We may now consider these ideas in the specific con-
text of quantum corrections to gravity. Whatever prop-
erties the full quantum theory of gravity may have, it is
expected to posess a low-energy effective action that can
be expanded in powers of the Planck time tp~ =(fiG)'~,
and there is no reason to suspect that the expansion ends
at any finite order. For example, superstrings predict an
effective low-energy theory with an infinite expansion
given by'

I I

d~x Qg g — g g ~"~~+
2A 4 abed

+(matter)+0(a' ) (17)

at the tree level, where a' is the slope parameter, with di-
mensions of lp&. On dimensional grounds, higher-order
corrections will be accompanied by higher powers of cur-
vature and its derivatives, giving higher and higher time
derivatives. Einstein gravity itself is nonrenormalizable,
and so makes no predictions concerning the form of
higher-order terms in the expansion. Nevertheless, to the
extent that any approximation giving an action with a
first-order correction in A is to agree with predictions of
the full theory, it must be treated as giving the first few
terms of a larger expansion. Since nonlocality is a com-
mon feature of effective actions, it is quite plausible that
all higher-derivative terms arise from the perturbative ex-
pansion of nonlocality, and, therefore, that the nonper-
turbative pseudosolutions should be excluded. Still, even
if the nondynamical higher derivatives appear for reasons
other than nonlocality, the nonperturbative pseudosolu-
tions must still be excluded for self-consistency, if the ac-
tion itself is a perturbative approximation. Information
of nonperturbative solutions has already been lost in
making the perturbative approximation of the action and
field equations. It is impossible to tell whether the non-
perturbative pseudosolutions are at all related to any lost
nonperturbative solutions, but excluding them is at least
self-consistent.

The effects of excluding the pseudosolutions are
several. First, we show that there are no new degrees of
freedom or fields. The most general higher derivative,
semiclassical corrections ' can be written most concisely
in terms of the Fourier transform
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—g .~ R+alnd k

(2ir )

k C~ C'bab«
p

where

QT= '(Q. .h T—k ik k.h T)

+O(fi ),

+e R*R .

p

(18)

h;~ =(6;q k—k, kk )(Ail k—kikl )hki

,'(o—,~
——k k, k) )(5ki —k kkki )hki,

where an asterisk denotes complex conjugation, and a, b,
and e are all proportional to A, and their exact values de-
pend on which matter fields couple to gravity and which
regularization scheme is chosen in the process of renor-
malization. C,b« is the Weyl tensor. Following Stelle, '

we decompose the linearized metric into transverse trace-
less, transverse, and longitudinal components:

h:h +hj~+k g& +k&'
h o=h o+k go+kog

boo=boo 2kogo

Ii o=h o k (k ik;h oi+k ik o" jl ~ «kkkqkoh, „)

g, =k (k h; —
—,'k k„k k, hk ),

go= k (k;ho; —
—,'k k, kjkoh;~ ),

and h j h h p and hpp are invariant under the trans-TT T T

formation h, ~h „+0{ g, ] for arbitrary g, . Inserting
this decomposition into the linearized action gives

Ph TT+(ir 2 —fk2)k21'i TT ~h T+[ir i+( & f +4g)k2]kiIi Td4k
~J 4 3

+Reh *[ir +( —
—,'f+2g)k ]boo —boo( —,'f+g)k boo —ho;"(a —fk )k ho;]+O(A' ), (21)

where f =a ln(k /p ), g =b ln(k /p, )+a, and the field
equations are given by

5S",tt =0+0 ( A' ) . (22)

Since this is independent of g, the g are the natural
gauge variables of the linearized system. In the classical
limit, f =g =0, and the reader may verify that only the
h, ". are dynamical in this limit. Following the same steps
as for the simple model above, multiply (22) by fi to get

ASS""=0+0(A' )

which is equivalent to

h =0+0(iri )

irih =irihoo=irih, o =0+0(fi ) .

(23)

(24)

Recall that division by A' is not allowed if we are to
remain at the same order. Since all corrections to the
field equations are of the form of (24), they also vanish (to
this order). The only solutions to the linearized field
equations that are perturbatively expandable in A are the
same as the solutions to the classical equations, but now
to one higher order in A': h," =0+0(A' ). There can-
not be any other solutions perturbatively expandable in A

because of the second-class constraints associated with
the momenta and time derivatives of h hpp and h, p and
remaining within the perturbative formalism. The mo-
menta cannot be inverted within the confines of strict
perturbation theory, signaling the presence of primary
constraints. These constraints, along with their associat-

S'.~[g]
(25)

ed secondary constraints, do not commute; i.e., they are
second class. The result is that h hpp and h p are not
dynamical fields. The only field degrees of freedom are
those of the graviton (h; ). This should not be too
surprising in the context of the Stelle's analysis. The ap-
parently new degrees of freedom found there correspond-
ed to particles with masses inversely proportional to the
Planck length. Any excitations of those false degrees of
freedom would result in frequencies also of order the
Planck scale, corresponding to solutions that diverge as
A~O.

It is the fictitious degrees of freedom excised above that
are responsible for indications of the instability of Oat
space. Previous analyses of the stability of Rat space
found "solutions" to the semiclassical equations with be-
havior -t /t p, For insta. nce, Horowitz and Wald find
modes of real or imaginary frequency (48ira) '~ [where
ace@' is defined in Eq. (1)] which lead to instabilities ei-
ther from runaway solutions or enormous radiation pro-
duction. Below we will reanalyze in detail the energy
analysis of Hartle and Horowitz in the perturbative for-
malism. Generalizing these techniques to other analyses
of the stability of flat space-time is straightforward.

The energy analysis of Hartle and Horowitz computes
the minimum energy among all states for which the ex-
pectation value of the metric is a given stationary
geometry satisfying the constraints of the system. The
answer may be expressed in terms of the eA'ective action
b 15
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+O(A' ),
where a single overdot denotes the linearized approxirna-
tion (not a time derivative), and

A,„=2k G,b+ ', (k i),b
——k, kb)R,

B,b =2(k i),b
—k, kb)R,

G,b
=

—,'[k h,„—2k'k(, hb), +k, kbh',

+i),b(k'k "h,„—k h', )],

(27)

where T is the time integrated over in evaluating S,z and

g is the stationary geometry. The original analysis found
that this quantity can be made negative for some defor-
mations of the metric (the energy vanishes for fiat space),
indicating an instability of Aat space. When the analysis
is reperformed within the formalism of perturbation
theory, as will be seen, no such indications are found.

The linearized effective action can be written

4

S,tr[h]= ——I (h' )*(G,b —fA,„—gB,b )

to other gravitational behavior must also take this con-
straint into account. For instance, the structure of the
graviton propagator, which without (28) would have ta-
chyonic poles at Planck-like frequencies, behaves exactly
as the classical propagator.

Excluding the nonperturbative pseudosolutions by no
means proves that flat space is stable against quantum
effects of gravity, but as judged by the consistent method
followed here, there is no indication of any instability.
Furthermore, the inconsistent solutions which did signal
instability are likely to be misleading. It is not ruled out
that higher order or nonperturbative behavior (inaccessi-
ble, by definition, in this formalism, but also by construc-
tion, in approximating the action as a truncated perturba-
tive expansion) could make fiat space unstable or meta-
stable. But at least for the moment, the issue of stability
of flat space is no reason to question general relativity as
an approximation to nature, nor to question the present
methods of obtaining first-order quantum corrections to
the field equations of gravity.

V. CONCLUSION

We must also, however, include the new second-class
constraints documented in the previous section, i.e., that
there are no new degrees of freedom. The constraints
(23) can be summarized covariantly as

fiG, b =0+0(fi )

and can also be derived by putting the system in canoni-
cal form, but retaining the perturbative expansion for-
malism. There the momenta cannot be inverted within
the perturbative formalism, which leads to new primary
constraints (in addition to the usual first-class con-
straints of general relativity), which in this case is (28).
Its accompanying secondary constraint is the time
derivative of (28), and the two constraints are second
class (i.e., they do not commute), refiecting the fact that
the number of field degrees of freedom is smaller than is
expected in a higher-derivative action (in contrast with
the still present first-class constraints of general relativity,
which signify gauge freedom). Both fA, b and gB,b are
proportional to fiG, b, and so vanish (to this order), leav-

ing the effective action equal to the classical action. The
action, field equations, and usual first-class constraints
are all the same as the classical case (but now to higher
order), and so the energy functional is also the same:

d k
E[h;, ]=—J (k ih;, ~

) ~0+0(fi ) .

Thus, remaining in the perturbative framework guaran-
tees that the energy of Aat space cannot be lowered per-
turbatively, to first order in A.

The same constraint, (28), applies to all semiclassical
expansions about fiat space and vacuum matter [it does
not apply, for instance, to semiclassical expansions in the
presence of a cosmological constant, where, for quantum
corrections to de Sitter space, we would have
AG, b =fiAg, b+O(fi )]. Any examination of corrections

Semiclassical and other more systematic approaches
(such as 1/X expansions) to quantum corrections of grav-
ity give an effective action and field equations which are
truncated perturbative expansions in powers of A. In the
case of gravity, the perturbative corrections have the
form and dimension of curvature squared terms (though
the effective actions may not be entirely expressible in
terms consisting of only the metric and curvature), which
leads to a higher-derivative theory, i.e. , fourth order in
time. Corrections of still higher order, expanded in
powers of the Planck length squared (i.e., powers of R),
are expected to be of even higher order in time deriva-
tives. If taken seriously, new solutions to the higher-
order equations make the system both qualitatively and
quantitatively different from the classical case, leading to,
among other symptoms, the instability of Oat space. Two
important features of these apparently new solutions also
point the way to the cure. First, most of the new solu-
tions" are not perturbatively expandable in powers of A,

in contrast to the effective action and field equations.
Second, the order of the derivatives increase with increas-
ing perturbative order. These make it plausible that the
higher derivatives arise from a perturbative expansion of
a nonlocal system and not from any dynamical considera-
tions. Nonlocality is to be expected in the low-energy
effective action describing gravity in the low-curvature
limit (as in all eAective actions). Still, even if the higher-
derivative terms arise for reasons other than nonlocality,
the pseudosolutions must still be excluded for self-
consistency if the effective action examined is a truncated
perturbative expansion in powers of A. This process does
not deny the existence of possible nonperturbative behav-
ior of the full theory, but it does acknowledge that such
behavior is inaccessible in the perturbative expansion al-
ready performed.

The cure is merely to take the perturbative expansion
seriously and to exclude all "pseudosolutions" not pertur-
batively expandable in A. This is necessary for self-
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consistency: (1) the initial action and field equations are
formal perturbative expansions in A and now the solu-
tions are also formal perturbative expansion in i'; (2) the
number of degrees of freedom of the system is fixed and
does not depend on the order to which the expansion is
taken; (3) the system plus the constraints necessary to ex-
clude the nonperturbative pseudosolutions is strongly
equivalent (in the sense of Dirac constrained systems) to a
second-order system, and thus has none of the patholo-
gies of unconstrained higher-derivative theories. Other-
wise, the penalty is spurious solutions to the field equa-
tions, unlikely to be related to solutions of the full non-
perturbative field equations. A simple model has been
provided for which retaining nonperturbative degrees of
freedom (as is usually done for semiclassical gravity) gives
the wrong answer, and excluding them gives the correct
answer. It also demonstrates that the presence of
higher-derivative terms in the action and field equations
does not automatically require that they will have
dynamical consequences as such.

The e6'ect of excluding nonperturbative pseudosolu-
tions from semiclassical gravity is to restore stability to
flat space from quantum corrections, at least perturba-
tively to first order in A. This result is not guaranteed
merely by the process of excluding nonperturbative pseu-
dosolutions, since even perturbative quantum corrections
can result in instability. Stability is not proven or
guaranteed to all orders or against nonperturbative be-
havior, but, to this order, semiclassical gravity does not
contradict experiment in nearly flat regions of spacetime.

There are other contexts, e.g. , cosmology, in which
semiclassical gravity has been used without excluding
nonperturbative pseudosolutions. Any proposal that de-
pends crucially on the nonperturbative behavior is flawed
for the same reasons.
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For any action with these properties, the following
statements can be proven just from the theory of asymp-
totic expansions (or strict perturbation theory). First

6I
—a

(A3)

6'r
pert

& pert

g2I 0.'

—a2

A stronger statement than (A3) is that

i.e., the perturbative expansion of the extremal field
configuration is also an extremal field configuration of the
perturbatively expanded action. This follows trivially
from the definition of an asymptotic expansion. The
same holds true (with identical proofs) for any number of
functional derivatives, and, in particular, for the second
functional derivative, which must be positive definite if
the system is to be stable:
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APPENDIX

Here we investigate the efFects of the perturbative ex-
pansion in examining the stability of a system through its
action (which can be effective or exact). Let the full (non-
perturbative) action I [y] be a functional of a field y
(not necessarily a scalar) and a function of the parameter
e. y is limited to a particular class of functions, S, i.e.,
y&S. For example, S could be the class of functions held
fixed at the boundaries, or of functions and their first
derivatives held fixed at the boundaries. We require that
I [y] have two properties. First, it must be perturba-
tively expandable in a:

cz —a
V pert 0 pert

or, if an extremum of the perturbatively expanded action
is itself perturbatively expandable, then it equals the per-
turbatively expanded extremum of the full action. This is
most important because it shows that the perturbatively
expandable extrema of the perturbatively expanded ac-
tion is related in a well-defined way to the exact extrema
of the full action. No such statement can be made if an
extremum of the perturbatively expanded action is not it-
self a perturbative expansion, and in fact if

~pert =0, where y„„&yo+uy&+
+test

(A6)

& a"r
where I „—= , (Al)

=o (a nonperturbative extremum is chosen), then, in general,
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l [&p„„I+l,„,[y„„];i.e. , the perturbative action, when
evaluated at a nonperturbative extremum of itself, it is
not even approximately equal to the full action evaluated
at the same test function. The proof of (A5) is straight-
forward. The left-hand side of the first equation of (A5) is

an infinite polynomial in o., every term of which must
vanish independently (since cr is arbitrary). The vanish-
ing of each term determines P„uniquely (so long as $0 is
unique). Thus the infinite polynomial y „,is unique, and
must equal y, „, by (A2).
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