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We present a new formalism for treating the general-relativistic celestial mechanics of systems of
N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies. This for-
malism is aimed at yielding a complete description, at the first post-Newtonian approximation level,
of (i) the global dynamics of such N-body systems ("external problem" ), (ii) the local gravitational
structure of each body ("internal problem" ), and, (iii) the way the external and the internal prob-
lems fit together ("theory of reference systems"). This formalism uses in a complementary manner
N+1 coordinate charts (or "reference systems"): one "global" chart for describing the overall dy-
namics of the N bodies, and N "local" charts adapted to the separate description of the structure
and environment of each body. The main tool which allows us to develop, in an elegant manner, a
constructive theory of these N+1 reference systems is a systematic use of a particular "exponen-
tial" parametrization of the metric tensor which has the effect of linearizing both the field equa-
tions, and the transformation laws under a change of reference system. This linearity allows a treat-
ment of the first post-Newtonian relativistic celestial mechanics which is, from a structural point of
view, nearly as simple and transparent as its Newtonian analogue. Our scheme differs from previ-
ous attempts in several other respects: the structure of the stress-energy tensor is left completely
open; the spatial coordinate grid (in each system) is fixed by algebraic conditions while a convenient
"gauge" flexibility is left open in the time coordinate [at the order 6t =O(c )]; the gravitational
field locally generated by each body is skeletonized by particular relativistic multipole moments re-
cently introduced by Blanchet and Damour, while the external gravitational field experienced by
each body is expanded in terms of a particular new set of relativistic tidal moments. In this first pa-
per we lay the foundations of our formalism, with special emphasis on the definition and properties
of the N local reference systems, and on the general structure and transformation properties of the
gravitational field. As an illustration of our approach we treat in detail the simple case where each
body can, in some approximation, be considered as generating a spherically symmetric gravitational
field. This "monopole truncation" leads us to a new (and, in our opinion, improved) derivation of
the Lorentz-Droste-Einstein-Infeld-Hoffmann equations of motion. The detailecl treatment of the
relativistic motion of bodies endowed with arbitrary multipole structure will be the subject of subse-
quent publications.

I. INTRODUCTION AND OVERVIEW

A. Motivation and brief historical overview

The problem of describing the dynamics of N gravita-
tionally interacting extended bodies is the cardinal prob-
lem of any theory of gravity. Within the framework of
Newton's theory this prob1em, called "celestial mechan-
ics," has been thoroughly investigated (see, e.g. ,
Tisserand'). Very shortly after the discovery of
Einstein's theory of gravity, Einstein, Droste, de Sit-
ter, and Lorentz and Droste devised an approximation
method (called "post-Newtonian" ) which allowed them
to compare general relativity with Newton's theory of
gravity, and to predict several "relativistic effects" in
celestial mechanics, such as the relativistic advance of the

perihelion of planets, and the relativistic precession of the
Moon's orbit. This post-Newtonian approach to
general-relativistic celestial mechanics was subsequently
developed (and completed) by many authors, notably by
Fock (for a review of the development of the problem of
motion in general relativity see, e.g., Damour ). Howev-
er, the great increase in precision of current, and foresee-
able, observational techniques in the solar system makes
it now necessary to reconsider this traditional (post-
Newtonian) way of tackling the gravitational dynamics of
N-body systems.

Indeed, modern technology is giving us access to high-
precision data on both the global celestial mechanics of
the solar system, and the local relativistic gravitational
environment of the Earth, and on the way they fit togeth-
er. We have in mind high-precision techniques such as
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the following. Concerning the global mechanics of the
solar system: radar ranging to the planets (with, e.g. , a
few meters accuracy for the Viking landers on Mars),
laser ranging to the Moon (few centimeters level), and the
timing of millisecond pulsars (sub-microsecond level).
Concerning the local environment of the Earth: the com-
parison, at the 100 nanosecond level, of stable atomic
clocks (via, for instance, the Global Positioning System)
and laser ranging to artificial satellites (such as LAGEOS,
at the 1-cm level). Concerning the fitting of the local
Earth environment to the global structure of the solar
system, and/or of the external universe at large, we have
in mind, in particular, the very long baseline inter-
ferometry technique, which determines baselines on the
surface of the Earth, and the position of the rotation
pole, with centimeter accuracy, the length of the day at
the few millisecond level, and relative angles between dis-
tant objects, as seen on the Earth, with a precision better
than a milliarcsecond. For an introduction to these tech-
niques, and a review of their impact on general relativity
see Soffel.

In order to match the high precision of this wealth of
(present and forseeable) data, one needs a corresponding-
ly accurate relativistic theory of celestial mechanics able
to describe both the global gravitational dynamics of a
system of N extended bodies, the local gravitational
structure of each, arbitrarily composed and shaped, ro-
tating deformable body, and the way each of these X lo-
cal structures meshes into the global one. The traditional
post-Newtonian approach to relativistic celestial mechan-
ics fails, for both conceptual and technical reasons, to
bring a satisfactory answer to this problem. This tradi-
tional post-Newtonian approach uses only one global
coordinate system x"=(ct,x,y, z), to describe an N body-
system, and models itself on the Newtonian approach to
celestial mechanics consisting of decomposing the prob-
lem into two subproblems [Tisserand' (Vol. I, pp. 51 —52);
Pock j: (i) the external problem, to determine the motion
of the centers of mass of the N bodies; (ii) the internal
problem, to determine the motion of each body around its
center of mass. However, the treatments of both sub-
problems in the traditional post-Newtonian approach are
unsatisfactory.

The external problem is attacked by introducing some
collective variable, say z'(t), i=1,2,3, generalizing the
Newtonian center of mass, i.e., describing the overall
motion of each body as seen in the global coordinate sys-
tem x". Then, one attempts to derive some (translation-
al) "equations of motion" for z'(t) by integrating over
each considered body the local law of balance of energy
and momentum, i.e., the covariant conservation of the
stress-energy tensor,

However, the various definitions of the position in the
global coordinate system of the center of mass z' used in
post-Newtonian investigations have never been quite
satisfactory, especially when considering rotating bodies.
Moreover, the final equations of motion for z'(t) contain
various other collective variables ("spin" and higher
"multipole moments") describing the gravitational struc-

ture of each body as seen in the global system x", which
are not related in a simple way to any physical "local"
multipole moments, defined, say, in an operational way
by the motion of artificial satellites around each body.

Concerning the treatment of the internal problem in
the usual post-Newtonian approach, it is even more un-
satisfactory for the following reasons. In Newtonian
celestial mechanics the introduction of nonrotating ac-
celerated "mass-centered frames" associated with each
body, i.e., of local coordinates

X'=x ' z'(t),— (1.2)

where i=1,2,3 and where z' denotes the global coordi-
nates of the center of mass, serves both a kinematical and
a dynamical purpose. The kinematical usefulness of the
local coordinates X' stems from the fact that they are
"corno ving" with the considered body, while their
dynamical usefulness comes from the fact that they
succeed in decoupling, to a large degree, the "internal"
from the "external" problem. Indeed, with respect to
these local frames X' the external gravitational field is
greatly "effaced" in the sense that the effective external
gravitational potential acting locally on the body and its
environment,

d2 1

Uefr(~i) Uext(zi+ g i) Uext(z&)
Gjt

(1.3)

is essentially reduced to tidal forces.
For a long time, the relativistic internal problem has

been given only little attention, and many authors work-
ing in the global post-Newtonian framework have, more
or less implicitly, assumed that the usual Newtonian for-
mula (1.2) was sufficient for defining a useful "mass-
centered frame" in Einsteinian gravity. In principle, this
view is admissible because the coordinate systems are ar-
bitrary in general relativity, and the definition (1.2) is as
kinematically useful as in Newtonian gravity. However,
the formula (1.2) does not define a dynamically useful
mass-centered frame in general relativity, in the sense
that it does not efface the external gravitational field
down to tidal effects but, instead, introduces in the
description of the internal dynamics of the body many
external "relativistic" effects proportional to the square
of the orbital velocity or the external gravitational poten-
tial. As discussed in Ref. 7 the latter effects come from
the fact that the external description (x"-coordinate rep-
resentation) of each body contains many "apparent defor-
mations" which are not intrinsic to the body (notably the
"Lorentz contraction, " linked with the orbital velocity,
and the "Einstein contraction, " linked with the external
gravitational potential).

As emphasized by Damour, those technical defects of
the usual global post-Newtonian approach are partly
rooted in, and certainly further enhanced by, the concep-
tual defect of surreptitiously introducing a kind of "neo-
Newtonian" interpretation of general relativity, by
which the global coordinates t—:x /c, (x,y, z):—(x '),
i=1,2,3 are implicitly identified with the absolute time
and absolute space of Newtonian theory. This implicit
conceptual reduction of Einstein's theory to the Procuste-
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an bed of Newton's framework is liable to cause technical
mistakes when one forgets the existence of the "apparent
deformations" alluded to above.

In recent years, several authors have tried to remedy
some of the defects of the traditional post-Newtonian ap-
proach to the N-body problem. For instance, Martin
et al. ' and Hellings" have tried, in an essentially heuris-
tic manner, to explicitly include the main apparent defor-
mations due to the use of an external coordinate repre-
sentation. A more ambitious approach consists of
defining a local comoving frame by using, not a kinemati-
cal criterion [like in Eq. (1.2)], but a dynamical one: i.e.,
to find a useful relativistic definition of an accelerated
frame of reference with respect to which the external
gravitational effects are strongly effaced. In the simple
case of negligibly self-gravitating test bodies moving in a
background gravitational field (e.g., an artificial satellite
around the Earth) such "external-gravitational-field-
effacing" frames are the well-known "locally inertial
frames" which can be explicitly constructed by means of
Fermi coordinates based on the center-of-mass world line
(see, e.g. , Synge, ' and Misner, Thorne and Wheeler' ).
In the more subtle case of (possibly strongly) self-
gravitating test bodies (i.e., of mass much smaller than
the masses of the other bodies) it has been argued as early
as 1921 by Weyl' that such frames should exist, and be
the locally inertial frames (or Fermi frames) of the "exter-
nal space-time" generated by the masses of the other bo-
dies only. Weyl' used this argument to conclude that
test bodies (even self-gravitating ones) follow geodesics of
the "external space-time. " This heuristic reasoning has
been later taken up, ' ' although it never became clear
what could be rigorously proven with its help (because of
the lack of mathematical control on the limiting process
which defines what one means by "test-body" and "exter-
nal universe").

Concerning nontest bodies (of mass comparable to the
masses of the other bodies), some authors (in particular
Bertotti' ) remarked that, at the first post-Newtonian ap-
proximation, the orbital motion, according to the
Lorentz-Droste-Einstein-Infeld-Hoffmann equations of
motion, ' of one self-gravitating body member of an N-

body system, could be interpreted as the motion of a test
body in some effective external gravitational field. This
remark, together with the previous results for test bodies,
suggested that it should be always possible to define good
"external-gravitational-field-effacing frames" around any
body A, abstracted from an N-body system, by construct-
ing some "locally inertial coordinate system" in some
"effective external gravitational field. " At the heuristic
level, such a construction has been more or less explicitly
assumed by many authors. ' ' " More explicit results
on such local external-field-effacing frames have been ob-
tained in the study of the motion of strongly self-
gravitating bodies (neutron stars or black holes), because
this was a problem where the standard only global-frame
approach was definitely inadequate to derive results need-
ed for astrophysical applications. In particular, D'Eath
and Damour, in their studies of binary systems of gravi-
tationally condensed bodies, have made an explicit use of
local external-field-effacing coordinate systems,

X =(cT,X') (one for each body), linked with the global
coordinate system x", covering the binary system, by
transformation formulas of the type (a=1,2,3)

x"(T,X') =z"(T)+e,"(T)X'+ O((X') )+ (1.4)

and have derived the constraints on the functions z "(T),
e,"(T), imposed by the requirement of a suitable
effacement in the X system. Other explicit results about
such good local frames were also obtained in the study of
weakly self-gravitating bodies, treated at the first post-
Newtonian approximation, notably through the introduc-
tion of "generalized Fermi coordinates" by Ashby and
Bertotti ' (see also Soffel et al. and the contributions
of Bertotti, of Boucher, of Fukushima, Fujimoto, Ki-
noshita, and Aoki, and of others in Kovalevsky and
Brumberg ).

More recently a notable progress in the theory of such
local relativistic frames (at the post-Newtonian approxi-
mation, relevant to systems of N weakly self-gravitating
bodies) has been achieved by Brumberg and Kopejkin in
a series of publications ' (see also Voinov ). Their
approach combines the usual post-Newtonian-type ex-
pansions with the multipole expansion formalisms for
internally generated, and externally generat-
ed, ' ' gravitational fields, and with asymptotic
matching techniques. ' We believe, however, that the
approach by Brumberg and Kopejkin has several draw-
backs: ad hoc assumptions about the structure of various
expansions (as, e.g. , in the coordinate transformation be-
tween global and local coordinates) are made, which are
only partially justified by some later consistency checks;
the scheme is confined to a particular model for the
matter (isentropic perfect fluid) and rigidly restricts itself
to considering only some special (harmonic) coordinate
system; moreover, their approach is basically incomplete
in that it neither describes the full multipole moment
structure of the bodies with post-Newtonian accuracy,
nor gets (translational or rotational) equations of motion
with full post-Newtonian accuracy.

B. Outline of the method used in this paper

In this paper, we introduce a new formalism for treat-
ing the general-relativistic celestial mechanics of systems
of N arbitrarily composed and shaped, weakly self-
gravitating, rotating, deformable bodies. This formalism
yields a complete description, at the first post-Newtonian
level, of the global dynamics of such N-body systems
("external problem" ), the local gravitational structure of
each body ("internal problem" ), and the way they fit to-
gether ("relativistic theory of reference systems"). This
new scheme successfully overcomes, in our opinion, the
problems encountered by previous approaches (notably
the one of Brumberg and Kopejkin ' ): only very gen-
eral assumptions are made for the structure of the for-
malism which is developed in a constructive way by prov-
ing a number of theorems; the structure of the stress-
energy tensor of the matter is left completely open; the
scheme is formulated in a certain "gauge-invariant" way
which leaves a convenient Aexibility in the choice of the
time gauge [at the order 6t =O(c )]; the scheme de-
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scribes with full post-Newtonian accuracy the gravita-
tional structure of each body by means of a set of mul-
tipole moments which are linked in an operational way to
what can be observed in the local gravitational environ-
ment of each body; finally, the scheme succeeds in getting
translational and rotational equations of motion with full
post-Newtonian accuracy, and inclusion of all multipole
moments, for the X-body system. Our approach does not
use any asymptotic matching technique but takes advan-
tage of two different recent progresses in the first post-
Newtonian approximation method: (i) linearization of
Einstein's field equations by means of certain "exponen-
tial parametrization" of the metric tensor (introduced by
Blanchet and Damour, ' and Blanchet, Damour, and
Schafer" ), and (ii) the definition, by Blanchet and
Damour ' (BD), of a set of post-Newtonian multipole
moments of an isolated body given as compact support
integrals of the stress-energy tensor of the matter. A
third basic element of the present approach is our way of
restricting (without fixing completely) the coordinate
freedom inherent to the theory of general relativity. We
do that not by imposing one of the two diQevential coor-
dinate conditions generally used in the post-Newtonian
literature (namely "harmonic gauge" versus "standard
post-Newtonian gauge") but by imposing, in all coordi-
nate systems, some algebraic conditions on the metric
coefficients, which can be written as (i,j= 1,2,3)

g00g, = —6, +O(1/c ) . (1.5)

This condition can be described by saying that the spatial
coordinates are "conformally Cartesian" or "isotropic. "
This condition encompasses both usual choices and is, at
once, more fiexible (for the time gauge) and more rigid
(for the space gauge) than either one of them. It plays an
important technical role in freezing down the spatial
coordinate freedom to a level which is nearly the usual
freedom in Newtonian celestial mechanics (arbitrary
choice of a time-dependent spatial origin and of a time-
dependent rotation matrix).

In this first paper we shall lay the foundations of our
formalism, with special emphasis on the definition and
properties of the X local reference systems adapted to the
description of each individual body, on the way these lo-
cal coordinate systems X~ (a=0, 1,2, 3; 2 = I, . . . , X)
mesh into the global ("common-view") coordinate system
x" (p=0, 1,2,3), and on the general structure and trans-
formation properties of the gravitational field, as seen in
the various reference frames. We shall also illustrate our
approach by treating in detail the simple case where each
body can, in some approximation, be considered as gen-
erating a locally spherically symmetric gravitational field
(monopole truncation). This will give us a new (and, in
our opinion, improved) derivation of the well-known
Lorentz-Droste -Einstein-Infeld-Hoffmann' equations of
motion.

In subsequent publications, we will tackle, by means of
our formalism, the external problem of the post-
Newtonian motion of X extended arbitrarily shaped bo-
dies, and give various applications of this formalism
(completing existing results).

Our presentation will go through the following main

steps. In Sec. II, we study the post-Newtonian theory of
reference systems. We first consider the constraints on a
general coordinate transformation x"=f"(X ), decom-
posed as

xi'(X )=z"(X )+e,"(X )X'+g"(X,X'),
with

(1.6a)

P=O((X') ), (1.6b)

coming from the requirement that the metric admits a
post-Newtonian expansion of the usual type,

h; =h005; (1.7b)

holds in both coordinate systems, this restricts very much
the elements z", e,", and P of the coordinate transforma-
tion, Eq. (1.6), and leaves essentially only the usual
Newtonian freedom of choosing an arbitrarily moving
origin [z'(t)] and a slowly changing SO(3) rotation matrix
(in e,').

In Sec. III, we show (after Refs. 41 and 42) how the use
of an exponential parametrization of the metric
coefficients,

g00= —exp( —2w/c ), g0; = —4w,. /c

g;, =5;,.exp(+2w/c ),
(1.8)

linearizes Einstein's field equations. We work within a
class of "spatially conformally Cartesian" coordinates
(which encompasses the two usual choices: harmonic
coordinates and "standard post-Newtonian gauge")
defined by the condition (1.7b) and show that this leaves
open a certain gauge freedom for the "four-potential"
a„=(cw, —4w; ), formally identical to the one of
Maxwe11's theory:

1
B]k

C

1
w =w. + 8 A,I E 4 I

(1.9a)

(1.9b)

By analogy to Maxwell's theory we then introduce some
gauge-invariant gravitoelectric and gravitomagnetic
fields. In Sec. IV, we study the transformation properties
of the gravitational potentials (w, w, ) under a coordinate
transformation (1.6). If a certain body 3 is considered
we uniquely split the global potentials w„ into a self-part
and an external part, where the self-part describes the
gravitational action of body 3 itself while the external
part originates from all other bodies different from A. A
similar split is introduced for the potentials 8 seen in
the local frame of body A. The transformation laws of
the various self- and external potentials are given in expli-
cit form. In Sec. V we present the general formulation of
our method. In Sec. VI the self-potentials of some body
in the corresponding local frame are expanded in terms of

h00=O(c ) h0;:O(c ) h =O(c ) (17a)

in both coordinate systems. We then show that if we fur-
ther demand that the spatial coordinates be "conformally
Cartesian" (or "isotropic"), i.e., that
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post-Newtonian mass (ML ) and spin (SL ) multipole mo-
ments (BD moments). The external (tidal) potentials are
expanded in terms of electriclike (GL ) and magneticlike
(HL ) post-Newtonian tidal moments. Finally, in Sec. VII
the general structure of the post-Newtonian global equa-
tions of motion for a system of X gravitationally interact-
ing bodies with arbitrary mass- and spin-multipole mo-
ments is given. As a simple application a new improved
derivation of the well known Lorentz-Droste-Einstein-
Infeld-Hoffmann equations of motion for "spherical bo-
dies without spin" is presented.

II. POST-NEWTONIAN THEORY OF REFERENCE
SYSTEMS

A. Notation, conventions, and terminology

We use the signature —+++; spacetime indices go
from 0 to 3 and are denoted by greek indices, while space
indices (1 to 3) are denoted by latin indices. We use
Einstein s summation convention for both types of in-
dices, whatever be the position of repeated indices. The
fiat metric is denoted by f, with components
diag( —1,+ 1,+ 1,+ 1) in Lorentzian coordinates. The ab
solute value of the determinant of a covariant metric g„
is denoted by g = —detg„. Our curvature conventions
are those of Misner, Thorne, and Wheeler. ' Parentheses
denote symmetrization, e.g. ,

T(, )
———,'(T; +"T;) . .

As usual G denotes Newton's gravitational constant and c
the velocity of light (we do not use units where G =c=1).
In post-Newtonian expansions we shall sometimes abbre-
viate the order symbol O(c ") simply by O(n). As we
shall consider %+1 different coordinate systems we shall
consistently use the following conventions: The N bodies
will be labeled by upper case latin indices
A, B,C = 1, . . . , N. This body-labeling index will
indifferently appear as subscript or superscript according
to the positions of other possible tensor indices. The
"global" (or "common view") coordinates used for
describing the overall dynamics of the N-body system will
be denoted by (x")=(ct,x') with spacetime indices taken
from the second part of the greek alphabet ()M, v, A, )

and space indices from the second part of the latin alpha-
bet (i,j,k, . . . ). The corresponding global metric is

g„,(x ), and we shall try to use systematically lower case
latin letters to denote quantities belonging to this global
frame. By contrast, each of the N "local" coordinate sys-
tems, used for describing the internal dynamics of each
body, will be denoted by (X„)—:(cT„,X'„) with space-
time indices taken from the first part of the greek alpha-
bet (a,P, y, . . . ) and space indices from the first part of
the latin alphabet (a, b, c, . . . ). The corresponding local
metric is G &(Xr) (where we shall often omit the body la-

bel A if it is clear from the context), and we shall try to
systematically use upper case latin letters for quantities
belonging to a local frame.

When dealing with sequences of spatial indices we shall
use the condensed notation introduced by Blanchet and
Damour: a spatial multi-index containing l indices is

simply denoted L (and K for k indices etc.), i.e.,
L =—i&i2 .

i& if it belongs to the global system, and
L—:a, az a&, if it belongs to a local one (we shall use
this notation only for space indices, not for spacetime
ones). When several multi-indices appear simultaneously,
different carrier letters (or primes) must be used. When
needed we also use L —1:—i, i2 - . iI, . A multisumma-
tion is always understood for repeated multi-indices

SLTI= g S; . . . ;T;
1 I

Given a spatial vector u, its Ith tensorial power is denot-
I1 l2 lI

ed by v =v 'v ' v '. Also, BL=8; . 8;. The sym-
1 I

metric and trace-free (STF) part of a spatial tensor will be
denoted by angular brackets (or by a caret when no ambi-
guity arises)

STF; . . . ;(T; . . . ;)—:T(; . . . ;&—= TL

I
[1~2)

g a„5(;; . 5;
k=0

XS
2k+1 I j1jl jk jk

where

SL, = T(L)

is the symmetric part of T,
1 I

I
( )k

l! (2l —2k —1)!!
(l —2k)! (2l —1)!!(2k)!!

and where [l/2] denotes the integer part of l/2, 5;J. the
Kronecker symbol, and the double factorial sign means
p!!:—p (p —2) (2 or 1) (we shall denote the Levi-Civita
alternating symbol by e;j&, with e)$3 + 1). For instance,

Tij = T(ij) 35ij Tss

T;,) =T(,)) ,'[~;J T(),„)+—&,7—T(;,.)+b),;T(p, ) ) .

Note that we shall freely lower or raise spatial indices by
means of the Kronecker symbol ("fiat Euclidean
metric"). For more details about the algebra of STF
Cartesian tensors see Thorne and Appendix A of Blan-
chet and Damour.

Finally, we wish to clarify some points of terminology
which have caused a lot of confusion in the relativistic
literature on "reference frames. " All over this paper, we
will use interchangeably the expressions "coordinate sys-
tems, " "reference systems, "or "reference frames" and we
shall always mean by these expressions what mathemati-
cians call a "(coordinate) chart, " i.e., a map from an open
subset of a four-dimensional differentiable manifold onto
an open subset of R, or, in simpler terms, a continuous
labeling of spacetime points by quadruplets of real num-
bers. Even when we speak of "local frames" we mean
some (local) coordinate chart, and never only of a vectori-
al basis of the tangent space at some point. Also, we shall
never introduce "moving frames" ("reperes mobiles") in
the sense of Cartan, i.e., four-dimensional fields of ortho-
normalized vectorial bases (also called "tetrad fields, " or
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"vierbeins"). We think that what is needed for applica-
tions of general relativity in 1V-body systems is always,
and only, the clear definition of various spacetime charts
(one global chart covering the whole system, plus N more
local charts covering in better details what happens in
some spacetime "tube" containing one of the bodies) to-
gether with the explicit expression of the metric
coeKcients in each chart.

x"=f i~ (X„,X„',X„,X„) .

Let us define

(2.4)

tube" which contains all the N local tubes
A = 1, . . . , N, but, to simplify the language, we shall con-
sider x" as covering all V4. Let us now consider each of
the 1V coordinate transformations from local to global
coordinates:

z"„(S)=f"„(S,O, O, O), (2.5a)
B. z-e-g decomposition of a general coordinate transformation

X„(P(S)) =(S,O, O, O), (2.1)

Let us be given a four-dimensional smooth
differentiable (abstract) manifold V4, endowed with N
(abstract) world lines X„(A = 1, . . . , N). Let T~ C V&

(a topological "tube") be some open neighborhood of the
line X~. Let us say that a coordinate chart X„(from the
atlas of V4) is adapted to the world line X„ if it is a map
from (the abstract tube) 7 „ into E which sends the
world line X z onto the "time axis" of E, i.e. , the set of
quadruplets (S,O,O,O) with S HE. When such an adapted
chart is given it endows the line X„with the following
(abstract) structures.

(i) A parametrization of Xz by means of the real pa-
rameter S such that

Qf IJ

e~, (s) —= (S,O, O, O),=
ax,' (2.5b)

a ~

p, (s,x; ) =f„"(s,x„') f,"(s,o—) x„' "—(s,o) .
ax~

e,"(S)= =e"„,(S)a a
aX 4 ax" (2.6a)

(2.5c)

It is easily seen that zz~(S) is nothing but the x"-
coordinate representation of the abstract S-parametrized
world line X z [as defined by Eq. (2.1)], while e~z, (S) are
just the x" components of the three abstract vectors
e, (S) defined by Eq. (2.2). Indeed,

for some point P HX „.
(ii) A one-parameter family of vectorial bases e "(S)

along Xz, defined as

while

eo (S)= =e„"o(S)= a = a
(2.6b)

e "(S)= a

aXg P(s) EE ~

(2.2) tells us that

dz"„(S)
ceo(S)= (2.7)

With this notation, the coordinate transformation (2.4)
reads

(by "vectorial basis" we mean here only a basis of the
tangent space to V4 at P, i.e., a set of four linearly in-
dependent vectors). This vectorial basis is adapted to X ~
in the sense that its first vector

= a
eo (S)=

P(S)
(2.3)

is the tangent vector to the parametrized line X.„.Note
that all the structures that we are discussing here are
defined on a differentiable manifold V4 independently of
any (pseudo-) Riemannian metric. This is why we do not
call the vectorial basis e a "tetrad, " as this terminology
usually conveys the meaning of a vectorial basis ortho-
normalized with respect to some given metric. It is only
at a much later stage in the development of our formal-
ism that it will turn out to be convenient (though not
strictly necessary) to orthonormalize the vectorial basis
e with respect to a particular metric (which will not be
the real spacetime metric). Note, also, that we prefer not
to use the words "vectorial frame" as the word "frame"
has been overused in general relativity, and we wish to
reserve the word "frame" to allude to a coordinate chart.

Let us now assume that, in addition to the local coordi-
nate chart X„,one is also given a global coordinate chart
x" with a domain all over the manifold V4. Actually, we
need only the domain of x" to consist of a "big spacetime

x "(X )=z"(X )+e,"(X )X'+P(x,x'), (2.8a)

P(x,x')=O((X') ) as X'~0 with fixed X (2.8b)

By a slight abuse of notation we shall often in the follow-
ing write z"(X )=z"(T), etc. when using T—:X Ic as
time coordinate. The Jacobian matrix of the coordinate
transformation (2.4), i.e.,

reads (X =cT)

ax~(Xf')
ax (2.9)

de,"(T) 1 ggv
& ~o(x~) =e~o( T)+ X'+-

cdT c aT

A,"(X~)=e,"(T)+ a/'p

ax'

(2.10a)

(2.10b)

where we have omitted the labeling index 3, and where
we know [from the definition (2.5c), remembering that
coordinate transformations in the atlas of a smooth
differentiable manifold are by definition smooth in their
variables] that
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Note that, because of our normalization for the parame-
ter S ( =cT taken along X ~ ), and because of Eq. (2.7) the
first term on the right-hand side of Eq. (2.10a) reads ex-
plicitly

sorial law of transformations of the metric components

G p= 2 "3pg„

)
dz"( T)

cdT
(2.10c)

it is easy to verify that a necessary and sufhcient condi-
tion for the compatibility of these two sets of assumptions
is that [with the notation (2.14c)]

C. Constraints on z, e, and g' from
post-Newtonian assumptions f„&"&

p f p
—=0 (2, 3, 2) . (2.15)

g„,(x )=f„+h„(t,x'),
G "p(X~ ) =f p+ H "t3( T,X')

(2.11a)

(2.11b)

Up to now we have not introduced any metric struc-
ture in our four-dimensional manifold V4. Let us now as-
sume that we are given a "post-Newtonian (PN-) type
metric, " i.e., a one-parameter sequence of metrices (with
parameter e= 1/c, the inverse velocity of light), which,
when e= 1/c —&0, deviates, in some coordinate system,
from a flat (Minkowskian) metric only by terms of order
1/e in the time-time and space-space components and of
order 1/e in the mixed time-space components. If we
define a metric deviation h in each one of our X+1 coor-
dinate systems by

Note that any mention of the metric coeKcients has
disappeared from (2.15), which is just a constraint on the
mathematical structure of the coordinate transformation
x "=f"(X').

Inserting now in Eq. (2.15) the expressions (2.10) for
the Jacobian matrix, we get constraints on z", e", and P.
A straightforward study of these constraints allows one
to prove our first useful theorem.

Theorem 1. Under the (weak) assumption that g' ad
mits some c depen-dent order when c '~0/i e , is. 0. (f(c) )

for some function f(c)g, the post Newtonia-n assumptions
(2 12) and (2 13) are compatible if and only if the
z —e —g elements of each coordinate transformation (la-
bel A omitted) satisfy

[where f denotes the same numerical matrix,
diag( —1,+ 1,+ 1,+ 1), in each chart], we are requesting
the following assumptions to hold.

PX assumptions for the metric:

hoo(t, x)=0(c ), ho, (t, x)=0(c '),
h;, (t, x)=0(c );
Hoo(T, X)= 0(c ), H(), ( T, X)=0 (c ),
H, b(T, X)=0(c ) .

(2.12)

We shall also assume that the coordinate transformation
between x" and each of the local X~'s involves only
"slow motions" in the following (weak) sense.

Slow motion assumptions for the X local reference sys
tems. Each Jacobian matrix (2.9) satisfies

dz' Teo(T)—: =1+0(2),
c dT

d T
e, (T)=—e,'(T) +0(3),

1 dz'(T)

5, e,'( T)e]( T)=o,I, +0 (2),
de,'( T) =0(2),

g =0(3),
P=O(2),

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

(2.16f)

(2.16g)

=0(c ), A' =0(c '),
3, =0(c '), A,'=0(c ) .

(2.13)

In order to simplify the writing we shall sometimes use
the notation

O(n)=—0(c ") (2.14a)

a„=O(p,q) ao=0(c ~), a; =0(c ), (2.14b)

B ti=O(p, q, r) Boo=0(c ~),

Bo =0(c q), B b =0(c ") . (2.14c)

Combining the assumptions (2.12), (2.13) with the ten-

[which is however, dangerous when n =0 where it gives
0 (0)—= 0(1)]. Moreover we shall introduce "mul-
tivalued" 0 symbols for vectorial and tensorial space-
time quantities by the definitions

where we have included for completeness the exact relation
(2.10c).

Some comments can be made on the interpretation of
the results (2.16). Roughly speaking, they show that the
knowledge of the parametrized world line Xz, i.e., of
z "(S) (with S=cT), and of the 3 X3—time-dependent ma-
trix e,'(S) determines the other components of the vec-
torial basis e"(S). In turn, the 3X3 matrix e,'(S) differs
only by 0 (1/c ) terms from a slowly changing Euclidean
rotation matrix (the time scale for the change tending to
infinity like c+ ). Moreover, Eq. (2.16f) shows also that
the effect of the g term on the global coordinate time
t =x /c is 0 (P/c) =0 (c ), i.e., of second post-
Newtonian order, so that it will not affect any observable
quantity at the first post-Newtonian approximation.
The only crucial quantity at the first post-Newtonian ap-
proximation which is left totally unconstrained by the re-
sults (2.16) is the g' term, i.e., the effect of the ( term on
the spatial coordinates x', which is 0 (g') =0 (c ).
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D. Constraints on z, e, and g from the nse of
conformally Cartesian spatial coordinates

We just saw that the general post-Newtonian assump-
tions leave completely unspecified the spatial coordinates
at the 0(1/c ) level. To deal with this problem many
authors impose four local gauge conditions that intend to
fix completely the coordinate freedom. The two usual
choices are the "harmonic conditions"

&r y"=g—" (2.22a)

which a direct calculation shows to be equivalent to

7 1J g00gl J gOl gOJ (2.22b)

nate system we are using) a three-dimensional (post-
Newtonian) metric, say y,j [from which one can compute
its 3X3 determinant y—=det(y;J )], by

f" B„g —
—,'8 g„=O (5,4),

or the "standard post-Newtonian gauge" ones:

(2.17)
Note that, in the absence of a preferred 3+1 split of the
spacetime, the three-metric y;. depends upon the coordi-
nate system x p we started with. It is then clear that

a,g„——,'a~,, =0 (5),

B,g,, —
—,'B, (g,, —g )=0(4) .

(2.18a)

(2.18b)
=y[ R'~(y) —

—,
' R (y)y'J]+0(1/c ), (2.23)

We find, however, that the use of such gauge conditions
is inconvenient for two seemingly contradictory reasons:
(i) the use of four gauge conditions is too restrictiue be-
cause it constrains also the choice of the time coordinate
at the 0 (c ) level, while we shall find it very convenient
to use a certain "gauge invariance" associated to the
0 (c ) fiexibility in the time coordinate; (ii) the use of lo-
caI gauge conditions is not restrictive enough because
when using it in one of the local coordinate domains it
does not fix completely the choice of the three space
coordinates [indeed, the conditions (2.17) or (2.18) fix the
coordinate gauge only if some global boundary conditions
are further imposed].

Instead of using four local differential conditions such
as Eq. (2.17) or (2.18), we shall impose algebraic condi
tions on the structure of the metric coefficients that will
conveniently fix the spatial gauge while leaving a useful
fiexibility in the time gauge at 0 (c ). To see why such
algebraic conditions can be imposed and play a preferred
role in post-Newtonian general relativity, let us anticipate
on the following sections, and consider the Einstein field
equations.

If we introduce, in any coordinate system, the contra-
variant metric density ("gothic metric"; with
g—:—detg„)

g" —=&g g"', (2.19)

the Einstein tensor can, as was emphasized by Landau
and Lifshitz, be expressed as

where the presuperscripts 4 and 3 remind us that the Ein-
stein tensor on the left-hand side is four-dimensional,
while the one on the right hand side is three-dimensional.
It is now sufficient to remark that the Einstein field equa-
tions

4g pv 1 4g pv Tpv
4c

(2.24)

TPv 0( +2 +1 0) (2.25)

imply that the left hand side of Eq. (2.23) is of 0(1/c ).
We therefore conclude that if g„ is a post-Newtonian
solution of Einstein s equations, its associated three-
metric y; has a Ricci tensor of second post-Newtonian
order:

R,i(y)=0(c ) . (2.26)

But, in three dimensions the Ricci tensor is algebraically
equivalent to the full Riemann-Christoff'el (curvature)
tensor; therefore, Eq. (2.26) means that the three-metric

y;1 is flat to second post-Newtonian order. It is then
clear that, among all coordinate systems where the post-
Newtonian assumptions hold, there is a preferred sub-
class of coordinate charts, namely those for which the
spatial coordinates are Cartesian coordinates for the
metric y;. , i.e.,

y, =5; +0(4) . (2.27)

together with the usual post ¹wtonian -assumptions for
the matter, i.e.,

2g R" 'Rg"—:8 (g—~"—g —g" g" )+Q" (&g)

(2.20)

where Q" is a quadratic form in the first derivatives of g
with coefficients rational in g. Under the post-Newtonian
assumptions (2.12) for the metric, it is easy to verify that
(2.20) yields, for the spatial components (pv) =(ij ),

2g(R' —
—,'Rg'' )=B [g' g" —g'"g ]+0(1/c ), (2.21)

where the summation indices k, l run only over 1 —3. Let
us now remark that the structure (2.20) is valid in all di-
mensions, and in particular for a three-dimensional
Riemannian manifold, and let us define (in each coordi-

In terms of the metric coefficients g„, this preferred sub-
class is defined equivalently by

g"=5'~+ 0 (4 ),
goog . +go go =5 . +0 (4)

(2.28a)

(2.28b)

—
goog;J =5; +0 (4),

VA, —GOOG, ~ =5,q+0(4) .
(2.29)

When we need to name the coordinates selected by Eqs.

As go; =0(3) by the post-Newtonian assumptions (2.12),
we see that we can impose, in all coordinate systems, the
spatial isotropy condi tions
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f„A,"Ab =(2+f„A~()AO)5,b+O(4) . (2.30)

Note that the metric coefficients have disappeared from
Eq. (2.30), which is just a constraint on the mathematical
structure of the coordinate transformation x"=f"(X ).
In other words we are left with the following purely
mathematical question: find in Minkowski spacetime
(f„) the three-parameter families of world lines X
[x"=f~(S,X') for fixed X'] for which the projected spa-
tial metric is (strongly) isotropic.

Inserting in Eq. (2.30) the expressions (2.10) for the
Jacobian matrix, we get constraints on z", e,", and P.
As, by definition, P' is at least quadratic in X' when
X ~0, we can split these constraints in two sets. First,
we get constraints concerning e,", which can be written
simply as

(2.29), we shall say either that the spatial coordinates are
"conformally Cartesian" or that they are "isotropic" (a
more precise but somewhat barbarian terminology would
be from Eq. (2.28a): "gothically Cartesian" ). Note that
we shall always use the precise isotropy conditions (2.29),
and not weaker conditions, requesting only that g; be
proportional to 5;J without specifying the conformal fac-
tor. The latter "weak isotropy" condition leads to a
larger class of spatial coordinates which can differ from
that of the smaller class (2.29) by arbitrary conformal
transformations of Euclidean space. But such more gen-
eral spatial coordinates do not share all the nice proper-
ties of the (strongly) isotropic coordinates (2.29) with
respect to the Einstein equations that will play an impor-
tant role in our method.

The definition (2.29) [or (2.27)] ensures the complete
fixing of the spatial coordinate grid up to time-dependent
isometrics of Euclidean three-space (that satisfy the
slow-motion assumption (2.13)). More precisely, we can
now pursue the work of the last section and study the
constraints on z", e,", and P' brought about by the condi-
tions (2.29). Using the tensorial law of transformation of
the matrix components, and the post-Newtonian assump-
tions of the previous subsection, it is easy to verify that
the spatial isotropy conditions are satisfied if and only if

aX' BX" ( A, X')5b, +O(1/c") .
C

(2.34)

Equation (2.34) means that ='(X ) is [mod O(4)] a confor
ma/ Killing uector of Euclidean three-space. Now, it is
well known that there are ten independent such vector
fields: six of them being the Euclidean Killing vectors,
i.e., the translations and rotations (='=C, +A(,b)X ),
one being the dilation (or scaling; ='=X'), and
the remaining three being the "inverted translations" [or
proper conformal transformations; ='=B 'X
—2(B X)X']. Now, =' is, by definition (2.32) with (2.5c),
at least quadratic in X'. Therefore, =' is a pure "invert-
ed translation" uniquely determined by Eq. (2.34) to be

[—,'A, X —X'( A.X)]+O(l/c ),
C

(2.35a)

where we are using the usual Euclidean three-space vec-
tor notation

X =6,bX'X, A.X= A, X' . (2.35b)

eo(T) =c 'z =1+0(2),
eo(T) —=c 'i ',
e, (T)=c 'e,'z '+0 (3),

eo(T)e,'(T)= 1+
2

v
1

2c

(2.36a)

(2.36b)

(2.36c)

As for Eq. (2.31), it shows (using eo =dz'/c dT) that the
3X3 matrix e,' is, modulo O(4), proportional to the
space-space part of a general Lorentz transformation (i.e.,
a boost combined with an arbitrary rotation matrix).
Putting together our results so far we get the following.

Theorem 2. The post Newtonian -assumptions (2.l2)
and (2.13), and the (strong) spatial isotropy conditions
(2.29) imply the following (nearly complete) determination
of the z-e-g elements of each coordinate transformation
(label A omitted): all quantities along the world line
X(x"=z"(T)) being parametrized by T=S/c, and using
the notation dF ( T)/dT =F, we have

f (eo, eo)f (e„eb ) = —&,t, +O (4),
where

f (U, v)=f QPQ

(2.31)

X 5'J+ v'vi Ri(T)+O(4),1

2 2

( (T,X)=O(3),

(2.36d)

(2.36e)

g'—=e,'=',
and an "acceleration three-vector" A, by

(2.32)

Z
A, =f„e," de (2.33)

where c d 2= f„dz"dz is the Minkow—skian proper
time along the world line X. With this notation the
O(X) constraints that we get read

denotes the "fiat" (Minkowskian) scalar product.
Second, using the results of the previous sub-section, we
get constraints on g' (i=1,2,3). More precisely, let us
define three components =' by

g'(T, X)= e'(T)[ —,
' A, X —X ( A X)]+0(4), (2.36f)=1

C

R,'R, =6', R,'Rb =5,b

dR,' =O(2)

(2.36g)

(2.36h)

The three-velocity appearing in the "boost matrix"
b; =5'~+v'v J/2c~ of E.q. (2.36d) needs only to be defined
at Newtonian order, so that v'=dz'/dt =dz'/dT+O(2)
suffices. The same is true of the three-acceleration ap-

where R,'(T) is a slowly changing rotation matrix of Eu
clidean three-space:
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x"(I ) =z "(T) +e,"(T) Y'+ g",
where

(2.37)

Y'( T,X)—:I'+:-'

pearing in Eq. (2.36f) that we have defined by Eq. (2.33),
and which could be simply A, =e,'d z'Idt +0 (2).

In other words we see that our assumptions of post-
Newtonian, slow-motion, spatially isotropic coordinates
completely determines, at the first post-Newtonian level,
the coordinate transformation (2.8) modulo the
knowledge (for each local system) of (i) the "central world
line" z&(S) endowed with a post-Newtonian parametriza-
tion T=S/c, (ii) the slow [0( c ) ] time dependence of
the rotation matrix R,'(T), and (iii) the second post-
Newtonian time transformation 5t =c 'g =0(c ) [the
arbitrary c part of e, will never play any role at the
first post-Newtonian (1PN) level, and will be fixed for
convenience later].

Finally, let us note that our basic z-e-g transformation
formula (2.8) can alternatively be written in the z-e-il
form

to solve explicitly for g„(in some adequate coordinate
systems) at the first post-Newtonian (1PN) level, i.e., up
to errors [using the notation (2.14)]

5g„=O(6,5,4) . (3.2)

However, the literature on the 1PN approximation to
general relativity is full of errors and unnecessary compli-
cations. We shall present here what we think is the op-
timal formulation of Einstein's field equations at the 1PN
level. The two basic ingredients of this formulation are (i)
the use of a convenient parametrization of the ten metric
components by means of a scalar w, a three-vector w;,
and a three-tensor y„, and (ii) the systematic use of the
contravariant components of the stress-energy tensor
without restricting oneself to a particular matter model
(like a perfect-fluid model). The (best-motivated)
definition of the three-tensor y," has already been intro-
duced in Eqs. (2.22) of the previous section. Working
consistently at the 1PN level [i.e., modulo errors given by
Eq. (3.2)] we shall directly introduce our w-y parametriz-
ation by the representation

and where

I=X'+ [—,
' A, X —X'( A X)],

C
(2.38) go()

= —exp — w
C

(3.3a)

(3.3b)

i) =0(3), i)'=0(4) (2.39)

is a post-post-Newtonian order "remainder. " Equation
(2.37) suggests that the use of Y:(cT, Y') a—s local coor-
dinates could be advantageous. And indeed, we shall
several times below use Y as intermediate quantities;
however, their systematic use would spoil the simple
structure of the post-Newtonian gravitational field that
we shall study in the next section (one might however no-
tice that, because of the fact that =' is a conformal Kil-
ling three-vector, the spatial metric in the Y' coordinates
is still isotropic, or conformally Cartesian, but only in a
weak sense, the conformal factor differing from goo' by
acceleration eft'ects).

III. POST-NEWTONIAN METRIC

2
g)~ =Q,~exp +

2
w

C

from which follows

&g =&y exp + tU +0(4),
C

2

2
g = —exp + w +0(6),

C
2

g '= — w'+0(5),
C

2
g '~ =y'~exp — w +0 (4),

C2

(3.3c)

(3.4)

(3.5a)

(3.5b)

(3.5c)

A. Linearization of 1PN 6eld equations
by means of a suitable parametrization

The Einstein field equations

R" = (T" 'g"'g T~ )——8m.G

C
4 2 PO (3.1)

constitute a complicated system of nonlinear partial
differential equations relating the ten components g„of
the metric tensor (in any coordinate system) to the ten
components of the stress-energy tensor T" (in the same
system). This system simplifies very much if we assume
that the gravitational field is everywhere weak and slowly
changing [PN assumptions for the metric (2.12)] and, cor-
respondingly, that the material source is nonrelativistic
[PN assumptions for the matter (2.25)]. It has been no-
ticed as early as 1916 by Droste that it was then possible

where y'~ denotes the inverse matrix of y, , y its deter-
minant, and w':—y'Jw .

Einstein's equations (3.1) now give (coupled) equations
for w, w;, and y; . . As anticipated in the previous section,
six of the Einstein equations yield Eq. (2.26), which
means that the three-metric y," is plat modulo 0(4) terms.
Without loss of generality we can always fix the spatial
coordinate grid by the condition that

y;J=6; +0(4) . (3.6)

As discussed in the last section we shall use such "confor-
mally Cartesian" spatial coordinates in each reference
system under consideration.

The four remaining Einstein equations give four equa-
tions for w and w, . As recently found by Blanchet and
Darnour ' and Blanchet, Damour, and Schafer, the
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great advantage of the "exponential parametrization" in
terms of (w, w;) is that it linearizes the 1PN field equa-
tions. Indeed, we find

c—R = i5, w + 3800w + —
Bo, w, +0 ( 4 ), (3.7a)

3

R '=bw, t);—
~. w~

—ciao;w+0(2), (3.7b)

where 5=—8,, is the ordinary Laplacian defined with
respect to the coordinate system used [in general it would
be y'D;D with D; being the spatial covariant derivative
associated with y;J, similarly for the other spatial gra-
dients in Eqs. (3.7)]. As for the "source terms" in Ein-
stein equations (3.1) they turn out to be very simply ex-
pressed in terms of the contravariant components of the
stress-energy tensor: namely,

T —,'g g—Tt' = ,'(T +—T")[1+0(4)],
Toi i g 0lg TPcr Toi[ 1 +0 ( 2 ) ]

(3.8a)

(3.8b)

where we recall that we are using the PN assumptions
(2.25) for the matter which imply that the T" term in Eq.
(3.8a) is already a 0(c ) fractional correction to T
We then follow Ref. 41 in defining an "active gravitation-
al mass density"

—
2( Too+ Tss) (3.9a)

and an "active mass current density"

~l c 1+ol (3.9b)

o =c &g ( —To+ T,')[1+0(4)] . (3.10)

One recognizes in the right-hand side of Eq. (3.10) the in-

tegrand of the Tolman mass formula valid for exactly sta-
tionary isolated systems. In summary, with the nota-
tion just introduced, the 1PN approximation consists of
four linear partial differential equations that read
(a, =ca,—=anat)

(where the adjective "active" refers to the role of these
quantities as "sources" of the gravitational field). The
powers of c introduced in Eqs. (3.9) ensures that both
quantities have a nonzero limit when c ~0. The post-
Newtonian literature has been plagued by the use of ill-
chosen "mass densities" (confusingly denoted p) to play
the role of the basic Newtonian mass density. By con-
trast, we shall show how our systematic use of o., Eq.
(3.9a), as a basic mass density drastically simplifies, at
once, the field equations, the expression of the metric,
and the transformation laws of w when changing the
coordinate system. For the time being we shall only note
the fact that, through 1PN accuracy, we can also express
o in terms of the mixed components of the stress-energy
tensor:

m'=m— 1

l8] =Mt. + 48]k

(3.12a)

(3.12b)

where A(x") is an arbitrary (differentiable) function. This
(approximate) gauge invariance is connected with the fact
that the left-hand sides of Eqs. (3.11) satisfy an approxi-
mate divergence identity, which in turn, implies that o."
must be approximately divergence-free:

i3,a+8;o'=0(2) .

This linear "gauge invariance" is similar to the one in
Maxwell's theory. The similarity would look closer at
the field level (though not at the source level) if we had
introduced the "gravitational four potential"

a„—= (ao, a; ) =—(cw, —4w; ),
for which

(3.13a)

a„'=a„—B„A, .

However, the use of a; =——4m; =—c go, instead of m, as a
"vector potential" has as many disadvantages as advan-

tages, so we shall often work directly with w„:—(w, w,. ).
The gauge invariance (3.12) corresponds to a shift of the
time variable

5t =c X(x"), (3.14)

which is the only remaining freedom in each of our coor-
dinate systems after having chosen the central world line,
a rotation matrix R,'(T), and having imposed the use of
conformally Cartesian spatial coordinates. Note that the
0(4) shift (3.14) affects none of the physical quantities at
the 1PN level (because it corresponds to a 2PN change in
the equations of motion). It affects, however, the explicit
expressions of the goo and go, metric coeScients. The
usual way in the post-Newtonian literature to deal with
this gauge freedom is to try to get rid of it by imposing
some local "gauge condition. " The two most used coor-
dinate conditions are the "harmonic" one and the "stan-
dard PN" one.

Let us first note that a consequence of our (strong) spa-
tial isotropy conditions (2.29) is easily seen to be that

C3 x'=0(4),
where

(3.15)

a„(&g g"a, ) (3.16)

B. Gauge invariance of 1PN field equations

One checks directly that if wz =(w, w;) is a solution of
Eqs. (3.11) with some given source terms cr"=(cr,o''), so
is w„'=(w', w ) (modulo post-Newtonian error terms)
with

b w + 8, w + 8, i3; w; = 4' Go +0 (4)—,3 2 4
l

b, w; —B,.jwj —B,B;w = 4~Go'+0(2) . —

(3.11a)

(3.11b)

denotes the covariant d'Alembertian acting on scalar
functions. In other words our isotropy conditions (2.29)
imply that the three spatial coordinates are "harmonic"
modulo O(4). Equation (3.15) is in fact required both by
the users of the whole-harmonic gauge, and of the stan-
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dard PN gauge [as can be seen by comparing the A, =i
case of Eq. (2.17) with the second Eq. (2.18)]. Note, how-
ever, that the converse is not true because the local par-
tial differential equations (3.15) [or (2.18b)] can never ful-

ly fix a local coordinate grid. Concerning the constrain-
ing of the time gauge the condition that the time coordi-
nate be "harmonic" reads

V' Xb = +48, e —16~Go +0 (2) . (3.22d)

e= 4'—G Vo+ B,a +0(4),4
e2 ' (3.23a)

From Eqs. (3.22) we can also deduce the gauge-invariant
second-order equations

0= x = —
3 (B,w+8;w;)+0(5),4

c

leading to

(3.17a)
bb=+ 16~6V X tr+0 (2) . (3.23b)

The "gravitoelectric" and "gravitomagnetic" e and b
fields will play a useful role in our formalism.

B,tv+8;w; =0 (2) (3.17b)

[which can also be read off the A, =O case of Eq. (2.17)].
The field equations (3.11) then reduce to

47rG—o +0 (4),1 0 w

e Bt

htU;= 4vrGo'—+0(2) .

(3.18a)

(3.18b)

On the other hand, if we constrain the time gauge by
means of the standard PN gauge condition, i.e., Eq.
(2.18b) or

38,w +48;tc; =0 (2), (3.19)

the field equations read

bw = 4~Go+0—(4),
Aw, —

—,'B,B, w = 4rrGo'+0—(2) .

(3.20a)

(3.20b)

As we said above, the usual post-Newtonian practice is to
choose from the start one of the two gauges: "harmon-
ic,"Eqs. (3.18), or "standard PN, "Eqs. (3.20). However,
part of the flexibility and convenience of the new ap-
proach that we propose in this paper is in fact not to
choose between (3.18) and (3.20) but to keep always the
gauge invariance (3.12) [when we need, however, to fix
ideas by using a reference gauge we shall use the harmon-
ic one (3.17)]. By analogy with the electromagnetic case,
we are then naturally led to introduce some gauge-
invariant "electriclike" and "magneticlike" field quanti-
ties. To every m„=—(w, w;), or rather, a&=(cto, —4w;),
we associate

C. Structure of the PN metric
in the global coordinate system

Let us consider a chunk of the universe made of a finite
number of gravitationally interacting spatially compact
bodies (e.g. , the solar system). Let us describe this entire
X-body system by means of a "global" coordinate system
x" satisfying the (strong) spatial isotropy condition
goog;, = —5,~+0(4). The 1PN metric tensor is then fully
described by the four quantities w„—= (w, w;) which must
satisfy the linear partial differential system (3.11) [we
could also work with the gauge invariant quantities (3.21)
but it is as simple to work directly with the w's]. The
linearity of the system (3.11) means that its general solu-
tion, w g'"'r", can always be written as

general N + —N
v v ' (3.24a)

X"[8 ]=0 . (3.24c)

We shall first consider an idealized "isolated" %-body
system, i.e., a system which is adequately described by
taking

where w„ is a particular solution of the inhomogeneous
system (3.11), say

N

X"[w, ]= 4vrG g—o"„,
3=1

where o. ~ denotes the source contribution of each body
of the X-body system, and where w „ is a general solution
of the corresponding homogeneous system:

u N=O, (3.25)
b~~ =BpQ~ 0 a

i.e., explicitly for e, =c 'b, o, and b, ,

(3.21a)
when a suitable w is chosen such as the "retarded har-
monic" solution of Eq. (3.24b), namely,

e, [w]—=B,m+ B,w, ,
4
c

b; [u)]=e;,i, b„[w]:——4[8;w, —8 w;] .

(3.21b)

(3.21c)

(3.22a)

Using vectorial notation (associated with the flat spatial
metric 5;, ) the gauge-invariant fields (3.21) satisfy the
Maxwell-type equations

V b=o,

w N, ret —1 4~G ~ ~p
p, x, ret

3 =1
(3.26)

In Eq. (3.26) CI „'„denotes the "retarded" inverse of the
x-coordinate Oat-space wave operator, i.e., explicitly

3 I

V Xe= — B,b,1

C

3 27'.e= — B,w —4~Go +0(4),

(3.22b)

(3.22c)

(3.27)

Note, that consistently with the allowed 0(2) error term
in the "harmonic" field equation for w, , we have replaced
the Laplacian of Eq. (3.18b) by a d'Alembertian. This
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is done mainly for abbreviating the notation, and at any
moment we will allow ourselves to use an inverse Lapla-
cian for w;"'. As for wo=w, which must be determined
modulo O(4), it is necessary, when using the harmonic
gauge, to invert a wave operator.

Finally, it is well known that the first physical time-
asymmetric effects in the self-interaction of a slow-motion
gravitating system belong to the second-and-a-half post-
Newtonian (2.5PN) approximation. Therefore, we can, in
our 1PN treatment, replace the "retarded" solution (3.26)
by the "symmetric" one

r

N sym g —1

p x, sym

N—4m. G g o. ~
3=1

(3.28a)

where

+x, sym =T( x, ret+ x, adv) (3.28b)

N
N y A

3=1
(3.29a)

is the half-sum of the retarded and advanced Oat-space
Green's functions. The use of (3.28) will somewhat sim-
plify our subsequent treatment by suppressing from the
start several "gauge terms" that would render our
method less transparent.

Summing up, we shall use a starting point for our
method the N-body global metric

troduced above} we shall indicate in this subsection how
nicely related they are to the geometry of the coordinate
lines belonging to the Xz chart.

Going back to the general abstract setting of Sec. II 8,
let us consider, in the differentiable manifold V~, a coor-
dinate chart P H V4 ~X~ (P) H H as defining a three-
parameter family of world lines (label A omitted):

.= IPE V, X'(P)=X', t2 =1,2, 3],
each world line L, being parametrized by S=—X taken
along X .. Associated with the chart X, there are four
vector fields, namely, the natural vectorial basis

(3.31)

Among the four vector fields (3.31) we shall, consistently
with our world-line vision, privilege the vector field eo
tangent to the congruence X

Let us also consider some Riemannian metric g
*

defined on V4. As we shall see, instead of using only one
definite metric, it wi11 be convenient to use several of
them, hence the e on g to label them. Associated with
each choice of the metric g*, there exists a linear connec-
tion, say V* (the unique torsion-free connection such that
V*g*=0). Moreover, we can also use g* to define a nor-
malized tangent vector to the congruence X.

naturally decomposed as the superposition of contribu-
tions generated by each body of the system (written for
definiteness in harmonic gauge):

u*(P) =—c( —g*(eo,eo)) ' eo(P),

such that

(3.32a)

tU„"(x )=Cl„,'„( 4mG—cr"„)

d'x' „ ix —x'i

A X X C
(3.29b)

f(+ ) = —,'[f ( —)+f (+ )] . (3.30)

D. Local gravitoelectric and gravitomagnetic Aelds
and geometry of the X& -coordinate congruences

Section III B has shown how a gauge-invariant descrip-
tion of the gravitational field was possible through the use
of a "gravitoelectric" and "gravitomagnetic" fields
defined by Eqs. (3.21). It is clear from Sec. III A above
that these fields will have the same formal properties in
any coordinate system where the spatial coordinates are
conformally Cartesian, in the sense of Eq. (3.6) above. In
particular, this will be the case for the local E„and Bz
fields constructed, by the same equations (3.21), from the
potentials IV" =( W", IV,") parametrizing the metric
G "&(X~y ) in each local X„ frame [satisfying the strong
spatial isotropy condition (2.29}]. As these local E and B
fields will play an especially important role in our method
(more important than the global frame e and b fields in-

In Eq. (3.29b) the volume integral extends only over body
3, and we have introduced the convenient abbreviated
notation of putting a sign ambiguity + (or + ) to mean
the symmetric half-sum

sc( e e) (3.32b)

Let us also assume that the components of g* with
respect to the natural vectorial basis e (i.e., the ordinary
components of the metric tensor in the X coordinates)
have our usual spatially isotropic form, so that they can
be written as

Ge =g+(E, E )= e
—2W /c

4
Go. =g*(&o e.}=-

C

Ge gs (& & )
—g e+2W /c

(3.33a)

(3.33b)

(3.33c)

We deduce in particular from Eq. (3.33a) that the +-
normalized tangent vector is (X =cT)

)fcw /c
&

w /c (3.34)

In the usual geometrical study of timelike congruences,
one starts from a prescribed metric and a normalized
four-velocity u and defines several geometrical invariants
of the u field: especially the "acceleration*' vector field
V„u, and the "rotation" of u measured by the antisym-
metric part of the "spatial" projection of the gradient of
u ("spatial" meaning orthogonal to u). In our setup it is
still natural to introduce some normalized four-velocity,
namely u*, but the most natural "spatial" projections are
simply with respect to the natural vectors e, —:8/BX'.
This leads us naturally to consider the e, -based "ac-
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celeration" and "rotation" of the four-velocity u*. A
straightforward calculation of these quantities yields

3—c R* =d, E,*+ B &*+0(4),
C

(3.39)

g *(e„V*,u*)= E,—*(P)+0 (4), (3.35a)

g*(e„V,* u*)—g*(e&,V," u*)= — B,*&(P)+0(4),
a c

which is equivalent to Eq. (3.7a). The really new infor-
mation in Eq. (3.38) is obtained by taking the (symmetric)
trace-free projection (in the usual Euclidean sense) of
both sides and reads

where, consistently with our previous notation, E,' and
B,*~ denote the combinations (8, :—8/BX', BT =—c8/BX )

STF,& [ —R *(u*,e„u*,e& ) ]

3
=B&,E&",

&

— E&,Eb*) +0(4) .
C

(3.40)

F..*(P)=a. W*—+,a, W.*,
c

B,*„(P)—=8, (
—48'*)—8 ( —4W,*) .

(3.36a)

(3.36b)

g*(e„V„*v)
E,*(P)=c — +0

~g*(v,v)~, c' (3.37a)

Equations (3.35) nicely display the geometrical meaning
of our gauge-invariant E and B fields with respect to the
three-parameter congruence of world lines X

In practical calculations it can be a nuisance to nor-
malize first the four-velocity before computing E* and 8*
by Eqs. (3.35). In fact, one can check that if v(P) is an
arbitrarily normalized tangent vector field to the same
congruence X „such that, however, the relative normal-

ization A (v =Au" ) varies only by 1PN terms,

A= 1+0(2),
then one can still write

An important lesson can be immediately learned from
Eq. (3.38) or (3.40). Indeed, some authors, notably
Thorne and Hartle, heuristically motivated by the sim-
ple case of a non-self-gravitating test body embedded in
some "external" gravitational field, have suggested that,
even in the general case of a gravitationally self-
interacting and externally interacting body, it might be
useful to use the Riemann tensor of some (to be defined)
"external metric" to characterize the tidal interaction of
the considered body with the other bodies. As we have
seen above the important role that the E field was playing
in linearizing (in many senses) the N-body problem, we
see now that the fact that the curvature components
R *,o~ are nonlinear in E* (whatever be the choice of the
metric g*) makes them ill adapted too-ls already at the
1PN approximation. Similar to the "electric-curvature"
equation (3.40) one can check that the following
"magnetic-curvature" equation holds:

+ e~,dR*(u*,e, , e„td )=B,B&,
* —2e,~, B E,*+0(2) .

B,*~(P)=g*(e„V,* v) —g*(e&,V'," v)+0 1

Q C

(3.37b)

(3.41)

Tracing each side of Eq. (3.41) gives Eq. (3.22a), while an-
tisymmetrizing them with respect to the indices ab gives

To prevent any ambiguity let us make clear that although
the normalization of v may differ by 1PN terms, the E
field calculated by (3.37a) is still accurate up to 2PN
terms (on the other hand, all the formulas for B are accu-
rate only up to 1PN terms).

The formulas (3.35) have related the components of the
connection V* with respect to the vectorial basis (u*,e, )

to the previously introduced E and B fields. One can also
then try to relate the components of the curvature of

to E and B. A straightforward calculation
yields [R*(a,b, c,d)—:R*&rsa b~crd, 8, =8/BX',
a, =ca/eX']

1—R *(u*,e„u*,e&, ) = —,'(B,E„*+'dI,E,*)+ Br 8'*6,~
C

E,*El,*+ 5,&,E,*E,*+0 (4) .

—2c'R ""=e...a.B," 4a,E,*+0—(2), (3.42)

Finally, all the geometrical results of this section apply,
mutatis rnutandis, to the link between the global e and b
fields and geometry of the x"-coordinate grid.

IV. TRANSFORMATION PROPERTIES
OF GRA VITATIONAL POTENTIALS

A. Definition of "locally generated" and
"external" gravitational potentials
as seen in a local reference system

which is equivalent to Eq. (3.7b) [see also Eq. (3.22c)].
The new information contained in Eq. (3.41) is obtained,
as above, by taking a STF projection, and reads

STF,q [ +c el„dR *
( u*, e, , E„ed ) ]= r}&g B~*& +0 ( 2 ) .

(3.38)

The left-hand side of Eq. (3.38) can also be written in
terms of the usual coordinate components as
+c R *,0~ [1+0(4).]. Tracing each side of Eq. (3.38) by
a simple Kronecker 5'" we get (in terms of contravariant
natural components)

In the previous section we have shown how the com-
bined use of spatially isotropic coordinates and of the
"exponential" parametrization (3.3) of the metric led to a
linearization of the 1PN field equations. The central
technical feature of our formalism is to fully take advan-
tage of this linearity by using spatially isotropic coordi-
nates, and an exponential parametrization in all the coor-
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Goo= —exp — W +O(6),2
C'

(4. la)

Go, = — W, +O(5),4
c

(4. lb)

G,b=5,bexp +
z

W +0(4),2

C
(4. 1c)

dinate systems of interest, i.e., not only in the global
coordinates x", but also in each of the local coordinate
systems XA that we shall construct. In other words, we
are writing not only Eqs. (3.3)—(3.5) with y;~ =5;~ but
also, in each local reference frame (labeling index A omit-
ted)

BTX„+B,X~ =O(2), (4.6)

~A ~A, loc + ~A, ext ~+ A + ~ A
a o; = a A' (4.7)

a condition that we shall further consider below. In Eq.
(4.5) z,'„denotes the time-symmetric inverse of the X-
coordinate wave operator [as defined by Eqs. (3.24) and
(3.25b) with the replacement (t, x)~(T,X)]. Note that
we could also work in a gauge invariant manner by
defining "locally generated" E and 8 fields as explicit
functionals of XA.

Having defined the "locally generated" piece of O'A by
Eq. (4.5), we then define its "external" piece, denoted
W"'"' or W (or, in a gauge invariant way, the "exter-
nal" E and B fields), by writing

and therefore

Q —detG &=exp + W +O(4),2

C

G = —exp + W +O(6),2

c 2

G '= — W, +O(5),0, 4
c

G' =5,bexp — W +O(4) .
2

c

(4.2a)

(4.2b)

(4.2c)

(4.2d)

In the domain of the local chart X„(i.e., a domain which
contains body A and no other body BWA) the external
potentials satisfy homogeneous equations obtained by
erasing the source terms X„ in Eqs. (4.3). These homo-
geneous equations take a simple form when expressed in
terms of the external gauge invariant fields [introduced in
Eqs. (3.21)]

E.=E.[W)=a. W+ ', a, W. ,
C

B, =8,„[W] —=F, ,B, —:—4[8, W„—B W, ] . (4.8b)

The latter quantities satisfy [see Eqs. (3.22)]

The main achievement of this section will be to relate the
gravitational four-potential W" —= ( W, W,") describing
the metric G "& in the X„ local coordinate system to the
global potential w„=(w, w;) describing g„(x ). Let us
first notice that W satisfy the linear system (3.11) writ-
ten in XA coordinates, i.e.,

W"+ 8 (8 W"+B„W")= 4vrGX„—+O(4),4
C

(4.3a)

W, —B,(B W"+8 W")= —4vrGX' +O(2),

V'.B=0,
VXE=—,B,B,1

C

V E=—,a', W+O(4),
c

VXB=4BrE+O(2) .

B. Transformation laws of gravitational potentials
and fields under a change of reference system

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.3b)

where z =Az —c B~ with Az =0 /BX'BX', and
where the source terms

As recalled in the introduction an essential property of
accelerated frames in Newtonian gravitational theory is
that, with respect to such frames, the gravitational poten-
tial gets replaced by an "effective gravitational potential"

TOO+ Taa Tpa
A A A

c 2 c
(4.4) U' (X)=U(z(t)+X)—C(t) — X,eff d'z(t)

(4.10)

WA, loc W+A ~—i
( 4 Gym )a = a X sym (4.5)

which satisfies Eqs. (4.3) when X„ is approximately con-
served,

are now defined by components of the stress-energy ten-
sor in the XA coordinate system. The only nonzero
source terms in the right-hand side of the field equations
(4.3) are those that correspond to the body A itself, the
neighborhood of which we are studying. Let us consider
a particular solution of the inhomogeneous equations
(4.3) which is "locally generated" by the source terms
X„,for instance the local symmetric harmonic solution

in which C (t) is an arbitrary function of time and the last
term represents the inertial forces linked to the accelera-
tion of the origin of the frame d zldt Note that E.q.
(4.10) has taken into account the fundamental property of
gravitational forces to be proportional to the same mass
as the one that appears in Newton's basic law of dynam-
ics. This equivalence of the "gravitational mass" with
the "inertial mass" was put by Einstein at the basis of
general relativity, and its direct eff'ect in Eq. (4.10) is to
lead to an effacement of the external gravitational poten-
tial down, essentially, to tidal forces (see Ref. 7 for a full-
er discussion of the effacement properties, both in
Newtonian and in Einsteinian theories).
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In Einsteinian gravitational theory the single scalar po-
tential U gets replaced by the ten components of the
metric tensor g„~ However, we have seen how a con-
venient choice of spatial coordinates (both in global and
in local "accelerated" frames) allowed one to "gauge
away" six components (y,"=5,"), leaving us with only a
scalar m and a vector m, in each frame. The relativistic
analogue of Eq. (4.10) is then obtained by inserting in the
tensorial law of transformation,

ax~(X) ax (X)
ax aXI'

(4.11)

1+ V'V' W+ V'W,2, , 4

c 2 0

2

+ in(A A —A, A, )+0(4),
2

(4.12a)

0 i 0 i
w, =u'W+R, 'W, + (AQAD —A, 3,')+0(2),

(4.12b)

where

v'—=R,' V' or V'—=R,'v',

the exponential parametrizations (3.5) and (4.2), and our
z-e-g form (2.8) with (2.10) and (2.36). A straightforward
calculation leads to the following.

Theorem 3. The local gravitational potentials
W (X):—( W, W, ) in any local reference system (label 2
omitted) are related to the global potentials
wz(x) =—(w, w, ) by the transformation law

W, = —V'(w X—)+R,'(w; —S;)+0(2), (4.13c)

Z. [W]=a.W+, a, W. ,
4
c

8, [W]=—e,b, Bb( —4W, ),

(4.14a)

(4.14b)

for the (total) E and B fields, and the transformation law
(4.13) one can split E and B in two pieces:

E=E'+E", B=B'+B", (4.15a)

with

E'=E[A „'w„], E"—=E[—A „'S ], etc. (4.15b)

The X terms ("inertial" ) fields E" and B" will be stud-
ied later; let us concentrate now on the (homogeneous)
law of transformation for the local E' and B' fields, in
terms of the global e and b fields defined by Eqs. (3.21)
above. The only new element, with respect to Eqs. (4.13),
in the calculation of E' and B' is the need for the trans-
formation law of the partial derivatives:

where X [X, ] denotes the inhomogeneous term in the
right-hand side of Eqs. (4.12a) [(4.12b)], and where we
used the fact that R,' is an orthogonal matrix
(R,'Rb =5,i, ). We shall see later how the X terms in Eqs.
(4.13) closely resemble the "inertial" terms in Eq. (4.10)
[including terms that play the role of the arbitrary func-
tion of time C(t)]. For the time being, let us complete
the transformation law (4.13) for the potentials by the one
for the gauge-invariant E and B fields. From the
definitions

(4.12c)
=cog =ce(", +0(2},aT ' qx~ ' ax~

(4.16a)

are the global and local components of the uelocity of the
origin of the local frame u'=dz'Idt =dz'IdT +0 (2), and
where 2" are the components (2.l0) of the Jacobian ma
trix.

We shall write the transformation law above as

w„(x)=A„(T)W (X)+%„(X), (4.12d)

W =A „'(w —X„), (4.13a)

which reads explicitly

W= 1+ V (w —%)— u'(w, —X, )+0 (4),2 2 4
c 2 t

(4.13b)

to display its affine structure (y =ax +b), and clarify the
fact that all the coefficients A„are to be evaluated at
T=X Ic with X—:(X,X') and x"—:(x,x') on either
side of Eq. (4.12d) denoting the coordinates in two
different charts of the same abstract event in spacetime
[related by (2.8)].

It is to be remarked that the exponential parametriza-
tion of the metric succeeded again in yielding a simple
linear property for the u's. In the following we shall also
need the inverse of Eqs. (4.12) namely

~b
=e~ +eg +0(4) .ax' ' a~~ "a~~

' aX' ax~

(4.16b)

Using our previous results and introducing a new time-
dependent matrix

e,"(T)=e,'—e, eo0 i

e'
0

=e,'—v'V,
+0(4),

c
(4.17)

Eqs. (4.16) can be written as

DT —— =8, +u'8;+ 0 (2),T —
gT t (4.18a)

D, —= =e,"r},+ 8, + D +0(4), (4.18b)
a

BX' BX' c

I

S,'(T, X)= 1+
2

V e,"+
c BX' (4.19)

we find that the A. part of the gravitoeiectric and gravi-
tomagnetic fields in the local frame can be expressed in

where 8, —:8 IBt, 8;—:8 IBx ' while DT:d lr}T, D, —
—=8/ax. .

'

Finally, introducing for brevity the spacetime-
dependent matrix



43 GENERAL-RELATIVISTIC CELESTIAL MECHANICS. I. 3289

terms of the corresponding fields in the global frame as

1
~

1

c c

G „,(x")= =2Y(x )5( —(x ) +(x) ),5(x —Ixl )

x

(4.24)

4
DT( V, w)+0 (4),

c

B,' =S,'(b, —4e, kv'ek)+O(2) .

(4.20a)

(4.20b)

where Y denotes Heaviside's step function, and
lxl—:V (x) =+x'x'. For our present purpose it will be
simpler to work with the time-symmetric Green's func-
tion:

The last terms in Eq. (4.20a) which contain the "convec-
tive" derivative DT=a, +U'a;+O(2) are gauge invariant
because the scalar potential w changes only by O(2) under
a gauge transformation. In Eq. (4.20b) the matrix S,' can
be replaced by the simple rotation matrix R,', and we
have assumed in deriving it that R, was preserving the
spatial orientation [i.e., that det(R,') =+1]. When com-
paring Eqs. (4.20) with the transformation laws under
boosts of the usual electromagnetic fields one notices
again the irreducible appearance of a factor 4 in the ve-
locity terms:

e+c vXb, b —4vXe .

One should remember that the left-hand sides of Eqs.
(4.20) do not represent the full local fields, but that one
must still add to them the X-dependent (or "inertial" )

contributions E",B" that will be studied later.

C. Invariance properties of the time-symmetric
Green's function for the d'Alembertian

We shall prove in this sub-section a remarkable techni-
cal result that will be very useful for extracting more in-
formation from the transformation laws just discussed.

Let us consider the various (fiat-space) d'Alembertians
(or wave operators) defined in each of our coordinate sys-
tems: namely the global-coordinate wave operator

G„,„(x)—:—,
'

( G„„„+G,d„)

5(x' —lxl) 5(x'+ lxl)
Ixl Ixl

(4.25)

G„,„(x)=5(—(x ) +x )=5((x") ),
Gx, y

(X)=5(—(X ) +X )=5((X ) ) .

(4.26a)

(4.26b)

The indice x or X on the Green's function (4.26) serve to
remind us that the objects so defined depend on which
coordinate system is used. For brevity we have also in-
troduced the notation (x") —= —(x ) +(x') +(x )

+ (x ) . Let us emphasize again that no Riemannian
metric structure is used here.

Let be given a "scalar density" on our differentiable
manifold V~, which is represented in each coordinate
system by a scalar function, say o'(x) and X(X), with the
transformation law

o (x) = X(X):—JX(X),aX
(4.27)

where

BX—=det
a~~

(4.28)

They can be simply written as one-dimensional Dirac dis-
tributions:

a ~ a 1 a
ax~ax =,

, (ax')' c' ar' '

and the local-coordinate ones (label A omitted)

(4.21a)
denotes the Jacobian of the transformation X =F (x~).

In differential geometric terms Eq. (4.27) means that
we are endowing our differential manifold V4 with an in-
trinsic four-form

a2 3 a2 1 a2

ax ax~ (ax ) aT
co=a.(x)dx Adx'hdx Adx

=X(X)dX hdX'hdX hdX (4.29)
To each one of the wave operators (4.21) corresponds
some Green's functions, i.e., some local solutions of

,G (xp')= —4~5 (x"),
x Gx(X ) = —4~5 (X ),

(4.22a)

(4.22b)

where the four-dimensional Dirac distributions are
defined in each coordinate system by, e.g.,

f d x 5 (x")y(x")=y(0) . (4.23)

Note, that we are here working only with a differentiable
manifold structure without any metric, or even volume
element.

The Green's functions most used in classical physics
are the "retarded" ones, e.g. ,

We shall assume that co has a spatially compact support
which is contained in the domains of both the X and x"
charts. The quantities o. and X have, a priori, nothing to
do with what is denoted o. , X in the rest of the paper but
this notation is used here to convey the meaning that
co=a. d"x =Xd X represents some kind of "mass distri-
bution" in V4.

Each "mass distribution" co intrinsically given on V4
will "generate" in each coordinate system an, a priori,
coordinate-dependent time-symmetric "field"

y„(x")—:G,„ceo=f G„,„(x"—x'")co(x')

= f 5[(x"—x' ") ]cr(x ' ")d x ',
(4.30a)
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mx(X )—= Gx,„+~
= f 5[(X —X' ) ]X(X' )d X' . (4.30b)

We can now state the following invariance property.
Theorem 4. With the notation just introduced, if the

"mass distribution" cv is "slowly changing" (in the sense,
e.g., X(X ) is a smooth function of the variable T =X /c
when c ~ ~ ) and if the coordinate transformation
x~=f"(X ) satisfies both the slow motion assumptions
(2.13) and the conditions (2.30) expressing the conserva
tion of the strong spatial isotropy, then the coordinate
dependent time symm-etric fields generated by
co=od x =Xd X coincide up to terms of second post
%estonian order

(p (f"(X ) ) =yx (X ) [ I +& (4)], (4.31)

where Z (S,Z') denotes the equations of the
parametrized congruence of world lines X . canonically

defined by the X coordinate system, i.e.,

.= IPSE V4; X (P)=Z (S,Z') with SEIRI, (4.33a)

where f"(X )=x"(X ) and X denote the coordinates of
any spacetime point in the intersection of the domains of
the tao charts.

Proof of Theorem 4. We have identically

X(X,X')= Jd Z f dS X(S,Z')5 (X —Z (S,Z')),
(4.32)

g (X )= fdS F(S)5([X —Z (S,Z)] ), (4.36b)

F(T+R/c)
(4.37)

where we have put

T:X lc—, R—:~X—Z~, (4.38)

and we have used the abbreviated notation (3.30) for the
symmetric half-sum (ret+adv)/2. Note that by a slight
inconsistency of notation we are denoting by F(T) in Eq.
(4.37) what was denoted F(cT) in Eqs. (4.36). By the
"slow changing" assumption of Theorem 4 we can ex-
pand (4.37) in powers of c ' and get the 2PN approxi-
mate result

F(T) 1 d F(T) 1

2c dT c
(4.39)

As for the time-symmetric field generated in the x-
coordinate system its exact expression is obtained from
Eq. (4.36a) by using the formula

where we recall that the squares in Eqs. (4.36) denote the
(coordinate) Minkowskian square

(a") =f,a"a'= —(a ) +(a') +(a~)~+(a3)~ . (4.36 )

Because of the simpler (linear) dependence of Z "(S,Z) on
S [see Eq. (4.33a)], Eq. (4.36b) is immediately integrated
[see Eq. (4.25)] and yields the simple exact result

with Z (S,Z')=S, Z'(S, Z')=Z'. The x-coordinate
equations for the intrinsic congruence X .read

5(S —S„)[f"'] X„Idf/dsl
(4.40)

,= [P E V4;x "(P)=z"(S,Z')
I

with

z"(S,Z')=—f"(Z (S,Z')) .

(4.33b)

in which S„(n =1,2, . . . ) labels all the zeros of f (S):
f (S„)=0. In the present case there are two zeros of
f (S)=[x"—z~(S, Z)] that we shall denote by S+ (no
half-sum over + / —):

~o~ (x)= fdSF(S)5 (x" z"(S,Z)) .—(4.35)

Because of (4.32) and (4.34), the general property (4.31)
will follow by superposition of such linear distributions
[i.e., by integration over d Z with F=X(S,Z)]. The
time-symmetric fields generated by the linear distribu-
tions (4.35) will be denoted by 4& FJ and Nx~j. Using

Eqs. (4.26) they can be written as

@„~~(x")= J dS F(S)5([x" z"(S,Z)]2), —

Note that this z "(S,Z') agrees with the central world line
only for Z'=0. The first step of our proof is to notice
that the definition of the four-dimensional Dirac distribu-
tion as a pure coordinate density, (4.23), ensures that

o(x")=Jd Z jdS X(S,Z')5 (x~ z"(S,Z')), —(4.34)

satisfies the transformation law (4.27) and represents
therefore the "mass density" in the x"-coordinate system.
Let us now prove that the invariance property (4.31)
holds for "linear mass distributions" of the type

X~ (X)= JdSF(S)5 (X —Z (S,Z))

Geometrically S+ (S ) is the parameter of the intersec-
tion of the future (past) x-coordinate Minkowskian cone
emitted by x" with the world line X .. S+ and S are

functions of x" and Z'. Introducing also the notation

p(x",S,Z') —= f,(x" z "(S,Z'))—Bz'(S,Z')
as (4.42)

for the Minkowskian scalar product between x"—z" and
the S-tangent vector to Xz. u =c}z'/BS, we can write
the following exact expression for the time-symmetric x-
coordinate field generated by (4.35):

F(S+ ) F(S )+
p(x, S) + 2 p(x, S+ ) p(x, S )

(4.43)

This type of Minkowski-invariant representation of re-
tarded or advanced fields generated by a relativistic point

S+(x",Z'): f„,[x"—z"(S+,Z)][x'—z (S+,Z)]=0 .

(4.41)
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mass is well known and dates back to formulas due to
Lienard and Wiechert. In order to compare the exact
expression (4.43) with its exact X-system correspondent
(4.37) we need to perform some kind of expansion. There
are two expansion procedures we could use: (i) the
Minkowski-covariant expansion in the curvature of the
world line X which expands around the Minkowski-
orthogonal projection of x" on L, i.e., z4~'HX such that
f„{x~ z~i )Bz—i /~3S=O; or (ii) a direct "Lagrange expan-
sion" in powers of c '. The first type of expansion was
used by many authors studying pointlike sources in
Poincare-invariant theories, including the gravitational
case treated by post-Minkowskian expansions. The
second type of expansion, named after a famous theorem
of Lagrange, is directly related with the type of slow-
motion expansions used for retarded integrals of continu-
ous sources. 'We shall here take advantage of both ap-
proaches and devise a convenient Minkowski-motivated
form of Lagrange expansion.

The Lagrange expansions of the advanced or retarded
field (e=+1 or —1), is simply obtained from the usual
non-covariant form (4.24) of the Green's function,

( )= dsF(s) 5(x —z (s)+calx —z(s)l) (444)
Ix —z(s)l

by formally expanding the 6 function in powers of e, and
integrating over dz instead of over dS. This leads to

4„,(r, x) = g „[f(t)lx —z(t)l" '], (4.45)
p n.c' dt"

where

x"(X )=f"(X )=z"(X )+e,"(X )Y'(X,X )+O(3,4),
(4.49)

we first see that the x" rest-frame condition v=O ensures
e, =O(3) and therefore the fact that the corresponding
events in the X-coordinate system are also simultaneous
[X =cT =S +0(4)]. Let us then put

so that

and S'= Y'(X,X')—Y'(X,Z')

x' —z'(t) =f '(X,X') f '(X—, Z') =e,'(X )S',

Isl = 1 — A R — A z IRI+o(4) .1 1

2c C
2

Moreover, the definition (4.46) of f (r), taken along the
world line X .where

gives

+ Y'(S,Z )+O(4),ds as " ds

where we recall that we are considering the world-line
, image of X =S, X'=Z' under x"=f"(X ), i.e.,

z "(S,Z') =f"(S,Z').
Because of Eq. (2.36d) we have eo(T)e,'(T)=R,'+O(4)

when U'=0, so that eo lx —z(t)l = ISI. On the other hand,
a simple calculation from the definition (2.38) of Y'( T, X )
gives

f(t)= F{s(z'))p ds
z'=ct

(4.46)

eo(T)(1+c A.Z)

Note, that the expansions (4.45), (4.46) are performed
around the point on the world line which is x-coordinate
simultaneous with the field point x": i.e., such that
x =z . We can now take advantage of the fact that the
exact field 4, Eq. (4.43), is Poincare invariant (with
respect to the fictitious x-coordinate Poincare transfor-
mations) to choose, for any fixed field point, a Lorentz
frame in which the world-line velocity v(t)=dz/dt is
zero at t =x /c (we are here joining the first expansion
method around a Minkowski orthogonal z~j projection of
x" onto X). This simplifies the explicit form of Eq. (4.47)
which becomes, denoting the acceleration d z/dt: a(t), —

N, (t, x)= f(t)
Ix —z(r)l

1 d+ Ix —z(t)l+O(1/c ) .
2c dl'

1 f() (
x —z(t)

2c Ix z(&) I

(4.48)

Using now the explicit coordinate transformation formu-
la (2.37):

The time-symmetric solution is then simply

+,(t, x)= + [f(t)lx —z(t)l]f(r) 1 d'
lx —z(t)l 2c' dt'

+O(1/c ) . (4.47)

Putting together these results we see that the first two
terms in the right-hand-side of Eq. (4.48) simplify to

f(t)(1—A R/2c ) F(T){l—A R/2c )

Isl(1+ A z/")
' '+o(4)

IRI

which is the first term in the right-hand side of the c
expansion of 4z, Eq. (4.39). The remaining terms

f Ix —zl = ZF+O(4)
c2 2c2

match clearly also modulo O(4). We have thereby proven
that the time-symmetric fields generated by pointlike
source distributions coincide,

F~ {x"(X ))=C&~ ~ (X )+O(4), (4.50)

independently of the choice of the Green's function (glo-
bal coordinate ' or local coordinate z'). As ex-
plained above, by integration over Z', with
F(S)=X(S,Z') the "pointlike case" implies the general
"continuous case" (4.31). This completes the proof of
Theorem 4.
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D. "Detailed" transformation laws of gravitational potentials
under a change of reference system

„,'y (tr„)= x,'„[A„(T)X"]+0(4,2) . (4.57)

We have seen in Sec. IV B that the complete gravita-
tional potentials w„and W (which include the effects of
all the bodies in the system, and for 8' also the "iner-
tial" effects of the change of frame) were very simply re-
lated to the affine transformation law (4.12). The techni-
cal result of the last subsection wi11 allow us now to split
the transformation law (4.12) in two more detailed trans-
formation laws concerning the "locally generated" and
the "external" potentials, which constitute the heart of
our approach.

Theorem 5. For each local reference system X~ the "lo
cally generated" Xz system-potential (harmonic gauge)

(4.51)

(4.52)

through

w„(x)=A„" (X ) W' "(X)+0 (4, 2)

while the "external" X~ -system potential

~Aext ~ 3 ~A ~+ 3
a u a e

(4.53)

(4.54)

is inhomogeneously related to the part of the global poten
tial generated by all the external bodies 1l& A:

w„(x)=A„(X )8 "(X)+X„"(X)+0(4,2) . (4.55)

The A transformati-on coefficients A, „", %„" are the ones
defiined in Eqs. (4.12).

Proof of Theorem 5. Using Eq. (3.10) for the mass den-
sity o. , written in the form

o. =c &g ( —T+2T,'),
where T=—g„T" is the covariant trace of the global-
coordinate stress-energy tensor components T", together
with the tensorial transformation law of the components
of T" between the x and the X coordinates it is easy to
get the transformation law for the mass density:

aX
Bx

1+ V X+ V, X' +0(4) .
c 2 0 (4.56a)

It is even simpler to check that the mass-current density
transforms as

o'=u'X+ R'X' +0(2) .

Comparing with Eqs. (4.12),
~

BX/Bx
~

= 1+0 (2), this shows that

(4.56b)

using

o„(x)= A„" (X )X (X)+0(4,2) . (4.56c)

is homogeneously related to the A generated -piece of the
global potential,

Making now use of the fact that the time-derivatives of
A.„are of order 0(c ) when p=O, and 0(c ) when
p=i, the slow-motion expansion of 6& y

4' & y

4' —x,'y [F(X )]=f d X'

+ d X' ' X—X'~
2 2 aT2

+0(1/c ), (4.58)

shows that one can, modulo 0(4,2), factor A„" (T) out of
Eq. (4.57) which leads directly to the detailed transforma-
tion law (4.53). The remaining law (4.55) follows then by
difFerencing with the complete law (4.12).

As a comment, let us emphasize that although it has
been convenient to define both w„and 8'+ in a particu-
lar (harmonic) gauge we could also have worked entirely
in a gauge-invariant manner by applying Theorem 4 to
the propagation equations for the gauge-invariant e and b
fields [Eqs. (3.23) above].

Theorem 5 is central in our method, and its conse-
quences will be explored in the following sections.

V. GENERAL FORMULATION OF THE METHOD

As recalled in the introduction the central difficulty in
general-relativistic celestial mechanics is to deal simul-
taneously, and with equal accuracy, with X+ 1 problems:
(i) the external problem (roughly speaking "motion of the
centers of mass" of the N bodies), and (ii) the N internal
problems ("motion of each body in its center-of-mass
frame"). The results that we have obtained in the preced-
ing sections will allow us to define now a new exact ap-
proach to post-Newtonian celestial mechanics in which
these N + 1 problems are formulated simultaneously,
each one being formulated in its natural reference frame.
In order to clarify the logic of our approach we shall first
state explicitly which structures we need in our abstract
differentiable manifold to set up the problem.

A. World-line data

Let us start by assuming that the following structures
are given in our originally structureless differentiable
manifold V4.

Datum 0. N (abstract) world lines Xz.
Datum 1. The global x"-coordinate representation of

these world lines, i.e., either x "=z~~(r~ ) with
c dr„=( f„dz"„dz„")'~ or x =—ct, x'=z„'(t).

Datum 2. A special parametrization of each world line
by a parameter S„,i.e., x"=z"„(S„).

Datum 3. Three time-dependent quantities e,"(Sz )

along each X„.
Datum 4. A slowly changing (special) orthogonal ma-

trix along Xz.
R „',(S„): R „',R „'b =6,b,

The invariance property of the Green's function for the
wave operator proven in the previous subsection allows
one to deduce from Eq. (4.56c) that

det(R ~, ) = + 1,
dR „',(S„)=0(c ) .

C dSg
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x"(X ) =fg) (X ) =z "(X ) +e,"(X )X'+P(X,X'),
(5.1a)

where z "(X ) is the value of the S-parametrized function
z"(S) at S =X, e,'(S) is defined by Eq. (2.36d) with

eo =dz /dS and U'—=ceo—:c dz'/dS, e, (S) is defined by

e, (S)—:e,' +
3 e, (S),

c

while

(5.1b)

Datum 5. One function of four variables associated
with each X„,g„(x,x', X,X ), which is at least quad-
ratic in the last three variables X' when X'~0.

We shall symbolize the set 0—5 of these world-line data
by 2)„. The structures 2)z being given we can uniquely
define 1V local X~-coordinate systems by means of the
transformation formula (label A omitted)

x' =x +g (x") with g =0(c ),
the Lie derivative of T" is of order

X~T""=0 1

c2' c3' c4
=0 0(c,c,c ),1

c

X(T,X)—=
TOO+ Tbb

2
in X frame

(5.3a)

X'( T, X):—
Toa

in X frame

(5.3b)

i.e., of 2PN fractional order [remembering the PN as-
sumptions (2.25) for T" ]. This property of gauge invari-
ance does not hold for the mixed components T", X&T;
being of 1PN fractional order only. Consistently with
our notation above, let us define, in each local X frame
(label A omitted),

g'(X X'):— e'(X )[—,' A, (x )X X —A (X )X X'],1

C
E, [ W'] —=8, W+

2 BT W, ,
4

C
(5.4a)

(5.1c) B,b [ W] =E,b, B, —=8, (
—4 Wb )

—Bb (
—4 W, ), (5.4b)

g'(x', x') = g(x' x')1

C

where

(5.1d) as well as the new notation

F'[ W]—:XE, [ W]+ B,b [ W]X
1

C
(5.5a)

d3,(S)=f„e,"(S)—
d7

(5.1e) i.e., in vectorial notation,

with c dr = f„„dz"dz—. From Eqs. (5.1) one can then
compute, for each body A, the transformation
coefficients A„" (T) and X„(T,X) [using Eqs. (2.10) for
the Jacobian matrix elements].

Having explicated the way to connect the X~-
coordinate descriptions to the "common-view" x"-
coordinate one, let us consider the evolution equations
for the material distributions of each body as seen in its
own local frame.

F=XE+ XXB .1

C
(5.5b)

The quantity F has precisely the form of the usual
Laplace-Lorentz force density in electromagnetic theory.
It can be thought of as playing also the role of a "gravita-
tional force density" at the 1PN approximation of gen-
eral relativity because an explicit calculation of Eqs. (5.2)
yields the following 1PN evolution equations for (X,X'):

B. Energy-momentum evolution equations
in each local reference system

a
aT

1+'8 X +'
C2

Tab
C

2

=F'( T, X)+0(4), (5.6a)

Let us show how one can express in terms of the ob-
jects introduced in the previous sections the partial
differential equations that represent the exchange of ener-

gy and momentum between each volume element of the
material system and the gravitational field that it experi-
ences. The general form of these equations is well known
to be

0—P TPv —
Q TPv+ PP Tkv+ Pv TPA,

V V kV A. V

where

(5.2a)

(5.2b)

denote the Christoffel symbols, i.e., the components of
the Levi-Civita connection V' with respect to the coordi-
nate frame 8„. Let us first emphasize the fact that the
contravariant components of the stress-energy tensor T"
are 1PN gauge invariant. Indeed, one checks easily that,
under a 2PN change of the time variable,

r+ r'= Tbb — r W+0(4) .
QT QX c2 QT c2 QT

(5.6b)

ar,
/3

"=V [W"]. (5.7)

In the particular case of an isentropic perfect fiuid (with
given equation of state) Eqs. (5.6) constitute, when the W
potentials are given, a complete set of evolution equations
for the matter variables. In more general cases (nonisen-
tropic perfect fiuid, elastic material, . . . ) one may need to
add some other material evolution (and/or constitutive)
equations (e.g. , some entropy evolution law) to get a (for-
mally) complete system of evolution equations for the
material system in the gravitational potentials O' . We
shall symbolically write such a material evolution system
as
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The material evolution system (as seen in the local X~-
frame) (5.7) needs to be completed by equations determin-
ing the simultaneous evolution of the gravitational vari-
ables.

C. A formally closed evolution system for the X "(T&,X & )'s

B 0 BA„t3(X~ )Xtj(X~ ) .
C}X

Putting together these results, we reach the conclusion
that 6' can finally be expressed entirely as a functional
of the 2 "(Xz ) and of the X&(Xs ). Namely, we can write

W' (X„)=8'+ (X„)+8' (X„)+O(4,2), (5.8a)

with

W+ "(X„)= x,' [ 4rrGX "(X„)],—
W."(X„)= y W.""(x~(X„))+W."(X„),

BXA

(5.8b)

(5.8c)

Bx

The gravitational potentials that are felt by each body
3 in its own frame [i.e., the ones that appear in Eq. (5.7)]
have been found to be equal to (Theorem 5) the sum of a
locally generated potential, W+ ", Eq. (4.51), and of W' "
obtained by solving Eq. (4.55), i.e.,

A=~ A( 1) y wB( ) ~A(X)
CX QP P P

BXA

Moreover, each w„(x) is generated by the matter
currents of body 8 according to (in harmonic gauge)

w„(x)=, ,'y [ 4ttGo—„(x)] . .

We can also relate the x"-frame description of the ma-
terial content of body 8 to its own local 8-frame descrip-
tion through [see Eq. (4.56)]

The various primes on the space-time variables in Eqs.
(5.9) remind us of the fact that the evolution equations
for, say, X (Tz, X„)are, a priori, nonlocal both in time
and in space (because of the Green's functions ').

D. Outline of the de6nition of a closed evolution system
for both the X~'s and the 2)&'s

Note that in the evolution system (5.9) we are assuming
that the world-line data 2)A, . . . , are given. This is cer-
tainly allowed because there is no logical necessity to
connect in a definite way the world-line data to the actual
motion of the bodies. For instance if we were interested
in the quasicircular motions of a binary star, we could
define in advance two world lines representing two exact-
ly circular motions, together with some convenient rota-
tion matrices and study the solutions of the system (5.9),
i.e., the motion of each star with respect to the prescribed
circular motion. Such an approach can, and has been,
employed in a Newtonian context too. However, it is
often convenient, in Newtonian gravity, to relate in a
definite way the motion of the origin of the local A frame
to the actual motion of body A, namely by identifying it
with the Newtonian center of mass of A. However, there
is no consensus on what is a good relativistic definition of
a "center of mass" of a body A, member of an N-body
system, and we shall need to develop new tools to find a
definition which fits nicely within the present approach.
Anticipating on what will be discussed in detail below, let
us only quote the definition we shall use of a post-
Newtonian "center-of-mass frame. "

Deft nition of a local center of mass fram-e. -A local X„
coordinate system around body A will be said to have its
spatial origin coinciding (for all T„ times) with the center
of mass of body A if and only if

O=M,"(T„)= I d X„X~X( T„,X~ )
A

10c d TA

XA „ts( T~ )Xp(Xs(x) )

8"' (X„)=——A „"(T„)%„(X) .

(5.8d)

(5.8e)
Sc dTg A

In Eq. (5.8d) the 1PN dependence of Ao„' " on T~, and
the fact that all times (t —=x /c, Tz, Ts) differ only by
1PN terms has allowed us to bring in A „' " and to re-
place T„by Ts. In other words, if we insert Eqs. (S.8) in

Eqs. (5.7) we get a formally closed integro-differential
evolution system for the material distributions of the X
bodies, each one being described in its own frame, of the
form

ar.'(T„,X„)
[2 ( T„',X'„),X ( Ts, Xs ),2)g, l)g ],

TA

(S.9a)

BXp( Te, Xs )
=g&ps[X (T~,Xs ), X "(T~,X'~ ),2)~,2)g ],

8TB

(5.9b)

(5.10)

where the spatial integrations extend only over the
volume of body A.

Note that (contrary to most of the past-Newtonian
center-of-mass definitions in the literature) the definition
(5.10) is expressed entirely in terms of quantities referred
to a local frame and is given by a well-defined compact-
support integral. It is intuitively clear that Eq. (5.10),
which expresses that the abstract world line X„ is con-
strained to follow, in a precise way, the motion of the
matter within body A, will imply some "equations of
motion" for the global-coordinate representation of X z.
x"=z~(r„). These equations of motion will be discussed
in detail in a subsequent publication (see also Sec. VII
below) and we shall, for the time being, just assume that
they follow from the condition (5.10).

In order to complete the general outline of our method,
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where Idenotes the mass and

(5.1 1)

we need to discuss the role of the other world-line data
(apart from Datum 1 that we just discussed).

Datum 2 (i.e., the special S parametrization of the
world line, which amounts to a precise post-Newtonian
definition of the "local time scale" T~) and Datum 3
(post-Newtonian fixing of the e, components) will be
fixed by a requirement of equi"acement. We have discussed
in the introduction the double role that the accelerated
Newtonian center-of-mass frames were playing: both as
"comoving" frames, and as frames in which the external
gravitational field is strongly "effaced. " These roles are
closely related (because of the equivalence principle, i.e. ,
the "universality of free fall" ) but they are still slightly in-
dependent. Indeed, a Newtonian frame comoving with
an extended body has a difFerent acceleration than a
Newtonian frame freely falling (i.e., accelerated like test
bodies) in the (Newtonianly well-defined) external gravi-
tational field. The difFerence in acceleration is due to
quadrupole, and higher-multipole couplings, and is

1a,', „;„—a&„, t, &~

= Q &8; k U'"'+higher multipoles,
2m ~

effacement (5.12) can always be enforced by a suitable
choice of e&(S)=c (eo(S)—1) and e, (S) (a=1,2,3), and
that this choice is unique. In other words, the weak
effacement condition (5.12) ties down in a unique way the
world-line Data 2 and 3, to the other variables of the
scheme.

Let us now consider Datum 4, i.e., the fixing of the
slowly changing local rotation matrices R ~, (T„). For
this rotational degree of freedom arises the same dichoto-
my that was present for the translational degree of free-
dom: namely, to choose between a "body-based" way of
fixing it ("comoving" condition in the translational case),
and a "gravitational-field-based" one ("efface" 8, U'"' by
going to a freely falling frame). Many authors, notably
Brumberg and Kopejkin advocate the use of a
"gravitational-field-based" criterion for fixing the time-
dependence of the rotational matrices. Indeed, there is a
natural criterion that we shall call effacement of post
Newtonian Coriolis effects in local frames

Using the definition (5.8c) of the "external" PN poten-
tials W "(T~,Xz ), as seen in a local Xz-coordinate sys-
tem we shall say that the post-Newtonian Coriolis effects
are effaced in the local A-frame, if the external "gravi-
tomagnetic" B field vanishes, for all T„ times, at the ori-
gin of the frame, i.e.,

Q „=Jd Xp(XJX"——,'X 5~")
VT„, 8, (T~,O)=[e,b, Bq( —4W, )]x O=O. (5.13)

the Newtonian quadrupole moment (see, e.g. , Ref. 7, Sec.
6.4, for a derivation of this purely Newtonian effect).

In a relativistic context the difference between the con-
cepts of "corno ving frames" versus "external-field-
effacing frames" is bigger, because of the ambiguity of the
concept of "frame. " For instance, Thorne and Hartle
have advocated the use of relativistic frames that are
"freely falling" in some (undefined) "external'* gravita-
tional field (in the sense that their origin follows a geo-
desic of the "external" universe), and have generalized
and computed the dominant relativistic corrections to the
deviation effect (5.11). By contrast, we will find it very
convenient to use mainly "comoving" frames, in the pre-
cise relativistic sense of Eq. (5.10). This choice leaves us
however some freedom in the precise definition of the
frame, i.e., of the full coordinate system Xz around the
now "center-of-mass world line" X„. We shall take ad-
vantage of this freedom to efface, at the origin of our lo-
cal frames, the "external" relativistic gravitational poten-
tials, in the following definite sense.

Weak eQacement of post Newtonian ext-ernal gravita
tional potentials in local frames. Using the definition
(5.8c) of the "external" PN potentials W "(T~,X~), as
seen in a local X~-coordinate system we shall say that
they are (weakly) effaced in the local A frame if they van-
ish, for all Tz times, at the origin of the frame: i.e.,

VT„, W ( T~, O, O, O) =0 . (5.12)

Because of the presence of the "inertial" contribution
W""(X), Eq. (5.8e), in W ", which depends on X, and
thereby on eo —=dz /dS and e, —=e,'dz'/dS+c e', (S),
the values of the W at the origin depend on eoo(S) and

(Se). It is easy then to check that the four conditions of

Because of the presence of the "inertial" contributions
W,

" (X), Eq. (5.8e), in W, , which depends on X„, and
thereby on dR,'/dT, it can be checked that the three-
conditions (5.13) fix uniquely the vectorial angular veloci-
ty fl, (T) which determines the time evolution of the or-
thogonal matrix R,'( T) (this will be clear from the formu-
las given below).

The name "Coriolis" is here meant to indicate the
space-independent part of the 8 field, which, as is already
clear from Eq. (5.5b), exerts on the matter forces ~ Q X v.
This issue will be examined in more details in a subse-
quent publication, as well as the meaning of Eq. (5.13) in
terms of a Fermi-Walker transport in some "external"
metric [defined in Eq. (5.17) belowj.

In spite of the naturalness of the rotational efFacement
criterion (5.13), we want to emphasize that there is no
logical necessity in choosing it. On the contrary, al-
though we essentially leave to the reader the choice of the
"best" way of fixing Datum 4, we wish to emphasize that
there is in fact an equally natural and technically simpler
(and far more convenient in many practical applications),
alternative criterion, namely through a global fixing of lo
cal rotation m,atrices

VA, VT„, R„',(T~)=5', . (5.14)

Equation (5.14) is a drastic way of tying the rotational de-
grees of freedom to the rest of the scheme which is "body
based" instead of being "gravitational-field" based. It is
the rotational analogue of our "comoving" condition
(5.10), while the gravitational-field-based analogue of
(5.10) would have been the eQacement of post Newtonian-
external+inertial acceleration ejfects
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V T„, E( T„,O) =0 . (5.15) where

=~'~ [&a»c] (5.16a)

We shall use (5.10) [and never (5.15)] to fix the transla-
tional state of our local frames, and leave open the flexi-
bility of choosing (5.13) or (5.14) [with a technical prefer-
ence for (5.14)] for fixing the rotational data.

Finally, as far as Datum 5 is concerned [i.e., the fixing
of the time gauge at the 2PN level,
5t —=c 'g =c g(T, X)] we have already seen several
times that it is often more convenient to leave open the
corresponding time-gauge freedom, and to work sys-
tematically with the gauge-invariant E and B fields. Even
in cases where it is, provisionally, useful to choose a
definite time gauge (generally of the time-harmonic fami-
ly) we do not need to compute explicitly to which choice
of P it corresponds. We shall return to this issue in a
subsequent publication.

In conclusion, we have just outlined how one can tie in
a definite way the world-line data, 2)~, to the other
dynamical variables of the problem. When this is done, it
defines a formally closed evolution system, that we shall
symbolize as

w „"(x)—= g w„(x) .
BAA

(5.17d)

We can reexpress the detailed transformation result (4.55)
by saying that the local-frame components of the external
metric, G &(X), are given in terms of the external local-
frame potentials, as defined by Eq. (4.54) by our usual ex-
ponential formulas:

G A (X)
—2W (X)/c +O(6)

G (), (X)= — 8', (X)+O(5),4 —
A

C

G 3 (X) g +2W (X)/c +O(4)

(5.18a)

(5.18b)

(5.18c)

From Eqs. (5.18) we see that the weak effacement condi-
tion (5.12) implies that G 00(T,O)= —1+O(6),
G o, (T 0)=0+0(5), and G,"b(T 0) =5,b+O(4). But
the values of the Jacobian matrix elements (ix "/BX at
the origin of the local system are nothing but the global
components e(~ of the vectorial basis along X„ intro-
duced in Sec. II B. Hence, we conclude that, under our
general hypotheses, the weak effacement condition (5.12)
implies, along X„,

M) (T„)
=q'~ [&i)»c] .

TA
(5.16b) G "p=g„e"„e„')s=ftt+O(6, 5, 4) . (5.19)

Up to this section we have stayed on a general level
where each body was always fully represented (both inter-
nally and externally) as an extended object. In the follow-
ing sections, we shall go to a second level where one
"skeletizes" both the locally generated gravitational fields
( W+ ) and the externally felt ones ( II'„")by (infinite) se-

quences of relativistic multipole moments.

In other words, Eq. (5.19) says that the vectorial basis e"
along X„ is, with the precision indicated, an orthonor-
malized tetrad with respect to the external metric (5.17).
In particular, the 00 component of Eq. (5.19) [i.e., the
a=0 component of the weak effacement condition (5.12)]
means that the special parametrization S of the central
world line X „[see Eq. (2.3)] is the proper distance along
X~, as recorded with the external metric

E. The vectorial basis e "(S)as a tetrad in a
well-defined external gravitational field

S=f ds„= f Q —g „"„(x)dx"dx' . (5.20)

The transformation properties of the post-Newtonian
gravitational potentials gave a special role to the decom-
position of the W potentials, in the local A frame, in a
locally generated part W+" and an external part W
According to Eq. (5.8c), the latter part is related to the
sum of the global-frame gravitational potentials generat-
ed by all the bodies external to the 3 frame,
+2)~ ~ w„(x), by the general transformation formula,
Eqs. (4.12), valid for the "real" potentials
( 8' = W++ II/). Let us now define an external metric.

Definition of the external metric, with respect to body A.
To each body A we associate an external metric

If we define

dZA
UA =C

dZ A

so that eA0 =c eAOUA
i —1 0 i (5.21a)

we deduce, from Eqs. (5.19),

c

(5.21b)

+
4 [8vz+ —,'(w ") + ,'w "v„—4w;"uz—]+O(6),1

C

ds „=g„(x)dx~'dx =G "t3(X)dX dX~

defined by

(5.17) eo =R' 1+ v2 +3w A1 1
Aa a

C
A

4 —A
W i

C

g A(X) e
—2w (x)/c

g 0;(x)=—— w,"(x),
C

—&(X) g e+2w "(x)/c
Ij —ij

(5.17a)

(5.17b)

(5.17c)

+O(5),

wi
Aa

C

&"+
2 uz u/„R/+O(4),

2c

(5.21c)

(5.21d)
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in which all the external potentials must be evaluated on

VI. RELATIVISTIC TIDAL AND
MULTIPOLE EXPANSIONS

GM.GM
U (x, t)= —8,

X Zg X Zg

GM;+ C) + ~ ~ ~

A. Newtonian tidal and multipole expansions

where p „(X„)is the mass density of body A expressed in
terms of the relative coordinate X~ =x—z~(t), and the
external Newtonian gravitational potential is

U'„"'(x, t)= g U (x, t),
BXA

(6.2a)

In Newtonian celestial mechanics, the exact equations
for the motion of the barycenter z~(t) of one body
member of a N-body system are

d z„'(t)M„=f d X p„(X„,t)B, U'"'(z„(t)+X„,t),
dt

(6.1)

+ ( —)'~
gi l( 2

' 'l(

GM' . . .lgl2 ' ' l(

[x—z~
+ ~ ~ ~ (6.5a)

with the Newtonian "multipole moments" of body B

M(~( . . . ; (t)=STF; . . . ; f d XiiX~' . X~'pic(Xti, t) .

(l ~0) (6.5b)

We have kept in Eq. (6.5b) only the symmetric-
trace-free projection of the full mass moment
IL —= f d XiiXtipti (L—:i, iI ) because the trace terms
of IL do not contribute to Eq. (6.5a) on account of the
vanishing of the Laplacian of ~x —

zii~ '. On the other
hand, all tensorial coefficients G,. . . , , in Eq. (6.4) are au-

1 I

tomatically symmetric and trace-free (L:i i
—ii):

pii(Xii, t)
U (x t)=G f d Xti, (6.2b) G"=STF [8 U„'"'(z )] (l ~2)

Moreover, the effectiue local external potential whose
gradient governs the motion of mass elements in the ac-
celerated 3-barycentric frame is

Zg
U„' (X„)= U'„"'(z„+X„)—U'„"'(z~ )

— X„,
dt2

(6.3)

where the arbitrary function C(t) of Eq. (4.10) has been
chosen for convenience to be U'„"'(z„(t)). The system
(6.1) and (6.2) is an integro-differential system. In order
to reduce it, formally, to a system of ordinary differential
equations for the X barycenters, one makes two simul-
taneous expansions.

(i) The effective local potential, and thereby also
U'"'=—U' +U~"'(z„)+d z~/dt Xz, is expanded in a
"tidal expansion", i.e., a Taylor series in powers of X~,

(for the same basic reason that AU =0 outside local
body 8). Both expansions (6.4) and (6.5) are equivalent to
expansions in scalar spherical harmonics, respectively in

(&,P) and &
" ''Yi (8,$), but the use of irreduc-

ible Cartesian tensors (i.e., STF tensors G&~& or M&~& )

renders more transparent (especially when a suitable con-
densed multi-index notation is used, like L —=i, iz . ij )

the use of these expansions in many algebraic operations,
and, moreover, is definitively simpler when one needs to
"tidal", or "multipole", expand vector fields or tensor
fields, instead of simply scalars.

An example of the algebraic usefulness of the STF-
tensor expansions is that, by inserting Eqs. (6.4) and (6.5)
into Eqs. (6.1) [with Eq. (6.3)], the exact equations of
motion (6.1) can be written in the form

d 2'
MA g Uext( ) MAGA

U' (X )=G X' +—„G"X' Xj +1
i A ~i ij

1 l l+ 6 X'. X'+
ll '''l( (6.4a)

where the Newtonian "tidal moments, "or "gravitational
Gradients, " felt by body 3 are (8, —:8/Bx ')

M AG A1

101

which yields the explicit double series

d 2 k
M" =G g g, ,

MLS.
dt ii~„ik&0 l ~k!

(6.6)

d 2'
G, '(t) =a, U„'"'(z, )—

dt2
(6.4b) xB~ 1

iLK (6.7)

(6.4c)

(ii) the potential generated at some field-point x by
each body B is expanded in a "multipole expan-
sion, " simply obtained by Taylor expanding the
r '—:~x —zii —Xii ~

' factor in Eq. (6.2b) in powers of
X, (a, —=ajax'): O=M, "(t)=—f d X~X~p„(X„,t) . (6.8)

in which I.—:i, II, K —=j, j and 0;"—:8/Bz;".
Both in Eqs. (6.6) and (6.7) the l = 1 (and k = 1) terms are
actually zero because of the Newtonian definition of the
center of mass which, remembering X~ =—x' —z„', is noth-
ing but
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B. Post-Newtonian multipole expansions

It has been shown by many authors that, in the case
of exactly stationary relativistic gravitational fields that
fall off at spatial infinity (i.e., in the case of a stationary
and isolated material system), there existed a "good" (and
essentially unique) generalization to the full general-
relativistic context of the multipole expansion (6.5a) of
the gravitational field outside the material source. This
stationary relativistic multipole expansion of the metric
field g„contains two sets of multipole moments: some
"mass moments" [which reduce to those appearing in Eq.
(6.5a) in the nonrelativistic limit] together with some
"spin moments" (analogue to the magnetic type mul-
tipole moments in electromagnetism '). However, even
in this simple case, no exact analogue of Eq. (6.5b) exists.
In other words the stationary mass and spin relativistic
moments are only "field multipole moments, " and not, as
in Eq. (6.5b) "source multipole moments. " Moreover, if
one drops the very restrictive assumption of exact sta-
tionarity the situation becomes much more intricate, and
the uniqueness, and even the existence (for generic time-
dependent field) of exact relativistic time-dependent mul-
tipole moments is dubious. Under some weak assump-
tions about the asymptotic fall-off of the metric field in
null directions, it is possible to introduce a concept of
(relativistic) "radiative multipole moments" (see, in par-
ticular, Thorne ) as a set of irreducible Cartesian tensors
that parametrize the angular pattern of the [0 ( r '

) ]
gravitational-wave zone field. On the other hand, under
some stronger asymptotic fall-off assumptions, one can
show that other definitions of asymptotic multipole mo-
ments [based on the subdominant O(r "), n ) 1 terms in
the wave zone expansion] are possible and are actually
inequivalent to the O(r ')-based definition.

But the main problems are, anyway, that there exist (i)
neither an analogue of Eq. (6.5a), i.e., the representation
of the field at a finite distance from the source (ii) nor an
analogue of Eq. (6.5b), expressing the moments in terms
of the material distribution. In an attempt to cure the

latter problem, Thorne, generalizing previous work of
Epstein and Wagoner, has derived a formal expansion
in powers of c ' of the radiative multipole moments as a
series of (undefined because divergent) infinite-support in-

tegrals over some "effective stress-energy tensor" (which
itself contains the unknown metric field).

The situation is much better if one considers only the
post-Newtonian approximation to general relativity (in
the improved sense of considering O(c ) corrections to
the leading terms both in the near-zone, the intermediate
zone, and the wave-zone gravitational field). In that case,
Blanchet and Damour ' have recently shown that the sit-
uation is as good as in the Newtonian case, in the sense
that there exist useful analogues of both Eqs. (6.5a) and
(6.5b). The main emphasis of their work was to obtain a
well-defined integral representation in terms of the ma-
terial source of the radiative multipole moments
parametrizing the asymptotic gravitational wave field em-
itted by any post-Newtonian gravitationally interacting
system. However, we shall show here how a slight gen-
eralization of their work leads to very useful constructs,
even when considering the post-Newtonian gravitational
field in between the bodies of an X-body system (while
their original expansions were valid only outside a sphere
enclosing the full N-body system).

A first generalization of their work consists in working
in an arbitrary, not necessarily harmonic, gauge simply
by adding the gradient of a general function A, (and in
considering time-symmetric, rather than retarded poten-
tials). A second, physically much more important gen-
eralization consists in remarking that, thanks to the
linearity of the field equations for the w potentials [Eqs.
(3.11)], we can apply, step by step, their method to the
case of the m potentials generated by only one body, say
A, selected from an X-body system. Moreover, their ar-
guments apply both in the global x"-coordinate system,
and in the local X~ one. In keeping with the general
spirit of our method outlined in Sec. V C the most useful
generalization is to consider the "locally generated"

potential, as seen in the X~ system. This leads to
the following theorem.

Theorem 6. In any local system, say X„, the locally generated post Newtonian potent-ials, W+"(X~) /dined in the
harmonic gauge by Eq. (4 5l)J, admit, e. uerywhere outside body A, the following multipole expansion (with label A omitted
for veadability on the local coordinates T~ —=X~ Ic,X~ ):

I
W+ (T,X)=G g Bl (R 'ML (T+R/c))+ Br(A —A)+O(4), (6.9a)

~=o C

)l
W,+"(TX)= —G g 8, R ' M,", + e, ,B,(R 'S,",) —

—,'B(A"—A)+O(2),L —1 dZ aL —1 I + ~
abc bL —1

(6.9b)

where

(6.10a)

pL"( T) —= J d'X X" 2"(T,X), (6.10b)

and where Iarguments (TX) omitted for the local integrands X (T,X)J
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ML"(T)= f d XX X+ f d XX X X2(2l+3)c dT

SL"(T)= f d'Xe' 'X ' 'X' (l 1)

4(2l + 1 ) d '

d 3XJaLya
(l + l)(2l +3)c dT

(6.11b)

Following the conuention (3.30) the + sign in Eqs. (6.9), (6.l0) denotes a time sym-metric auerage

The function A, (T,X) denotes an arbitrary gauge trans-
formation. The original extended-body-harmonic-gauge
solution (4.51) is obtained when A. =O. Note, however,
that the gauge with A, =A is also harmonic
("skeletonized-body-harmonic-gauge" ).

We see that the symmetric and trace-free Cartesian
tensors defined by Eqs. (6.11) play, at the post-Newtonian
level, both the role of "field multipole moments" [Eqs.
(6.9)] and of "source multipole moments" [Eqs. (6.11)].
They constitute one of the essential tools of our ap-
proach, and we shall refer to them in the following as the
(local) BD moments of body A. The moments ML"(T)
will be referred to as the "mass" moments, by contrast to
the "spin" moments SI (T). Note from the O(4, 2) c
error terms in W Eqs. (6.9) that only O(4) uncertainty
could be accepted in ML, while SL could admit a bigger
O(2) uncertainty (i.e., SL needs to be defined only at
Newtonian accuracy). The problem of generalizing the
BD results so as to reach also a post-Newtonian accuracy
[O(4) errors] for SL has been recently solved, and we
shall return to it in a subsequent paper.

C. Post-Newtonian tidal expansions

Having shown how to generalize Eqs. (6.5) to the post-
Newtonian level, let us now turn to the problem of
finding a "good" (i.e. , useful) PN generalization of the
Newtonian tidal expansions (6.4). The usefulness of the
Newtonian tidal moments (6.4b) and (6.4c) rested on two
features: (i) they were irreducible Cartesian tensors and
(ii) they constituted a skeletonized representation of the
effective external gravitational forces felt by mass ele-
ments in a local center-of-mass frame. Now, we have
seen in Eqs. (5.6a) above that in the post-Newtonian
momentum density evolution equation, written in a local
X~ system, the role of the effective gravitational force
density pVU' was played by the "Lorentz" force density
F=XE+c X X B, which, being linear in E and B, is
naturally decomposed in a "self"-force density
(XE +c X X8 ) and an "external" one
(XE+c XXB). This points out clearly at using the
external gauge-invariant fields E[W„], B[W„] as post-
Newtonian analogues of VU' . And for the analogues of
the multigradients of U', we shall not take simply the
multigradients of E and B, because they are not irreduc-
ible Cartesian tensor s, but, very naturally, the
symmetric-and-trace-free projections of the latter. Hence
we get our definition ofpost newtonian tidal mo-ments.

Let, with 0, —:0/BX„', Bz-=cB/BX~ in some local ~
frame,

E, (TX)=B,W "+
2 BrW,",

c

B, (T,X)=e,„,B (
—4W,"),

(6.12a)

(6.12b)

denote the external gauge-invariant fields. We skeleton-
ize them by defining two corresponding (gravitoelectric
and gravitomagnetic) sets of post-Newtonian tidal mo-
ments:

GI"(T)= [B&L,E, &(T,X)] . o (1 ~ 1),

HL"(T)—= [8& L,B,")( TX)] . (l ~ 1) .

(6.13a)

(6.13b)

VXE= —,B,B,1

c
V' X B=4BrE+0(2),

V.E= — Br W+O(4),
c

V.8=0

(6.14a)

(6.14b)

(6.14c)

(6.14cl)

and

Note that the moments so defined are of order l ~ 1 [see
Eq. (6.16) below for the definition of a gravitoelectric
monopole tidal moment].

Before studying the properties of these PN tidal mo-
ments, let us say that Thorne and Hartle have pointed
out that the general solution to the vacuum Einstein
equations which is regular near a timelike geodesic can be
fully parametrized (up to coordinate changes) by two sets
of STF tensors. Their work has been extended and
refined by Suen and Zhang. At the linearized gravity
level the moments defined by these authors differ only by
some normalization factors from ours. However, a not-
able difference arises when nonlinear effects come into
play (as they do at the 1PN approximation). Indeed,
Thorne and Hartle and Zhang insist on relating their
moments to the curvature tensor of some (undefined)
"external metric, "while we have seen in Sec. III D that,
whatever be the choice of external metric g*, its curva-
ture tensor will difter from G,b=B~,Eb~ by nonlinear
terms. This appearance of nonlinearities in E* spoils the
nice linear properties of the W-E-B formulation of PN
gravity. Moreover, another notable advantage of our
scheme is that it furnishes an unambiguous definition of a
(useful) "external metric, " namely the metric G &(Xr)
defined by Eqs. (5.17) and (5.18).

The external gauge-invariant fields (6.12) satisfy the
homogeneous equations ( V' =8/BX')
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~E= ', a', E+o(4),
C

b,8=0+0(2) .

(6.15a)

(6.15b)

Equation (6.19) can be applied to each component F., or
B„for which we see from Eqs. (6.15) that 3, E, =O(4)
and b.B,=0 (2), so that ( =d /dT).

It is easy to see, by induction, from these equations that
the knowledge of all the STF projections of the spatial
derivations of E and B at the origin [i.e., our tidal mo-
ments (6.13)], if it is augmented by the knowledge of

X=O

+O(4), (6.20a)

E, = g —, X BLE, + X X dLE,
&)p t ~ 2(2l +3)c

G (T)= 8'(T, O)+O(2), (6.16)

determines completely [up to a usual 0 (4,2) uncertainty]
all the components of the spatial derivatives of E and B.
The additional datum G ( T), Eq. (6.16), plays the role of a
"monopole tidal moment", and should be, in general,
added to our definitions (6.13) [note that G(T) is gauge
invariant within the precision, O(2), with which it is
defined]. However, we have seen in Sec. V above that
this datum can be gauged away by a proper normaliza-
tion of the 5 parametrization of the central world line. In
the applications of our formalism we shall generally as-
sume that we have chosen "world-line data" such that
the weak eA'acement conditions of Sec. V, i.e.,

B,= g XB—LB,
1&0 X=O

+O(2) . (6.20b)

The problem is thereby reduced to computing B&L&E,
and B~L&B, at the origin.

We can now make use of the STF form of the Clebsch-
Crordan reduction for the multiplication of two irreduc-
ible representations of the rotational group, in the case
D, D&=D&+, sD, D&, (see Appendix A of Ref. 37).
Namely, if T, &L &

is a (reducible) tensor of order / + 1 that
is STF only with respect to the multi-index L„one can
decompose it into three algebraic pieces:

8'( T, O) =0,
8', (T, O) =0,

(6.17a)

(6.17b) Ta(L ) TaL +~ca(a TL —1)c ~a(a TL —1)

x'=x'+ x'x&L-'s '-' ' +o(ss),
2(2l —1)

(6.18)

are satisfied. However, in the present section it will be
more convenient (for reasons that will appear in subsec-
tion E below) to stay fully general by assuming nothing
about the datum (6.16).

The tidal moments (6.13), (6.16) determine uniquely all
the spatial derivatives BLE„BL8,. In order to perform
explicitly the calculation of these derivatives, it is con-
venient to remark first that (as follows easily from the
equations given in Sec. II A above)

in which each T' ' ' is STF (i.e. , irreducible):

(+1)TL+, —=STFL+,(T, L ),

T(0)
L =STFL

~ + ~a bc TbcL —1+1

2l —1
TL —

1
= - TccL —12i +1

(6.21b)

(6.21c)

(6.21d)

y(X) = g —,X BLyL

I =0 I' X=O

2 AL

2 2I+3X $L(P+ dLby+O(b y)
X=0

(6.19)

where 0 (M) denotes any term that contains two (uncon-
tracted) Kronecker deltas, and where we recall that the
caret above X means a STF projection of the multi-
index L —=a 1

. a&. From Eq. (6.18) follows immediately
the fact that the Taylor expansion (with respect to the
X"s) of any field y(X) reads 7l —4

5,(, GL, &+O(4),
(2l +1)c

(6.22a)

4l
a&, &B.lx=o=~L

I
p ( GL 1) +O(2) . (6.22b)

I + ].

Hence, we get finally the following tidal expansions for
E " and B " (overall label A omitted):

Applying Eqs. (6.21) to B&L&E, and B&L)B„and using
Eqs. (6.14), one can derive

l
r)&L&E. Ix=o=GI, + (l+ 1)c ~ca(a ~L —1)c

E, (T,X)= g —X G,L(T)+ ~
X X

~ G,L(T)
&&o 1 ~ 2(2l +3)c dT

7l —4,L 1 d
~
X' GL, ( T)+ e,i„x H,L, ( T) +O(4),I bL —) d

(2I +1)c dT (l +1)c2 dT (6.23a)
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B (TX)=g —, X HL(T) — e,b, X
'

GL )(T) +O(2) .l+1 '' dT (6.23b)

By convention, we are assuming in Eqs. (6.22) and (6.23)
that any term which contains an undefined tidal moment
(or a meaningless expression) is to be replaced by zero,
e.g. , the term containing the factor (7l —4)/(2l+1) is
absent when l =0. Note, however, that the latter term is
present when l =1, in which case it represents the sole
contribution of the monopole tidal moment G (T) to the
gauge invariant fields.

D. General structure of the post-Newtonian tidal moments

We have defined our tidal moments G~ and HL by
Eqs. (6.13) and (6.16). Therefore, they are linear in the
external potentials 8' and we have seen above, Eq.
(5.8c), that the external potentials were themselves a
liri ear superposition of N + 1 terms:

W."= y IV". "+W.'",
BXA

N of them being generated by the N separate bodies, and
the last one being an "inertial" contribution arising be-
cause of the "accelerated" frame transformation
x"~X&. Consequently, the tidal moments can also be
decomposed into N+ 1 contributions, parallel to Eq.
(6.24).

Moreover, the results that we have presented above
concerning the transformation laws of the gravitational
potentials, together with the fact that each locally gen-
erated piece, W+", is completely expressible (modulo a
gauge transformation) in terms of the BD multipole mo-
ments [see Eq. (6.9)] imply that each of the (gauge-
invariant) body-generated contributions to GI" and Hr"
can be expressed in terms of the BD moments of body B,
and of the coe%cients of the transformation between the
A and B frames: A "„' "A„&. As for the "inertial" con-
tributions to GL and HL", say GL, ", HL ", they depend
only on the world-line data 2)„ofX„. Hence we shall
have the following structure for the post-Newtonian tidal
moments of the 3 frame:

(6.24)

E. Inertial contributions to the post-Newtonian tidal moments

Thanks to the tools we have introduced above, there
are two ways in which we can compute the explicit ex-
pressions of the inertial contributions GL ", HI " to the
tidal moments.

A direct method would consist of computing

(6.26)

GL = g GL "[M~,S~,2)„,Xs]+GL "[Xq], (6.25a)
BWA

Hl"= g HL "[Mg.,Sx,2)„,X)s]+HL "[2)„]. (6.25b)
BXA

The derivation of the explicit expressions for the body-
generated contributions to the tidal moments will be left
to a subsequent publication. We shall here study only the
inertial contributions.

the inertial W's (6.26) formally are the transforms of
w„=0, i.e., of fiat space: g,„[w =0]=f„,. In other
words, the E" and 8" inertial fields are obtained from the
formulas of section III D by taking simply

ds* =g„*,(x )dx"dx'=f„dx~dx (6.27)

Therefore, the curvature tensor R *(a,b, c,d) is identical-
ly zero, and we learn from combining Eqs. (3.40), (3.43)
with the tidal expansions (6.23) that the only nonvanish-
ing inertial tidal moments are simply G", G,", G,'b, and
H," and that

-= 3
G,~

— G(, Gb)
C

(6.28)

The dipole inertial tidal moments G," and H," are very
simply obtained from Eqs. (3.37) in terms of the (Min-
kowskian) acceleration of X z and of the (Minkowskian)
rotation of the e, triad along X ~. If we define precisely
[as in Eq. (2.33) above] the e, component of the Min-
kowskian acceleration A, of X„as

(6.29)

where

deaf

———c f„,dz "dz is the Minkowskian (global-
ly fiat) proper time along the world line X, we have, for
each world line,

G,"=—A, +O(4),
"= 3

G,b
= A &, Ab)+O(4),

C

(6.30a)

(6.30b)

2 dRb
H,"=e,b, V„A, +c R,' +O(2), (6.30c)

where Vb =Rbdz'/deaf +O(2). Equation (6.30a) is the
post-Newtonian generalization of the second term in the

I

from Eqs. (4.13), with the %„'s read off from Eqs. (4.12),
and the Jacobian matrix elements 2" taken from Eqs.
(2.10). Then, the GI"" and HL

" are obtained by
differentiating E"=E[IV"], etc. A more elegant, and
more instructive method consists of using the geometrical
properties of the E and B fields discussed in Sec. III D.
Note that we are here placing ourselves again in the gen-
eral setting of Sec. IIB, within which one is given an
abstract vectorial basis e =e"(S)B/Bx" which is not re-
stricted beyond the results of Theorem 2 [Eqs. (2.36)]. In
other words, we are not assuming here that Data 2 and 3
of Sec. VA are fixed by the orthonormality conditions
(5.19) [i.e., equivalently we do not impose here the weak
effacement conditions (5.12)].

The key remark for using the geometrical results of
Sec. III D is that, because of the affine nature of the
transformation law,
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Finally, the tidal expressions (6.23) of the inertial fields
read simply

E,"(T,X)=G,"+G,'bX — X' + e,b, Xbb 1 d G" 1 b
dHc

d G,
"

1
d~G"

+ X' — X" +0(4),
6c~ dT2 c~ dT

(6.31a)

dG,."B,"(T,X)=H,"—2e,b, X +0(2) .
dT

(6.31b)

Equation (6.3 la) is the post-Newtonian generalization of
the gradient of the last term in the right-hand side of Eq.
(6.3). We have checked that the direct method leads to
the same results. Finally, let us emphasize that, unless
otherwise indicated, in all subsequent applications of our
formalism (including next section), we shall choose the T
parametrization of the world lines so that the weak
effacement condition (6.17a) holds for the total external
potentials. This condition will ensure that the total
monopole tidal moment, G =G"+gz& A G, vanishes
for all times. As a consequence, all monopole tidal con-
tributions will disappear from the formalism (e.g. , the
term —c X'G" in the "inertial" gravitoelectric field
(6.3la) will be canceled by a corresponding term in the
"externally generated" field), and it will be sufficient to
use the sets (6.13) of tidal moments.

VII. RELATIVISTIC MULTIPOLE-EXPANDED
CELESTIAL MECHANICS

A. Structure of the post-Newtonian mass, barycenter,
and spin equations of motion in each local system.

In each local X~ system, the stress-energy tensor of
body 3 must satisfy the evolution equations (5.6). In the
linearized gravity case, it is well known that the four
energy-momentum local conservation laws imply only a
finite number of constraints on the time variation of the
irreducible mass and spin moments (of an isolated sys-
tem): namely,

dM ( lin)

dT
d 2M(lin)

=0,
dT2

S(iin)

dT

By continuity, one expects that the only equation-of-
state-independent constraints on the BD multipole mo-

right-hand side of Eq. (6.4b). The second term in the
right-hand side of Eq. (6.30c) is just the Newtonian
Coriolis eA'ect while the first term is a special-relativistic
addition to the Coriolis eff'ect induced by the Thomas
precession. As for the monopole inertial tidal moment,
G "(T)—= W "(T,o)+0(2), one sees from Eq. (3.34) that it
measures simply the relative scaling, along each world
line, between the special parametrization S=cT and the
Minkowskian proper time ~f ..

G "(T)=c ln +0(2) .
dT

deaf

ments will concern the time-evolution of the three lowest
multipole moments, M, M„and S, . We shall show in a
subsequent publication that this is indeed the case, and
that a theorem of the following form holds.

Theorem7. The energy-momentum-conservation equa-
tions in the local XA frame, Eqs (5..6), imply constraints
on the time evolution of the three lowest BD multipole mo
ments of the form

g(1PN1(~(p1A G(p')A )+0(4)L ~ L' (7.1a)

d M, = g —ML"G,LdT', .0 l.

g(1PN1(M1p1A g(q1A. G(p'1A H(q )A )'
0 L & L & L' & Lc

+0 (2/4), (7.1c)

where all the right hand side-s of Eqs. (7.1) are bilinear in
the BD multipole moments and in the above-introduced ti-
dal moments, and their time derivatives

(p) M„etc .
dTP

More explicitly, the right-hand sides of Eqs. (7.1) con-
sist of an infinite series of terms, each having the form
M' 'G'~', M' 'H' ', S' 'G'~', or S'P'H' '. The special no-
tation 0 (2/4) in Eq. (7.1c) means that, when one is
working strictly within the 1PN approximation, it is
sufficient to know S, at the Newtonian accuracy and
therefore the explicitly written Newtonian torque is
enough. However, we shall show in a separate paper that
it is possible to define a local spin vector for body
[differing from the Newtonian spin moment (6.lib) by
0(c ) additional termsj whose time evolution is given,
modulo 0 (4), by an equation of the form (7.1c).

A very satisfactory feature of Eqs. (7.1) is their
"closed" structure, i.e., the fact that the right-hand sides
depend only on our "good" PN moments, and not on the
many possible other multipolelike terms that could ap-
pear (and do appear in intermediate calculations) such as

XL=—j dXXXX
PL —=j d XX' X', etc. .

(7.2a)

(7.2b)

The derivation of Eqs. (7.1), and a detailed discussion of
their meaning is left to a subsequent paper.

B. Multipole-expanded post-Newtonian equations
of motion in the global coordinate system.

So far we did not need to attach the X central world
lines L to the matter distribution of the nominal corre-
sponding bodies. As we anticipated in Sec. V D, the most

cy(1PN1(M(p1A g(q1A. G(p'1A H(q'1A )+0(4)
c

(7.1b)

dS,
X l 1

abc MbL GcL
1&o
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natural way to do so is to require that each local X~
frame be "mass centered" in the precise sense that the
BD dipole moment vanishes for all times, as expressed by
Eq. (5.10). This attachment of the origin of the Xz -frame
to the material body A entails the fact that the 1ocal-
frame time-evolution constraint (7.1b) yields global
frame equations of motion for the center-of-mass world
line X~. The precise way in which this arises is easily

seen by comparing the post-Newtonian result (7.1b) (with
M, =0) with the Newtonian one (6.6), remembering that
the post-Newtonian G, contains the inertial contribution
G,

"= —A, .
We see therefore that, by inserting the Eqs. (6.25) into

Eq. (7.1b) (with M, =0), we shall derive global-frame
equations for the motion of the centers of mass of the
form

MAg A y MAGB/A[MB gB]+ y MAGB/A(MB gB)1

BWA 1~2

c
(7.3)

where the dependence of the right-hand on the world-line
data has not been indicated. The global equations of
motion (7.3) represent the skeletonized version of our
symbolic Eq. (5.16b). Let us emphasize again that the
remarkable feature of Eq. (7.3) is that it succeeds in ex-
pressing the global-frame motion of an N-body system in
terms of a set of locally measurable multipole moments
for each body (in precisely the same physical sense as the
one in which one measures by means of satellites the mul-
tipole moments of the Earth).

C. Application to an improved derivation of
the Lorentz-Oroste-Einstein-Infeld-Ho6'mann

equations of motion

We relegate to a subsequent paper the explicit deriva-
tion of the full post-Newtonian multipole-extended equa-
tions of motion (7.3). We wish to remark here that these
equations (for /I =1, . . . , X), considered by themselves,
do not form a closed evolution system because the time
evolution of the higher (1 & 2) multipole moments is left
unspecified. This is because, in the language of Sec. V D
above, Eqs. (7.3) represent only the skeletonized version
of the world-line-data evolution equations (5.16b), which
represent only a half of the closed system (5.16). There
are several ways in which Eqs. (7.3) can be completed by
additional equations.

(i) The exact way consists of adding the full Eqs.
(5.16a), for instance in tidal-expanded form: i.e., to write
down Eqs. (5.6) with all the external potentials and fields
being tidal-expanded (and the tidal moments being ex-
pressed in terms of the multipole moments of the other
bodies).

(ii) The approximate ways consist of defining some
"models" that do not intend to be the first term of an
asymptotic approximation to reality, but only to be able
to "save the phenomena" with an acceptable accuracy
and in a logically consistent manner. In a subsequent
publication we shall consider both some "rigid models, "
as well as some "truncated models. "

Here we shall consider only the simplest example of a
consistent, and closed, truncated model, namely the
"monopole model" by which each body's gravitational

structure is skeletonized by only one parameter, its BD
mass. Let us first discuss the consistency of this trunca-
tion. This consistency is not a pviori evident (especially at
the 1PN level) because, whatever be the internal structure
of the bodies, Eqs. (7.1) must be satisfied. In Eqs. (7.1)
the tidal moments are no longer free variables because
they are all computable from the multipole moments via
Eqs. (6.25). However, the mere bilinear structure of the
right-hand sides of Eqs. (7.1a) and (7.1c) [Eq. (7.lb) play-
ing the different role of determining the translational
equations of motion] together with various basic neces-
sary algebraic requirements (index-structure, dimensional
analysis, . . . ) can be easily checked to imply that the
Ansa tze

VA =1, . . . , X I ~1~ML =SL =0, (7.4)

are not only consistent with the general constraints (7.1)
but that Eq. (7.1a) implies the necessary constraint

=O(4) .
dT

(7.5)

G,"=0 (monopole model) . (7.6)

Instead of decomposing G, , following Eqs. (6.25), in an
external-bodies-generated piece and an inertial piece [like
we did to derive the general structure (7.3)] let us remark
that, by the definition (6.13a), Eq. (7.6) means that the
gravitoelectric external field E„(P) Vanishes all along the
central world line L ~ . Let us now return to the
geometric formulation of the general E* fields discussed
in Sec. III D, and define, as in Sec. V E, for each body 2,
an e~ternal metric g~ by choosing W*= W~ in Eqs.
(3.33). In other words, using our results on the transfor-

We shall therefore define our monopole model by taking
constant BD masses for each body, and zero higher mass
and spin moments.

Let us now show how the tools we have introduced
above allow us to compute explicitly, in a quite elegant
manner, the global-frame post-Newtonian equations of
motion for such a monopole-truncated N-body system.

The orbital equations of motion are obtained from Eq.
(7.1b) and read very simply
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mation of potentials, this means that the global-frame
natural components of this external metric,

—c dr'„=ds „=g„",(x )dx "dx

are by definition [see also Eqs. (5.17)] given by

2
goo(x)= —exp —,g w (x)

C

(7.7)

(7.7a)

2 2A p= 1+ VB, VB
C

It remains to express RB ' in global coordinates, and this
follows from Eq. (4.50), which gives, for the simplest
case, I' (S)=1,

4
go( )=—,gw;( ),

C BWA
(7.7b) 1

R p +

1

2
1 +
p p

(7.13)

2
g;, (x)=5;.exp + g w~(x)

C B
(7.7c) where p is defined by Eq. (4.42) (with Z'=0; central

world line). Finally we have

With this definition, we can now conclude from Eq.
(3.35a), that the external-metric-normalized four-velocity
ofX„,

w (x)= GM~ ( 1+2vti /c )
(7.14a)

d TA
(7.8) w; (x)= GMB VB

PB
(7.14b)

must satisfy

V' „" u„=O(4) (monopole model),

i.e., explicitly

(7.9a)

The complete 1PN metric is obtained by summing Eqs.
(7.14) over all 8's 1 ~ 8 ~ N, and using the usual exponen-
tial parametrization, while the A-external 1PN metric is
obtained from summing over all BWA [see Eqs. (7.7)].
As introduced above, we shall denote for brevity

dg
+1 „& (z„)u ~~ u z =O(4) (monopole model),

m „"(x)=g w„(x) .
BXA

(7.15)

where the I A denote the Christoftel symbols of g „:
/
—A. o'(Q g ~A+Qg~A Q g

4
)

(7.9b)

(7.10)

The equations of motion (7.9), when written in terms of
the global-frame coordinate time, t =ZA /c, read

zA dZA dZA 1 dzA dZA+r', . ~ A vdt dt c dt " dt dt

w„(x)=A„(X ) 8'+ (X)+O(4,2), (7.1 1)

while Eqs. (6.9) give, in the skeletonized-body harmonic
gauge, and in the monopole model

GMB
JY+ = +O(4),

RB
(7.12a)

It is to be noted that, contrarily to several existing
"derivations" which remained essentially heuristic, we
have here proven (as a consequence of Theorem 7 that we
shall prove explicitly in a subsequent paper) that the,
well-defined, BD-barycentric world lines are, in a con-
sistent monopole-truncated model, geodesics of a well-
defined external metric (7.7).

In order to compute explicitly the equations of motion
(7.9) we need to express each w„(x) potential of Eqs. (7.7)
in terms of the BD mass of body B. Our above-
introduced tools allow us to do so in the fo11owing
manner. Equation (4.53) tells us that

Using Eqs. (7.7), (7.15) we get more explicitly

(7.16)

d z

dt

, (B,m,"—a, m, ')v'„
C

1

, (3a, m, +4U~ a, m„)U' +O(4), (7.17)
C

in which one will note the appearance of the gauge-
invariant e and b fields. In order to get a fully explicit
quasi-Newtonian form of these equations of motion one
needs the explicit expressions of (1/pz )+ in terms of in-
stantaneous positions and velocities. This explicit expres-
sion follows immediately from the Lagrange expansion
(4.47) with [using Eqs. (5.21)]

8',+ =0+0(2) .

Hence

(7.12b) f(t): o:(e~o)dS p

dz

MBw„=GA„o + O (4, 2),
it reads

1
[—,

' v~ +w~ (z~ ) ]+0(4); (7.18)
c
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1 —c '[vii /2+ wa(za )] 1 d 2+, , ~x —z, (t)~+O(4) .
x —zii(t) 2c dtPB

More explicitly, with ri] (t) =x' —zti(t), n~(t): —re(t)/~re(t) ~, az —=d zii /dt we get

(7.19a)

(pg )~=Rg =r~ 1—,w~(z~) — (n~ vs) — a~.r~ +O(4) .
C 2c 2c

(7.19b)

A straightforward calculation of the right-hand side of Eq. (7.17) using Eqs. (7.14) and (7.19) yields finally

8 2'
=a ~

" '(zii, vs )+ 0(4), (7.20a)

(LD) B 1 2 2 3
aw = —g z n~a 1+

z va+2va 4vw vs (nba v~)
BWA C 2

GMc GMc 1 rAB—4 g —g 1+— n~~ ncaac~ A
c'r Ac C~B c'rBC 2 rcB

7 G MBMc GMB
& nac, , + & {v„—va), , (4n„a.v„—3n„, .v, ),

B& A CAB C r ABrBC BX A C rAB

where

rzz = ~z„(t)—zii(t) ~, n~s ——[z~ (t) —z~(t)]/r» .

One can check directly that the equations of motion (7.20) can be derived from the Lagrangian

(7.20b)

(7.21)

(LD) 1 2 GMA M
(z~ v~)=X ™~v~+XX

BWA

36M A MB V2

+g M~v„+g g
8C A B~ A 2C rAB

GMA MB G2MAMBMc
[7vg.vii+(nag v, )(nag va)] —y y4c

A BXA CaA
(7.22)

The Lagrangian (7.22) can, e.g. , be obtained by starting
from the fact that the motion of each body derives from
the indidivual (geodesic) action

5„=—M„c f dr„= fL„(z~,v~ )dt, (7.23)

with
1/2

GAZA

8Z AI.„™~c—g „"(z„)
dt dt

2 1 2 1 2 3
MAC + MAVA 1+ VA+ 2 MA

2 4c2 c2

1 2 4
+My wg (wg) ~w; Ug

2c C
(7.24)

and then by symmetrizing, over the body labels, the ex-
plicit expression (in terms of the zz's and vs's) of the in-
dividual Lagrangians. '

The equations of motion (7.20) and the Lagrangian
(7.22) were first obtained (for the general iV body case) by-
Lorentz and Droste as early as 1917 (thereby correcting
the even earlier results of Droste and de Sitter). This ex-
plains our label LD in Eqs. (7.20) and (7.22). However,
the method used by Lorentz and Droste assumed from

the start a very peculiar matter model (incompressible
fiuid balls), and assumed, purely by analogy with the
Newtonian case, that one could neglect the mutual "ti-
dal" inAuences between the N bodies. In 1938, Einstein,
Infeld and Hoffmann, ' dissatisfied by the practice of as-
suming specific matter models when treating the relativis-
tic problem of motion introduced a new approach in
which the information concerning the internal structure
of bodies was replaced by assumptions about the struc-
ture of the exterior gravitational field near the bodies.
They obtained the equations of motion (7.20), in the par-
ticular two-body case (because of that, and the fact that
Ref. 5 has been long forgotten the Eqs. (7.20) are often
named EIH, after the authors of Ref. 19). However,
there were some fiaws in the method of Ref. 19 (replaced
by other Aaws in subsequent papers of Einstein and In-
feld), and, moreover, it was not clear to what kind of
physical bodies their results could be applied. In the
theory of the motion of strongly self-gravitating bodies
(black holes or neutron stars) it proved very useful to dev-
ise methods that were somewhat related to the EIH one,
but which completed it by techniques of asymptotic
matching, allowing the transfer of information between
the internal structure of the bodies and their exterior
gravitational field. Examples of such methods are the
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ones of D'Eath (for the motion of black holes) and the
one of Damour (for the motion of black holes or neu-
tron stars). These works proved that the dynamics (7.20)
(7.22) described the motion of strongly self-gravitating
bodies if the coefficients M~ appearing in them denoted
the "Schwarzschild" masses of the various bodies (see
Refs. 7 and 26 for reviews of other contributions to the
problem of the motion of gravitationally condensed bo-
dies).

Concerning the Lorentz-Droste method, and the
motion of weakly self-gravitating bodies, it has been
refined and generalized by many subsequent works (not-
ably Fock, and quite recently by Grishchuk and Kopej-
kin ). However, even in the most recent works develop-
ing this approach the treatment of "tidal inAuences"
remains nearly as primitive and heuristic as in 1917. As
discussed in Ref. 7 (Sec. 6.13) this leads even to an incon-
sistency of the derivation of higher-order relativistic

corrections to Eqs. (7.20). This situation has improved
only quite recently in the works of Brumberg and Kopej-
kin, and in the present work. We have obtained here the
dynamics (7.20) as the simplest example of a consistent
truncation of our scheme, and we think that already as
such it improves over its previous derivations. A rather
definitive improvement in the derivation and meaning of
Eqs. (7.20) will follow from our subsequent papers where
we shall derive the full post-Newtonian equations of
motion, containing all the (relativistic) multipole mo-
ments.
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