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The equations governing a flat Robertson-Walker cosmological model containing a dissipative
Boltzmann gas are integrated numerically. The bulk viscous stress is modeled using the Eckart and
Israel-Stewart theories of dissipative relativistic fluids; the resulting cosmologies are compared and
contrasted. The Eckart models are shown to always differ in a significant quantitative way from the
Israel-Stewart models. It thus appears inappropriate to use the pathological (nonhyperbolic) Eckart
theory for cosmological applications. For large bulk viscosities, both cosmological models ap-
proach asymptotic nonequilibrium states; in the Eckart model the total pressure is negative, while in
the Israel-Stewart model the total pressure is asymptotically zero. The Eckart model also expands
more rapidly than the Israel-Stewart models. These results suggest that "bulk-viscous" inflation
may be an artifact of using a pathological fluid theory such as the Eckart theory.

I. INTRODUCTION

The first attempts at creating a theory of relativistic
dissipative Auids were those of Eckart' and Landau and
Lifshitz, which are presented in many texts on relativis-
tic physics. These theories are now known to be
pathological in several respects. Regardless of the choice
of equation of state, all equilibrium states in these
theories are unstable; in addition, signals may be pro-
pagated through the Auid at velocities exceeding the
speed of light. ' These theories are thus unacceptable
even in principle, since they violate the basic principles of
special relativity.

A number of workers have more recently developed
theories closely related to the Grad approximation
method in nonrelativistic kinetic theory; the most
comprehensive early treatment of such theories was that
of Israel and Stewart. " In the Israel-Stewart theories,
it can be shown that stable equilibria are possible, and
further, that perturbative signals will propagate causally
via hyperbolic equations if the Auid equilibria are
stable. ""

Despite the apparent superiority of the Israel-Stewart
class of theories of dissipative relativistic fluids, many cal-
culations involving Auid dissipation in a relativistic con-
text (e.g. , in astrophysics, cosmology, or heavy-ion col-
lisions) still are performed using the Eckart and/or
Landau-Lifshitz theories. This is largely due to two
reasons. First, the Eckart and Landau-Lifshitz theories
are much simpler to deal with; in these theories, a Auid
possesses only five degrees of freedom (three velocity, two
thermodynamic), while in the Israel-Stewart-type extend-
ed theory, the deviations from equilibrium (bulk stress,
heat flow, and shear stress) are treated as independent
dynamical variables, leading to a total of 14 dynamical
Auid variables to be determined. Second, it is widely be-
lieved that the unstable, noncausal behavior associated
with the simpler theories always occurs in a wildly non-
physical domain (e.g. , the growth time scale for an

Eckart instability in room-temperature water is 10
sec), so that it will be easy (in general) to identify unphys-
ical spurious modes and discard them by hand.

The purpose of this paper is compare and contrast the
predictions of the Eckart and Israel-Stewart theories in a
physically interesting context: to examine the full non-
linear evolution of a dissipative relativistic fluid in an ex-
panding isotropic universe. Since the detailed behavior
of a dissipative relativistic Auid depends strongly on the
thermodynamic properties of the Auid, which are general-
ly inadequately known for realistic materials, we are
forced to use the Boltzmann gas as the cosmological Auid
in our models. Only for the Boltzmann gas are the dissi-
pation coefficients and second-order coefficients known
precisely over the entire range of Auid densities and tern-
peratures encountered in a cosmology. Thus, while a
Boltzmann gas is not a realistic model for the cosmologi-
cal Auid in a realistic universe, it is the only Auid for
which the thermodynamic properties are well enough es-
tablished by relativistic kinetic theory to allow us to con-
struct precise models. Since our goal is to compare the
predictions of alternative Auid theories rather than con-
struct realistic cosmological models, this restriction is not
too burdensome.

The cosmological model is taken to be described by a
spatially flat Robertson-Walker metric. The combined
gravitational and Auid equations are derived and numeri-
cally integrated for both the Eckart and Israel-Stewart
theories (the predictions of the Landau-Lifshitz theory
are identical to those of the Eckart theory in this case).
The resulting numerically integrated cosmological mod-
els can be properly referred to as dissipative Boltzmann-
Robertson-Walker models.

The only previous comparisons which have been made
for nonlinear evolution of a dissipative relativistic Auid
are for plane-symmetric motions of an inviscid Iluid (i.e.,
the only allowed dissipation was a nonzero heat flow). '"'
In contrast, in an isotropic cosmological model, the high
degree of symmetry guarantees that the heat-Aow vector
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and shear-stress tensor vanish. The only nonzero devia-
tion from equilibrium possible is then a nonequilibrium
contribution to the isotropic pressure, i.e., a bulk stress.

The effects of a bulk stress (or the existence of a
nonzero bulk viscosity) have often been ignored in fiuid
dynamics, largely because of the curious circumstance
that the bulk viscosity coefficient vanishes in both the
Newtonian and ultrarelativistic limits for a Boltzmann
gas (though it is nonzero at all finite temperatures greater
than zero' ). It is, however, not generally valid to set the
bulk viscosity to zero as an approximation in the Israel-
Stewart theory, since the bulk stress constitutes a dynam-
ic degree of freedom. There are situations (such as in the
study of shock waves' ) where the very existence of a
nonzero bulk viscosity can have important effects on the
physics of the Auid, regardless of the magnitude of the
bulk-viscosity coefficient.

The effects of a nonzero bulk viscosity on isotropic
cosmological models have been previously considered in
several studies. It has long been realized that an expand-
ing Robertson-Walker universe does not allow equilibri-
um solutions of the relativistic Boltzmann equation for
massive particles (i.e. , the expansion of the universe must
be nonadiabatic). Weinberg' performed the first serious
study of the effects of radiative bulk viscosity in an ex-
panding universe; his study was the first to show that ra-
diative bulk-Viscous effects could in no way account for
the large entropy of the present Universe. A number of
studies by Bernstein and his co-workers have examined in
detail relativistic kinetic theory in isotropic cosmological
models. ' Studies have also considered whether viscous
effects might sufficiently violate the energy conditions to
allow the removal of the initial singularity. More re-
cently, bulk viscosity has been suggested by a number of
workers as a possible driving force for an inAationary
epoch in the early Universe. These models have
been criticized on the basis that kinetic theory does not
allow the physical pressure (equilibrium pressure plus
bulk stress) of a radiative gas to become negative, a neces-
sary condition of inAationary expansion. In rebuttal, it
has been pointed out that kinetic theory cannot be ex-
pected to describe adequately a dense gas; the difFiculty of
proceeding further and accurately describing the bulk
viscosity of the early Universe is that one quickly en-
counters conditions under which we have only the most
rudimentary knowledge of the equation of state, much
less the detailed form of the viscosity coefficients. All of
these studies (with the exception of Ref. 29) have used the
Eckart theory to describe the dissipative Auids within the
expanding Universe.

There have also been a number of works which have
examined various aspects of dissipative Quid cosmology
within the framework of an extended, Israel-Stewart-type
Quid description. In these studies, various approxi-
mations have been made in evaluating the bulk-viscosity
coefficient and the second-order coefficient Po (essentially
the relaxation time for the bulk stress). Further, in all of
these cases, the authors have used an approximation to
the full Israel-Stewart theory in which Po/T (where T is
the temperature) is assumed to have zero time derivative.
We believe the present work is the first to faithfully in-

corporate the complete Israel-Stewart Auid dynamics in
an isotropic cosmological model.

Since we use the physically inadequate Boltzmann gas
model for the cosmological Auid at all temperatures and
densities, we do not expect our results to yield new in-
sights into cosmology, but rather into the question of
whether the simpler (yet pathological) Eckart theory will
yield reliable results in an appropriate physical applica-
tion. Our primary conclusion is that the Eckart theory
does shows its pathology in a cosmological setting: There
are always significant quantitative differences between the
Eckart and Israel-Steward Auid model cosmologies. The
differences are most dramatic for large bulk viscosities:
There both theories yield "runaway" solutions in which
the bulk stress grows to become comparable to the equi-
librium pressure and remains large asymptotically into
the future. In the Eckart theory, the "runaway" has a
negative total pressure (bulk stress larger than equilibri-
um pressure), and the universe expands asymptotically ast; as it expands, the universe heats up rather than cool-
ing off. For comparison, in the Israel-Stewart "runaway"
solutions, the total pressure is asymptotically zero (bulk
stress equal to equilibrium pressure), the universe ex-
pands as t, and the universe tends to an asymptotically
constant temperature. Neither of these solutions should
have any special relevance to cosmology: It is notable,
however, that the Israel-Stewart "runaway" solution,
while fairly bizarre as a cosmological model, is
significantly less so than the Eckart model (e.g. , the total
pressure remains non-negative in the Israel-Stewart
theory). Further, it is interesting to note that the Eckart
"runaway" bears some resemblance to the supposed
"bulk-viscous" inAationary models; we are strongly suspi-
cious that bulk-viscous inAation may be a consequence of
using an inadequate theory of Auid dissipation, such as
the Eckart theory. This reinforces the need to use a
stable, hyperbolic theory of dissipative Auids to achieve
trustworthy results.

II. DISSIPATIVE
RELATIVISTIC FLUID MECHAMCS

7', N'=0 .

The derivative operators appearing in Eqs. (l) and (2) are
four-dimensional covariant derivatives. The stress-
energy tensor and particle number current can be decom-
posed as

T'=pu 'u '+ (p+ r)q'+ q'u '+ q'u '+ r'
alld

2V'= nu ', (4)

The fundamental variables of a theory of relativistic
dissipative Auids are the stress-energy tensor T'" and the
particle number current N'. These fields obey the con-
servation equations

V r'b=o
a

alld
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where u' is the four-velocity of the fiuid, p is the energy
density (as measured by an observer comoving with the
fiuid), p is the equilibrium pressure, n is the number den-
sity, and q' is the projection tensor orthogonal to u'.
The fields ~, q', and ~' describe the deviation from equi-
librium in the fiuid; ~ is the bulk stress, q' is the heat-flow
vector, and ~' is the shear-stress tensor. While there is a
unique definition of the four-velocity for a Quid in equilib-
rium, there are an infinite number of choices which may
be made off equilibrium. In our decomposition in Eqs. (3)
and (4), we have chosen to use the "Eckart" definition of
four-velocity, in which the four-velocity is chosen to be
parallel to the, &article number current vector. In order
for the decomposition in Eq. (3) to be unique, it is neces-
sary that the fields q' and v'" satisfy the constraints

q Q —'7 Q b
—7 —'T 7

The pressure p is defined in terms of p and n by using the
equilibrium equation of state for the Quid; the bulk stress
~ is then the difference between the physical isotropic
spatial stress (T'"q„qb'/3) and the thermodynamically
defined equilibrium pressure p.

The equations defining the deviations from equilibrium
( qr', 'r) are obtained by imposing the second law of
thermodynamics. The entropy current s', written in the
most general form through quadratic order in the devia-
tions from equilibrium, takes the form

s'= snu '+ q'/T

,'(POP+—P—,q qb+P2 ' r b)ua'/

+aorq'/T+air bq /T,

where T is the temperature and s is the entropy per parti-
cle. The three thermodynamic coefficients P; model the
deviations of the physical entropy density from the ther-
modynamic entropy density sn. The other two
coefficients e; describe couplings between the heat Aow
and viscous deviations from equilibrium. The expression
for s' given in Eq. (6) contains all possible terms through
second order in the deviations from equilibrium; choosing
s' to have this form yields a "second-order" theory, of
the sort developed by Israel and Stewart. If the a; and P,
are taken to be identically zero, then the first-order
theory of Eckart results (it is worth noting that relativis-
tic kinetic theory shows that these coefficients are
nonzero for simple gases).

The second law of thermodynamics is embodied in the
requirement that

V', s'~0 .

The divergence of the entropy current defined in Eq. (6)
may be computed and simplified using the conservation
equations [Eqs. (1) and (2)]. The divergence of s' may
then be forced into the following manifestly non-negative
form:

a ab
q q

aT 2i)

The three (positive) dissipation coefficients may be
identified as the bulk viscosity g, the thermal conductivi-
ty K, and the shear viscosity g. In the Israel-Stewart
theory, the resulting expressions for ~, q', and ~' are

V, u'+pou'V, r aoV', q' yoTq'V—', +——&TV,
ao 1 Po

q'= —~Tq' —
Vb T+u'V, ub+p, u'V, qb aoVbr a, V,—&'b+ —T—qbV',

CXp—(1 —yo)GATV'„
0,')—(1—y, ) Trb'V, + y 2V (b u, )q'T

H = —2q(V'u +22zu'q, ~' —a, q'q + —Tv' 7, u' —y, q'q'7 +y, V~'u'4, ),
L

where the brackets which appear in Eq. (11) are defined
by

( gab) I a b (lcd+ gdc) 2 ab lcd (12)

The expressions for ~, q', and ~' in the Eckart theory
may be obtained from Eqs. (9)—(11) by setting all the a;,
P;, and y,. equal to zero. Note that in the Eckart theory,
the equations defining ~, q', and ~' are algebraic rather
than differential equations; in the first-order theories, the
deviations from equilibrium are not additional degrees of
freedom. The first-order theories contain only five de- G,b=8vrT, b . (13)

grees of freedom (three components of the four-velocity
and two thermodynamic variables), exactly as in the
perfect-Quid case. In the second-order theories, there are
an additional nine degrees of freedom, representing the
free components of ~, q', and ~'", whose evolution is
governed by Eqs. (9)—(11).

Equations (1), (2), and (9)—(11) form the complete set of
equations for the second-order Israel-Stewart theory,
with the Eckart choice of four-velocity (in the "Eckart
frame"). Gravitational interactions are included by add-
ing the Einstein equations to this set:
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III. ROBERTSON-WALKER
COSMOLOGICAL MODELS (18)

The Robertson-Walker metric ' is the most general
spatially homogeneous metric which is in addition isotro-
pic about every point. The metric may be written as

ds = —dt +a (t)[(1 K—r ) '(dx +dy +dz )], (14)

and

Ba
2a

Bt

2
Ba 2

Bt
—8~(p+ r)a (19)

where r =x +y +z, and K is the (constant) spatial
curvature. The spatial three-geometry is spherical, Hat,
or hyperbolic as K is chosen to be positive, zero, or nega-
tive, respectively.

In the present study, we are interested in applying the
models of relativistic dissipative fluids described in Sec. II
to isotropic cosmological models. The spatial isotropy of
the Robertson-Walker metric requires that the four-
velocity of the Quid must be taken to be purely along the
time axis; in the coordinate system of Eq. (14),
u'=(1, 0, 0,0). The heat-fiow vector and shear-stress ten-
sor are then purely spatial, by the constraints of Eq. (5).
The isotropy of the model then further implies that both
q' and ~'" must be identically zero. The heat How must
be zero, since if it were not, it would pick out a preferred
direction in space (being a purely spatial vector field).
Isotropy implies that the matrix of components of ~'"
must be invariant under SO(3) rotations at every point in
space; the only matrix which is so invariant is a constant
multiplied by the unit matrix; since ~'" is traceless, the
multiplying constant must be zero. Thus the only form
of dissipation which can be accommodated in a
Robertson-Walker cosmological model is a bulk stress ~.
With these restrictions on the deviations from equilibri-
um, the defining equation for r [Eq. (9)] takes on the
simpler form

/30
7', u '+/30u 'V', r+

GATV,

u—' (15)

T'"=pu 'u "+(p +r)q' (16)

We shall consider only the case of zero spatial curva-
ture, %=0, in order to simplify the resulting cosmologi-
cal models. The metric then reduces to the familiar form

ds = dt +a (t)(dx +dy +dz—) . (17)

The Einstein equations for the metric given in Eq. (17),
with the stress-energy tensor of Eq. (16), may be written
as

This will be our fundamental equation describing the evo-
lution of the bulk stress. The bulk-stress equation for the
Eckart theory is obtained by setting /30 equal to zero.
Note again that if /30 is zero, then Eq. (15) is an algebraic
equation defining ~, rather than a differential equation.
The final term on the right-hand side of Eq. (15) has been
neglected in most studies applying the second-order
theory to cosmology; ' however, as we shall show, this
term has large effects on the evolution of the cosmologi-
cal model.

Isotropy and homogeneity thus force the stress-energy
tensor to be of the simple diagonal form

The time component of the conservation of stress-energy
equation (V', T' =0) for the stress-energy tensor of Eq.
(16) has the form

—(pa )= —(p+r) (a ) .
Bt Bt

(20)

The conservation of stress-energy equation (20) of course
follows directly from the Einstein equations (18) and (19)
as a consequence of the Bianchi identities; thus only two
of the three equations (18)—(20) are independent.

The conservation equation for the particle number
current [Eq. (1)] has the form

IV. RELATIVISTIC BOLTZMANN GAS

In order to integrate successfully the equations describ-
ing a dissipative quid isotropic cosmological model, it is
necessary to have a detailed knowledge of the thermo-
dynamic properties of the Auid. In particular, it is neces-
sary to know the equations of state of the fiuid [which
may be represented by the function s (n, p)] and the equa-
tion defining the bulk viscosity as a function of the ther-
modynamic state [i.e., g(n, p)]. If the fiuid theory is a
second-order theory, such as the Israel-Stewart theory,
then it is also necessary to know the form of the thermo-
dynamic coefficient /3 (n0, p). In principle, this knowledge
is obtainable either from a phenomenological analysis of
experimental data or by derivation from a microscopic
model of the fiuid (e.g. , kinetic theory).

The thermodynamic properties of a relativistic
Boltzmann gas may be obtained by solving the
Boltzmann equation in an appropriate approximation. A
number of authors have determined the fundamental

(na )=—0,
at

when the metric is taken to be of the Robertson-Walker
(RW) form.

In order to completely integrate a spatially Aat RW
cosmological model from initial conditions, it is necessary
to be able to determine the dynamical evolution of three
variables: a (t), p(t), and r(t). The three necessary equa-
tions may be chosen as the Einstein equation [Eq. (18)],
the conservation of stress-energy equation [Eq. (20)], and
the evolution equation for the bulk stress [Eq. (15)]. Ad-
ditional equations of state are needed in order to relate
the various thermodynamic variables to one another;
specifically, it is necessary to know the form of
p =p (p, n ), g(p, n ), and /30(p, n ). The number density n is
not an independent variable, but is determined by an ini-
tial condition along with Eq. (21). The form of these ad-
ditional equations of state for the relativistic Boltzmann
gas is discussed in the next section.
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thermodynamic equations of state using the relativistic
version of the Grad method of moments. This
method also allows for the calculation of the second-
order coefficients "and the dissipation coefficients.

While a Boltzmann gas is not a physically realistic
model of the contents of the Universe at all temperatures
and densities (among other problems, it ignores the
creation of particle-antiparticle pairs at relativistic tem-
peratures), it is the only precise model we can treat at this
time within the context of the second-order Israel-
Stewart fiuid theory. The "second-order coefficients" (a;,
p, , and y, ) have been evaluated using relativistic kinetic
theory only for simple gases. " Closed-form expressions
for these coefficients are known only for the Boltzmann"
and degenerate Fermi gases. While the Boltzmann gas
is not an adequate model of the real material content of
the Universe, it would appear that the degenerate Fermi
gas is even less appropriate. Within the current develop-
ment of relativistic kinetic theory, it then appears that
the Boltzmann gas is the only system for which the dissi-
pation and second-order coefficients are known over the
complete range of conditions encountered in the expand-
ing universe.

A great deal of confusion concerning the magnitude
and even existence of bulk-viscosity eFects arose histori-
cally as a result of the fact that the bulk viscosity of a
Boltzmann gas vanishes in both the Newtonian and ul-
trarelativistic limits ("vanishes" is used here in the sense
that the ratio of the bulk-viscosity to the shear-viscosity
coefficient approaches zero in both limits; at any temper-
ature other than zero or infinity, the bulk viscosity is ac-
tually nonzero). Israel' seems to have been the first to
realize that the bulk viscosity of a Boltzmann gas was in
fact nonzero, and that it was largest at mildly relativistic
temperatures (kT=mc ). While the general form of the
bulk viscosity is known for a variety of systems (e.g. , a ra-
diative gas' ), a precise functional form valid at all tem-
peratures is known only for the Boltzmann gas.

The thermodynamic properties of the Boltzmann gas
may be described by the dimensionless inverse tempera-

ture /3=me /kT, the relativistic chemical potential a
and a constant 30=m g l(27r fi ), where g is the spin
weight of the Quid particles. " The ideal-gas law then has
the familiar form

p =nmp

The number density is given by

nm = Roe K2(P)/P,

while the energy density may be written as

p= Ao[p '
K, (p) +3p K2(p)] .

(22)

(23)

(24)

It is interesting that the second-order coefficients (o,„/3, ,
and y;) are, like the equilibrium quantities (and unlike
the dissipation coefficients), independent of the scattering
cross section of the Quid particles. The only second-order
coefficient we require, Po, when evaluated for the
Boltzmann gas, may be written as"

p0=3fl*/(7t 0 p),
where p is the equilibrium pressure defined above, and

r/=K3(p)/K2(p),

(25)

(26)

Q = 3y [1+1/(7/p) ]
—5,

Il*= 5 —3y+ 3(10—7y )7//P,

where y is defined as the solution to

y/(y —1)=p (1+57//p —
7) ) .

(28)

g=mc7/ 0 /I,
where I is a collision integral:

(30)

The evaluation of the dissipation coefficients (bulk- and
shear-viscosity coefficients, thermal conductivity) for the
relativistic Boltzmann gas is a more complex undertaking
owing to the need to evaluate collision integrals. The
bulk-viscosity coefficient g is found to be of the form

27 5I= J dOsin (O) J di/7o(u, O)x .K3(x)sinh (i/)cosh (i/),
[K2(p)] o 0

(31)

x =2p cosh(i/t), 2c tanh( i/j) = u is the relative three-
velocity of the colliding particles, 0 is the angle of
defiection in the center-of-mass frame, and o(u, O) is the
scattering cross section of the Auid particles.

While we have very limited knowledge as to the func-
tional form of o. for realistic particles, it is clear that even
if we had complete knowledge, the integral in Eq. (31)
could not be evaluated in closed form. In order to obtain
a tractable problem, we will make the simplest possible
assumption concerning o'. namely, that o. is independent
of u. Such a cross section was originally used (in the non-
relativistic context) by Maxwell; ' it is accordingly often
referred to as a "Maxwellian cross section" (or, more
physically, as a constant cross section). Specifically we
shall define

0 dOo(O)sin (O)=const .2' 0
(32)

967r oo[pK3(2p)+4K2(2p)]I=
p'[K2(p) ]' (33)

The value we shall use for g is obtained by substituting
this expression for I into the general expression for g for
a Boltzmann gas given by Eq. (30). The kinetic theory
values we shall need to describe a Boltzmann gas in an
expanding Robertson-Walker universe are given by Eqs.
(22) —(25), (30), and (33).

With this choice of cross section, the integration over i/

in Eq. (31) may be carried out explicitly; the result is
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V. BOLTZMANN-ROBERTSON-WALKER
COSMOLOGICAL MODELS

In order to study the effect of different Auid models of
bulk stress on the expanding Universe, the differential
equations derived in the previous sections were integrated
numerically to yield k =0 dissipative Boltzmann-
Robertson-Walker cosmological models. For the Eckart
fiuid theory, the Einstein equation [Eq. (18)] and the con-
servation of stress-energy equation [Eq. (20)] were in-
tegrated, using the kinetic theory values of Sec. IV to re-
late the thermodynamic variables. The thermodynamics
are most easily dealt with if a (t) and p(t) are chosen to
be the independent variables; Eq. (20) can then be
reworked into a differential equation for the inverse tem-
perature p. After a fair amount of algebra, the following
differential equation is obtained:

P= 6a'a [K,(P) ]'f(P),
Rom

(34)

—[K,(P)]'—K, (P)K, (P)] -' . (3&)

In the Israel-Stewart case, the bulk stress is an indepen-
dent dynamical variable, and so Eqs. (15), (18), and (34)
were integrated. The independent dynamical variables
were chosen to be a (t), p(t), and r(t). Equation (15) may
be rewritten as

1 3a 3a 1 Po+ Po+ —+ + r . (36)
o a 2a g 2 2/3

Here d and p are defined through Eqs. (18) and (34), re-
spectively, while /3o is defined through an algebraic tangle
of thermodynamic quantities which ultimately depend
only on P, P, and a:

r

where cv'0 is the number of particles per unit volume at
the initial time, an overdot indicates differentiation with
respect to time, and

f(/3)= IK (op)K (2p)+(1+6p )[K (/3))

0 *= —3+21—j +3(10—7y) ~ — . (42)
p p'

The equations were numerically integrated over a
range of cosmological parameters running from an ini-
tially ultrarelativistic universe, with p=0.001 and scale
factor a = 1, to a final state which would be highly nonre-
lativistic in the absence of dissipation (scale factor
a = 10 ). The initial energy density was chosen to be equal
to that of a radiation-dominated universe with k =0; the
initial number density (Koa ) was then determined from
the fiuid equation of state [Eq. (22)]. This choice of
domain covers the mildly relativistic regime (p= 1) where
bu&&-

'
ulk-viscous effects are expected to be largest. The rela-

tive size of the bulk-viscous effects was varied by con-
structing models with differing bulk-viscosity coefficients;
the bulk-viscosity coefficient was adjusted by varying the
Boltzmtzmann gas particle rest mass (g is proportional to the
cube of the particle mass). Since the Boltzmann gas is
not a realistic model of the physical cosmological 6 dca ui

e particular values of mass used should not be con-
sidered to have any particular cosmological significance.
The initial value of the bulk stress ~, which must be
specified independently in the Israel-Stewart case, was set
equal to its Eckart value.

A primary indicator of the importance of bulk-viscous
effects is the ratio ir/pi, which measures the relative size
of the nonequilibrium pressure compared to the equilibri-
um pressure. For small values of the particlar ic e mass
m ( GeV), the behavior of ~r/p i as a function of the

expansion factor a(t) is qualitatively the same for both
the Eckart and Israel-Stewart theories. A plot of ir/p ~

vs a(t) for m =10" GeV is shown in Fig. 1 for both
theories. The behavior of the bulk stress is what one

0.080

/3o=3

where

0 * 20,*q 2Q*A
~2~2' 3g2 2~3

QQ

2@2 2qAp
o.oeo—

—0.040 --
i

co

7 = 3 + p~a
(38)

0.020-

IK, (p)K3(p)+ [K3(p)]
2K~ )

—[K,(P)]' Kp(P)K4(P)], (39)
0.000

20
I

I

40 60

10 a(t)
80 100

y = —(y —1) P — P+2r/r/

Q=3y
2p

+2PP+ 2PP 1+

, +3 1+ '
~p' qp

(40)

(41)

FIG. 1.. Magnitude of the ratio of the bulk stress to the equi-
librium pressure,

~ r/p ~, is plotted against the cosmological scale
factor a (t) for both the Eckart and Israel-Stewart fluid models.
The particle mass is taken to be 10 GeV. As would be naively
expected, the bulk stress is small in both the ultrarelativistic and
nonrelativistic regimes, and reaches a pe k h thpea w en t e tempera-
ture is comparable to the particle rest mass.
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would naively expect: It is small in both the ultrarela-
tivistic and nonrelativistic limits, and is most prominent
in the "mildly" relativistic region (the peak here actually
occurs at P= 12). These cosmological models are qualita-
tively similar and are also similar to nondissipative mod-
els. The pathological Eckart theory predicts a larger
bulk stress at late times than the Israel-Stewart model,
but still the bulk stress decays away as the nonrelativistic
limit is approached.

It is perhaps worthwhile to give some further details of
these models, since they illustrate nicely the transition be-
tween the two standard cosmological models described
analytically in every textbook: the radiation-dominated
universe (p =p/3 ) and the pressureless dust (p =0)
universe. Log-log plots are a convenient way to illustrate
the transition between the asymptotic power-law behav-
iors of the various cosmological variables. For all cosmo-
logical variables except the bulk stress, the predictions of
the two theories are indistinguishable.

The dependence of P on the scale factor a (t) is shown
in Fig. 2. For P ( 1, P is linearly proportional to a (t), as
would be expected for a radiation gas. There is a smooth
transition in the region 1(P(10, and for P) 10, the be-
havior appropriate to a nonrelativistic gas (@=a ) is
recovered. Figure 3 illustrates the dependence of p on
a (t), showing the smooth transition from a radiation-
gas-like behavior in the early universe (p=a ) to a pres-
sureless gas in the later universe (p= a ), when the tem-
perature has become nonrelativistic. Finally, Fig. 4
shows how the expansion of the universe varies with
time; again, in the early universe, the Boltzmann gas is
well approximated by a radiation gas, and a =t '; in the
later universe, when the temperature has dropped to non-
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—24.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0

relativistic values, a =t; there is a smooth transition
between these two asymptotes.

As the particle mass (and bulk-viscosity coefficient) are
increased, a striking qualitative change in the cosmologi-
cal models occurs. Above a critical mass (which is
different for the different fluid theories), the bulk stress,
instead of rising to a peak and then falling, rises to ap-
proach asymptotically a value comparable to the equilib-
rium pressure.

The critical mass, above which bulk-stress effects dom-

FIG. 3. Energy density p (divided by the initial energy densi-

ty po) is plotted against the scale factor a(t). A smooth transi-
tion is seen between the behavior of a radiation gas in the early
universe, p=a ", and the behavior of a pressureless gas in the
late universe, p=a '. The particle mass is chosen to be 10
GeV.

4.0-
6.0

2.0-

0.0-

—2.0-

—4.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0

5.0-

~4.0—

~3.0-
CD

~ 2.0-0

1.0-

0.0—8.0 —6.0 —4.0 —2.0 0.0 2.0 4.0
FIG. 2. Inverse dimensionless temperature P is plotted

against the scale factor a(t). In the early universe (small scale
factor), the temperature evolves as in a radiation gas: p=a.
There is then a smooth transition to the nonrelativistic domain,
where the temperature evolves as in a nonrelativistic gas, p= a'.
The particle mass is chosen to be 10 GeV. The behavior of the
Eckart and Israel-Stewart fluids are indistinguishable at this
scale.

log (t (10 crn))

FIG. 4. Scale factor a(t) is plotted against time. There is a
smooth transition between the radiation-dominated universe be-
havior at early times (a = t '

) and the matter-dominated
universe at late times (a =t ). The particle mass is chosen to
be 10 GeV.
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FIG. 8. Evolution f hof the inverse dimensionless temperature P
as a function of scale factor a (t) f E kor c art cosmologies near
t e critical article mp ass. Above the critical particle mass th
total ressurp ssure rapidly evolves toward a negative final value, and
hence the cosmic tern ep rature goes through a minimum and
then increases: The late universe expands and heats up. The
curves illustrated re rep sent particle masses, from bottom to top,
of 1.5X10, 1.25X10, 10, and 10 GeV.

plotted against a (t) for several different values of the ar-
ticle mass. As. Again, for all masses greater than the critical

ues o e par-

mass, t e bulk stress approaches the same asymptotic
value, in this case ——" times the equilibrium pressure.

~ ~ ~

There are several interesting consequences of having the
asymptotic bulk stress greater in magnitude than the
equilibrium pressure. First, since the total pressure ~+p
is now negative, P is now negative in th 1 te a e universe.

e universe then expands and heats up rather than cool-
ing off; this behavior is shown for several values of the
particle mass in Fig. 8. Second, a negative total pressure
increases the expansion rate of th e universe: The asymp-
totic states of all Eckart models above th 't'

1

avea t =t
ove e critica mass

It is interesting to compare both of these models with

w ic
one based on the extended theory of dissipative Auids

studies
has een used in several previous 1cosmo ogica'

studies. In these treatments, the bulk se u stress was
rea e as an independent dynamical variable, as in the

Israel-Stewart theory. However th d fi
'

e e ning equation
or t e bulk stress in these treatments all lack the final
erm on the right-hand side of Eq. (15). W 11e wi refer to

is t eory as a "truncated-Israel-Stewart" d 1. S
a eory would be a member of the Israel-Stewart class of
theories only if Po is constant; however, kinetic theor

definitely not constant in an expanding
eory

universe. In order to determine h th hw e er t is term plays
an important role in the dynamics of a cosmological
mo e, we have numerically integrated the e equations with
t is term left out. For large particle masses the re 1

'

ogica model is strikingly different from either the
e s, as is s own in the be-Eckart or Israel-Stewart models

'
h

avior of a (t), plotted in Fig. 9 for all three Quid theories
e . s iscussed above, thefor a particle mass of 10 GeV. A d d

Israel-Stewart and Eckart models expand asymptotically

100 ~Truncated

80 Israe1—Stew art

I 40-
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FIG. 9. Evolution of the scale factor a (t) vs time for cosrno-
ogical models integrated using the Eckart, Israel-Stewart, and

truncated-Israel-Stewart Auid theories Thries. e partic e mass is the
same for all three theories, 10' GeV. At l tate times, the Israel-
Stewart cosmology has a (t) = t th E k

7/9
e c art cosmology has

a (t) = t and( =, the truncated-Israel-Stewart cosmolo has
a (t) =exp(~t ).

smo ogy as

as t and t rerespectively. The truncated-Israel-
Stewart mo eo~e~, "owever, expands exponentiall as m-
toticall . In'

a y. n this model, the asymptotic value of the bulk
stress is —4 /3 as i—p, in the Eckart case, the universe
heats as it ex ands.p . T' e asymptotic equilibrium pressure
is thus the same as that of a high-temperature Boltz-
mann gas, p =p/3. The total pressure is th en

p ——p/3+p/3= —p, the required value for ex-
ponential expansion. The energy density of the universe
remains constant as it expands: While the Auid is diluted
by the expansion, the heating caus d b the y e negative total
pressure exactly makes up for the dilution to yield a con-
stant energy density. The asymptotic state is thus exactly

its source.
e Sitter space, albeit with a rather odd Boltzmann gas as

While it is amusing that the truncated-Isra 1-Ste - ewart
eory yie ds an asymptotically de Sitter state for a

t eory is the most strongly grounded in relativistic kinet-
ic t eory (via the Grad method of moments), and we feel

the Eckart an
it gives the most trustworthy models. W h

e c art and Israel-Stewart models are quantitatively
different over a large range of bulku viscosities; we thus
conclude that the simpler (but pathological) Eckart
theor is noty

'
not an adequate approximation to the behavior

of the full I
el. While for

srael-Stewart theory in any cosm 1
'

1 d
e. i e or small bulk viscosities many of the cosmo-
logical variables are indistinguishable between the two
t eories, the evolution of the bulk stress is quite different
hence the entro py generated in the expansion will be
significantly different. For larger b lker u viscosities, we par-
ticularly note that only the Israel-Stewart model has zero
as a consistent lower bound on th t t 1e o a pressure of a

o tzmann gas: Both the Eckart and truncated-Israel-
Stewart theories allow the total pressure to become nega-
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tive in some cosmological models. We feel that this pre-
diction of a negative total pressure for a Boltzmann gas is
an indication of pathology in these Auid theories.

A number of studies in recent years have claimed that
an episode of inAation in the early universe might be
caused by the Auid phenomenon of bulk viscosity.
While our models considered here are quite different
from those which attempt to Inodel a radiative Auid's

bulk viscosity, we feel that our comparison of the
different Auid theories may be relevant to the discussion
of whether bulk-viscous inAation can exist. An accelerat-
ed expansion, required for inAation, can exist only when
the total pressure is negative. In our models, negative to-
tal pressures only occur for the pathological Eckart
theory, and the truncated-Israel-Stewart theory. It is

perhaps more than a coincidence that these are the same
Auid theories in which bulk-viscous inAationary effects
have been found. We thus are led to conjecture that
"bulk-viscous inAation" occurs as a result of using an
inadequate theory of relativistic dissipative Auids. When
a truly relativistic, causal, and hyperbolic theory, ground-
ed in relativistic kinetic theory, such as the Israel-Stewart
theory, is used, no negative total pressures and, hence, no
bulk-viscous-inAation models are found.
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