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We address the question whether the inflationary paradigm frees cosmology from the worry
about initial conditions. That is, we study the influence of initial inhomogeneities on the
inflationary epoch. We derive a simple set of approximate equations and use it to illustrate some
features of deviations from homogeneity. However, the approximation methods are limited and in

order to explore the full effect of initial inhomogeneities we turn to numerical calculations. The pic-
ture that emerges from these calculations is that inhomogeneities can prohibit "new" inflation from
taking place. The crucial feature necessary for "chaotic" inflation is a sufficient high average field

over a region of several horizon sizes.

I. INTRODUCTION

Cosmological inflation is a phase of exponential expan-
sion that took place at the very early Universe —once the
Universe emerged from the quantum era. InAation was
introduced' as a solution to the cosmological problems
which appear in the standard big-bang model. It is sup-
posed to free cosmology from the need for very special in-
itial conditions, in particular, from the need of having ini-
tially very homogeneous and Aat conditions. Currently,
one of the main unresolved questions concerning inAation
is whether inAation is generic or requires specific initial
conditions. If inAation is not generic, it will lose its ap-
pealing power to free cosmology from the need of specific
initial conditions.

During the inAationary phase, the energy density of the
matter in the Universe is dominated by a potential of a
massive scalar field, V(P). The energy density of a scalar
field p& contains, in addition to the potential term, also a
kinetic term p& and a gradient term pz..

We study whether general initial conditions, in which
the potential term is not the dominant one, can evolve
into a configuration in which the potential term will dom-
inate. We use the framework of two models for inAation:
'chaotic" inflation and "new" inflation. (A third

model, "extended" inAation, was suggested recently.
The inAuence of initial conditions on this model is drasti-
cally different from the inAuence on the two other mod-
els, and we do not discuss it here. ) We assume that the
reader is familiar with the basic concept of intiation (for
recent reviews, see, e.g. , Ref. 7). Two important results
are required for the following discussion: In chaotic
inAation models the scalar field must have initially a large
value, i.e., P, ) a few mp&. In new inAation the scalar
field must be initially very near the origin, i.e., P; =0, and
any significant displacement from the origin reduces the
duration of new inAation by a very large factor.

Belinsky et al. and Piran and Williams have shown
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If 5P =P (mp& (as can be expected in chaotic iniiation),
the physical size of the homogeneous region must be
larger than a few horizons. This suggests that the
preinAationary Universe must be quite homogeneous and
that a large initial inhomogeneity might prevent inAation.

The realization that inhomogeneity at the early
Universe inAuences the onset of inAation and might even
prevent it motivated many researchers to look more
quantitatively at this issue. We describe here brieAy vari-
ous attempts to deal with this question based on different
approximation schemes and the numerical solution to the
problem.

that a large initial kinetic energy hardly affects chaotic
inAation. The initial kinetic energy is damped rapidly,
while the scalar field hardly changes its value. Unlike
chaotic inAation, which is generic, only very specific ini-
tial conditions lead to new inAation. ' In particular, an
initial kinetic term can easily prevent the onset of new
inAation.

While the effects of the kinetic term are relatively easy
to study and are well understood, it is much more
difticult to deal with gradients in the scalar field, which
imply inhomogeneity. In this paper we review the recent
attempts to study this issue and to explore the phase
space of initial inhomogeneous conditions which lead to
inAation.

One can estimate qualitatively how large the initial in-
homogeneity can be without preventing inAation. During
inflation, the potential-energy density V(P) must be
larger than the gradient-energy density pv=(5$/R4),
where 6 is a "comoving coordinate" measure of the inho-
mogeneity (i.e., b, is the "comoving wavelength" of the
initial perturbation), 5P is a typical change in P, and R is
the cosmological scale factor. The expansion rate
H=(R /R) is determined during inflation by the poten-
tial of the scalar field: H =8~V/3mp&. The condition
that the gradient-energy density pz be smaller than the
potential yields
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II. COSMOLOGICAL "NO HAIR" THEOREMS

The first attempts to deal with deviations from perfect
homogeneous models were within the context of the
cosmological "no hair" theorems. " ' These theorems
state that in the presence of a positive cosmological con-
stant, de Sitter space-time is a stable asymptotic solution
of the Einstein equations. In other words, perturbations
of a de Sitter solution decay leaving an asymptotic de Sit-
ter space-time. The no hair theorems imply that pertur-
bations of an inflating solution where the scalar field po-
tential is an effective positive cosmological constant de-
cay and disappear.

There are three independent reasons why these
theorems do not bear much light on the issue of initial in-
homogeneity.

(a) All the no hair theorems" ' assume that the
strong-energy condition' (p+ 3p )0) is satisfied. Barrow
has shown' that this assumption is essential and when
the strong-energy condition is relaxed the no hair
theorems fail. It is not clear, ' ' however, that this as-
sumption is valid in the preinflationary era, specifically,
since it is violated by the inflationary scalar field itself.

(b) The inhomogeneity in the scalar field also influences
the potential. Hence the "effective cosmological con-
stant" is not a constant any more. (This was neglected by
several authors' who argued that since the gradient
terms increase H, they will also increase the duration of
inflation. )

(c) Garfinkle and Vuille' have pointed out that the
cosmological no hair theorems do not take into account
cases in which only a part of the Universe inflates.

Overall, the no hair theorems have an important role
in determining the decay of perturbation and the asymp-
totic structure of an inflating solution. However, they
can be applied only after inflation has begun and all the
caveats mentioned above have disappeared. The no hair
theorems do not answer the question of how inflation be-
gins under inhomogeneous initial conditions.

III. SMALL-PERTURBATION ANALYSIS

A small-perturbation analysis was applied to both the
matter fields and the gravitational field. The perturba-
tions are around a homogeneous scalar field and around
the Friedmann-Robertson-Walker (FRW) metric. In
view of the cosmological no hair theorems, it is not
surprising that this analysis has shown that perturbations
on an inflating background decay.

Bardeen' has shown that in an expanding universe all
perturbations that are not coupled to matter decay, and
in particular they decay exponentially in a de Sitter
space-time.

Brandenberger and Feldman found, as expected, that
new inflation is stable under gravitational perturbations
that are not coupled to the matter. Brandenberger, Feld-
man, and Macoibbon ' have shown that thermal pertur-
bations in the scalar field do not prevent new inflation.
Finally, Feldman and Brandenberger have shown that
chaotic inflation is stable to both gravitational and scalar
field perturbations.

IV. INHOMOGENEOUS SCALAR FIELDS
ON FRW BACKGROUND

Several attempts' ' were made to perform a
different analysis which allows large deviations from
homogeneity but without resorting to a full numerical
solution. In order to simplify the problem, the metric
was assumed to be a homogeneous FRW background
even though the scalar field is inhomogeneous. The back
reaction of the inhomogeneity of the scalar field on the
geometry was included, in some of those works, ' ' by an
average effective gradient-energy density that was added
to the energy density.

We outline here one scheme of this kind which con-
tains all the essential features. The metric is FRW type
and it is characterized by the scale factor R and the ex-
pansion rate H. The scalar field is divided to a homo-
geneous component P and perturbation 5$, which has a
single Fourier component of comoving wave number k.
We take the physical wavelength A,R =2vrR/k—to be
smaller than the horizon size H '. The influence of 5$
on the potential is ignored. We obtain a set of three cou-
pled equations for H, P, and 5$:

8' P (~) 5$ k 5$
3m2 2 2R R

(3)

P+3HQ+ =0, (4)

and

k 55/+ 3H5$+ =0 .
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Since the gradient-energy density is proportional to R
it is expected to decay exponentially once the Universe
enters a de Sitter phase. The question is whether the gra-
dients can prevent the Universe from ever entering such a
phase. There are two important regimes of the initial
phase space of this solution.

(a) If 5$ & mp~ (and 2rrR /k &H '), the perturbation
oscillates, 5$ becomes of the same order as k5$/R, and
the perturbation 5$ behaves like a (decoupled) radiation
field. Like any radiation field the amplitude 5P decays
~ R, which in turn expands like t' . Such perturbations
decay, and they do not disturb the onset of inflation. One
caveat to this conclusion is the situation in a closed
universe. If initially pz&=5/ /2+A: 5P /2R )p&, the
initial phase will be a radiation-dominated one. During
this period, p&& ~R, while V(P) =const. The Universe
will begin to inflate only when p&&= V(P), i.e., when

ps~; (R; /R )"= V(P, )

(the index i stands for the initial values). The Universe
might collapse before Eq. (6) is satisfied and never inflate.

(b) If 5$) mp~ (and 2wR /k &H ') and if the gradient
term, on the right-hand side of Eq. (3), is large compared
to all the other terms, Eq. (5) reduces to



3206 DALIA S. GOLDWIRTH 43

We express 5P as RH(d 5P/dR ), and we integrate Eq. (7)
using H=V (47r/3)(k5$/mp~R), to obtain

R
Ro

50o —50'= exp 2w 2Pl p)

An exponentially large change in R corresponds to a very
small change in 5P. The increase in R causes, in turn, a
decrease of the gradient contribution to the energy densi-
ty since p& ~R . During this phase, the effective pres-
sure (due to the gradients) is = —pl3 and R ~ t. This
phase ends when pv

= V(P) = V(P, ) (the change in P dur-
ing this phase is of the same order as the change in 5P
and, hence, at least for chaotic inAation, we expect that if
P was appropriate for inflation, initially, it will remain so)
or when 5P =m p&, whichever happens first. In the former
case inflation starts (assuming that P, is "suitable for
inflation" ); in the latter case the perturbations begin to
oscillate, as described earlier.

Albrecht, Brandenberger, and Matzner used a slight-
ly different approach to study the effects of gradients on
new inflation. They use 5P also as the efFective scalar
field in the scalar field potential. They find that the scalar
field oscillations decay (since the potential-energy density
is negligible initially for the specific parameters used) and
5P is driven toward zero (due to the decay of the scalar
field oscillations). They conclude that for certain values
of the amplitudes and wavelengths the initial gradients
drive the scalar field toward suitable initial conditions for
new inflation. Kurki-Suonio et al. later confirmed
these conclusions in a full numerical study.

The effective average density approximation is quite
reasonable in two extreme cases: when the wavelength of
the scalar field excitation is much longer or much shorter
than the horizon size H '. In the first case the change in
the scalar field takes place on such a long scale that the
variations can be ignored and 5P can be simply added to

In the second case the oscillations are on a very short
scale and one can expect their average p to be close to the
real p.

In the first extreme case, it was found' ' that an ini-
tial large-wavelength excitation with a suKcient ampli-
tude (that by itself leads to chaotic inflation) leads to
inflation. This is not surprising since in this case the
effective field is simply P+5P. An addition of short-
wavelength excitation' (i.e. , the second limit) over a
large-wavelength excitation rapidly decays and does not
disrupt the evolution.

This approximation breaks down when the gradients in

P are of the same order as H '. In this case the varia-
tions in p inhuence the metric. Once the metric is not
FRW type, the gradients in the metric might induce a
feedback causing the gradients in P to decay much
slower. An average p cannot reveal the inhuence of the
gradients in the geometry on the matter fields. Only ex-
plicit calculations that take into account the matter back
reaction on the geometry can reveal the outcome of intro-
ducing large gradients.

V. NUMERICAL SOLUTIONS

In view of the above-mentioned shortcoming of the
various approximation schemes, one has to resort to a
full numerical solution of the problem. In the following
we describe the evolution of the Universe starting from
various inhomogeneous initial conditions. We derive
these results by solving the spherically symmetric Ein-
stein equations coupled to a massive scalar field (for more
details, see Croldwirth and Piran ). We work in the con-
text of a closed universe (which for simplicity has a
reflection symmetry around ir/2). This choice should
not affect the results since inflationary scenarios ' as-
sume the existence of large enough regions in which con-
ditions are appropriate for entering an inflationary phase.
These regions undergo an exponential expansion, and
their evolution does not depend on the global topology.
Furthermore, one of the goals of inAation is to explain
the flatness problem; such a topology enables us to verify
that an initially curved region becomes Oat after inflation.

We write the metric as a generalized (we use the term
generalized to denote the difference from the common
spherical isotropic coordinate system which does not in-
clude the Friedmann factor sin g; it reduces to the usual
isotropic coordinates when sing=r) spherical isotropic
form

ds = (N R —
/3 )dt —+2R/3dydt

+R (dy +sin ydO ),
where 0 ~ y ~ m, and R, N, and /3 are functions of y and t
(in the calculations that we present later, we use N =1).
R is an inhomogeneous scale factor, a simple generaliza-
tion of the scale factor R of the FRW metric.

The matter sources are two scalar fields: a massive sca-
lar field P, which acts as the source that drives inflation; a
massless scalar field 4, which plays the role of a radiation
field. This representation enables us to couple the fields
both gravitationally and thermally easily and self-
consistently. The potential for the scalar field P depends
on the inflationary model. The scalar radiation field 4
does not have a potential of its own, but it can be coupled
to the massive scalar field via a potential of the
form gp 'p (g being the coupling constant and usually
g ((the self-coupling of P).

Technical considerations led us to impose the follow-
ing restrictions on the initial data which do not reduce
from the generality of the results.

(i) II&""=0. II& = (R /N)(/3P z
—P—, ) is the conjugate

momentum to P. Initially, there is no kinetic energy.
Recall that initial kinetic energy (at least in chaotic
inflation) decays rapidly and does not influence
inflation. ' '

(ii) The initial data are isocurvature. The total energy
density is constant, but the fields are inhomogeneous; i.e.,
the total energy at different places has different composi-
tions of a scalar field and a radiation field.

(iii) The self-coupling constants for P are larger than
those required by observation.

We introduce several types of initial conditions in or-
der to understand how different gradients inhuence the
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inflationary epoch. Each of the cases we present here has
been chosen from an explicit group of results with com-
mon features to illustrate the typical behavior of a certain
type of initial condition, which we describe below.

VI. GAUSSIAN DISTRIBUTION

We start by studying the inAuence of a gradually
changing gradient. We characterize these by a Gaussian
centered around the origin:
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The distribution of the P field depends on Po, the value
of the field at the origin [P,„;,(y=O) =go], 5P the value
of P at the "other end of the Universe" (i.e
P;„;,(g =~/2 )—:P /z

=Po+ 5$[ 1 —exp( —1/b, ) ] ), and b,
the comoving width of the initial inhomogeneity. Keep-
ing the initial p„„]unchanged, we vary 6, the size of the
initial inhomogeneity, and we calculate how this
inAuences the inAationary epoch. '

One can divide the initial conditions into two types.
(i) Po and 5$ are such that the values V(go) and

V(P /z) are both "suitable for inflation" (by "suitable"
we mean that a homogeneous Universe with such initial
P, R, etc. , will inflate). The solid curve in Fig. 1 describes
the expansion factor at the origin as function of the initial
Rb, /H ' for such a case [see case (a) in Table I for de-
tails on the initial parameters]. We can see that large in-
homogeneities reduce the duration of inAation, but they
do not suppress it completely. Universes of this type
enter an inflationary phase everywhere.

(ii) Po and 5P are such that V(go) has a value suitable
for inflation, while V(P„/~) does not. In this case the
question whether any region will inflate depends on A.

Note that in the second type of initial data for chaotic
inflation with very small coupling constants the energy
density in the gradients is essentially larger than the ener-
gy density of the potential. When the potential-energy
(with a small coupling constant) density is comparable to
the gradient-energy density (5P is essentially «P), the
initial data are of the first type; i.e., the conditions every-

2 4 6 8
Ra//H

FIG. 1. Scale factor at the origin at the end of the computa-
tion as a function of the proper width of the initial Gaussian rel-
ative to the horizon size for initial conditions for which only the
value of P around the origin is suitable for getting infiation
(second type}. The various curves correspond to the columns of
Table I.

where are suitable for inflation. For example, if
V=10 '

P and V= 1, then /=10 . If the gradient-
energy density is comparable to V, it follows that 5/=1,
i.e., 5P «P.

We consider chaotic inflation with V(P)=m P /2
[case (b)] and with V(P) =A,P /4 [case (c)] and new
inflation with a quartic potential: V(P)=A, (P —o ) /4
[case (d)] and with a Coleman-Weinberg- (CW-)type po-
tential V(P) =A/ [In(P /cr )

—
—,
' ]+ko. [case (e)]. We

follow the evolution of the Universe, with difFerent pa-
rameters for the initial fields (see Table I) until it either
exits the inflationary phase everywhere or until part of it
starts to collapse. P,„z=—P(y=0) at the end of the com-
putation (see Table I) serves as an indication to the condi-
tions at that stage.

The solutions are best described as trajectories in the
(P, II ) phase plane, where II—:11/R . Chaotic inflation is
manifested by a H =const curve. This presentation gives
a qualitative picture of the deviation of the solution from
the corresponding homogeneous solution and of the dura-

TABLE I. Initial parameters and results for five cases described in Fig. 1. R,"„'d is the scale factor
when P =P,„z of an equivalent homogeneous expansion which started with / =$0.

Case
V(|t )

ptotai
R init—1
~init

end

R horn
. end

est

(a)
y4

a=10-4

3.75
10
0.9
13
—2

—38
4.98x10'

1.15

(b)
Massive
m =0. 1

2.3
6

1.16
6

—2
-03

2.5 x 10

1.15

(c)
y4

k= 10

1.11
10

1.38
7

—2
—2.2
4656

1.15

(d)
y4

X=10
o.=4

0.449
10

2.68
0.001

1.5
3

2.5x10"
0.86

(e)
CW

a=10-'
o.=0.2

2 x10-'
2000
395

5 x10-'
0.01
0.2

7x10"
0.0058
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tion of the inflationary period. In this picture it is easy to
see which part of the expansion is due to inllation (which
is after the trajectory reaches the inflationary solution
curve) and which part of the expansion is due to the
prein(lationary epoch. Figures 2(a), 2(b), and 2(c) de-
scribe, for cases (a), (c), and (d), the trajectory of the solu-
tion at the origin in the ((t, II) plane. The overall behav-
ior of the corresponding curves for case (b) resembles the
curves of Fig. 2(b), and those of case (e) resemble the
curves of Fig. 2(c).

The behavior of the solution with large gradients is
clear from Figs. 1, 2(b), and 2(c). In chaotic intlation
large gradients suppress inflation and large enough gra-
dients will diminish inflation altogether. When we com-
pare Fig. 2(b) with Fig. 2(a), we see that unlike case (a), in
which the Universe in(lated for all values of b, , in case (b)
the Universe inflates only when 6 is large enough, i.e.,
when R b, )2H '. Figures 3(a) and 3(b) describe the tra-
jectories in the (p, II) phase plane at five different spatial
points for b. = 1 and for b, =0.25 for case (b). We see that
in this case, when the Universe inAates, it inAates only
near the origin.

In new inflation models the influence of large gradients
is much more drastic than in chaotic inflation models.
One can see in Fig. l that new inflation is highly
suppressed even when the gradients are reasonably small.
If RA &4H ', the Universe does not inflate at all. This
behavior can be seen also in Fig. 2(c) where for
R 5 (4H ' the trajectories do not reach the inflationary
solution. Since new inflation is very sensitive' to the ini-
tial value of (t, relatively small amplitudes (5P) prevent
the regions away from the origin from inAating. Reduc-
ing 6 prevents the whole Universe from entering the
inflationary phase.

Table I gives an estimate [using Eq. (2)j for the value of
R 6 above which inflation takes place. Comparisons with
Fig. 1 show that this estimate is quite good for chaotic
in(lation. However, for new inAation Eq. (2) underesti-
mates the critical value by a large factor. For compar-
ison we have calculated R,"„'d, which is the scale factor at
the end of our calculation (when (( =(t,„d) of a homogene-
ous universe with the same initial conditions as the ones
that are given at the origin of our inhomogeneous solu-
tions. For new inflation R,"„'d is much larger than the in-
homogeneous R,„d. In this case the Universe spends
most of the inilationary period with $ =0. The deviations
from homogeneity induce variation of P;„;„which speeds
up the roll down of (t away from the origin.
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VII. SHORT-WA VELENGTH EXCITATIONS

In a second series of initial data, we decompose the ini-
tial scalar field configuration into Fourier modes:

We introduced a damping factor sing in the denominator
since "natural" spherical perturbations die away from the
center of symmetry (at y=0). The distribution of P de-
pends on (t, the average value of P, 5(t the amplitude of
the excitations around ((), and k the comoving wave num-

FIG. 2. (a) 11-vs-P trajectories at the origin for case (a) in
Table I. The solid line corresponds to the homogeneous solu-
tion with II;„;,=0 and P;„;,=13; the dotted lines correspond to
the points in Fig. 1 (large gradients reach further in H). j,'b) H-
vs-p trajectories of a chaotic inflation [case (c)]. The solid line
corresponds to the homogeneous solution with H;„;,=0 and

P;„;,=7; the dotted lines correspond to the points of curve (c) in
Fig. 1. (c) The same as (b), for new inflation case (d), with the
homogeneous solution corresponding to H;„;,=0 and

P;„;,=0.001. The straight part of the homogeneous solution is
the inflationary phase.
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FICr. 3. (a) Trajectories in (P, II) phase plane for five different
g's of case (c) with b =1: g=0. 5e —4, dotted line; y=0.42,
short-dashed line; y=0. 64, long-dashed line; g=0.92, short-
dot-dashed line; y=1.5, long-dot-dashed line. The solid line de-
scribes the homogeneous solution for II;„;,=0 and P;„;,=7. (b)
Trajectories in (p, II) phase plane for five different y's of case (c)
with 6=0.25: g=0.6e —3, dotted line; y=0. 14, short-dashed
line; y=0. 2, long-dashed line; y=0. 3, short-dot-dashed line;
y=0. 92, long-dot-dashed line. The solid line describes the
homogeneous solution for 11;„;,=0 and P;„;,=7.

ber, which is inversely proportional to the comoving
wavelength. In all the calculations that we present here,
k = 13, which corresponds to a physical wavelength
2~R /k of the order of the horizon size.

The key quantity in this initial data is iI). If it is not
"suitable, " the Universe will not inAate, no matter what
the gradients are. If (t is in the right range, then the issue
depends on the initial gradient-energy density. The main
question here is whether the oscillations decay before the
Universe starts to collapse.

When the perturbations are around large P, the initial
data resemble the first type of Gaussian initial data de-
scribed earlier. The initial excitation is damped and the
whole Universe infiated with P=P everywhere. This is
demonstrated in Fig. 4 for go=40 and 5/=0. 1, with
V=10 P and R,„;,=10, where initially 60% of the en-

ergy density is in the gradient term. Since we are in-
terested here only in the question of if and how the
Universe enters the inAationary phase, we interrupt the
calculation once the excitations are frozen; this happens
long before the inAationary phase is over.

Figure 5 displays the trajectories in the (P, II) phase
plane at the origin for configurations with smaller P and
various 6P (see Table II). As P decreases, so does P;„„the
value of P at which the Universe starts to in(late. The
difference between P and P;„r increases when P decreases,
until at a certain stage the Universe does not inAate at all.
When P is small and the gradients are large, there is not
enough time for the oscillations to decay before the
Universe collapses. In other words, the Universe col-
lapses before the potential-energy density becomes larger
than the gradient- and kinetic-energy densities, which is
the necessary condition for inAation to occur. Once the
collapse starts, the energy densities of the gradient and
kinetic terms increase, while the potential term remains a
constant. Clearly, it is impossible to reach inAation at
this stage.

Variation in the energy density of the gradient term
hardly changes the duration of inflation in those cases
when inflation commences; i.e. , P,„f is (almost) indepen-
dent of the initial size of the gradient (see Fig. 5 for

I I I I I I I I
I

I I i I 42— I
j

i 1 I I

j
I I I I

41

40

5
3g—

j

.5 1 1.5

FIG. 4. Evolution of lnR and P vs y on difFerent time slices. The solid lines describe the initial conditions, and the other lines
represent the evolution in time. The following time slices are described by the dotted lines, the short-dashed lines, the long-dashed
lins, dot-dashed lines, long-dot-dashed lines, etc.
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similar to that of a short-wave excitation, which is not
surprising.

Figure 6(b) for /=4 demonstrates a case in which the
excitations oscillate and the Universe does not inAate
anywhere. Figure 6(b) shows clearly that none of the tra-
jectories follow the inAationary solution.

The last example that we discuss is for /=6. Here we
see two different qualitative types of behavior, depending
on the size of the initial gradients (see Fig. 5). For large
gradients (more than 60%%uo of p), the Universe collapses,
while with smaller gradients the P field starts to oscillate,
until eventually all the excitations die and the Universe
enters inflation. Obviously, the number of oscillations de-
pends on the size of the initial gradient-energy density;
the larger it is, the more oscillations are necessary for it
to be damped. If the gradient-energy density is damped
rapidly and the potential becomes the dominant one, the
Universe will start to inAate; otherwise, the Universe will
collapse.

We did not address the issue of superposition of several
modes with different wavelengths. Configurations with a
very long wavelength (which spread over several ho-
rizon sizes) resemble the wide Gaussian distribution
which was addressed in the previous section. A superpo-
sition of such a configuration with short-wavelength exci-
tations changes the average value P, but otherwise does
not change the properties of the solution. A superposi-
tion of several short wavelengths does not change our
basic result that the average value of the field is the main
factor that determines the evolution. Furthermore, a
gaussian configuration which we studied in the previous
section is indeed a superposition of several wavelengths.

10 I I I I

-5

0 .5 1.S

FICJ. 7. Schematic picture of high peaks in the P field.

much more drastic. The requirement that we find
smooth initial data for new inflation joins the other limi-
tations of this model ' as an additional argument which
makes it difficult to implement.

Clearly, inflation solves the horizon problem by many
orders of magnitude and the initial conditions for
inAation are much more general than those required for a
Friedmann universe. But there still remains a problem
with initial conditions: Is it reasonable to expect that re-
gions of several horizons over which the average scalar
field must have a large value, appropriate for inAation,
will exist in the preinflationary era?

At the end of the quantum-gravity era, we have p ~ppI.
For a classical scalar field P, this implies [see Eq. (1)] that

VIII. CONCLUSIONS AND SUMMARY V(P) & m ~p„P & m p„
grad P

R
m pi (12)

The picture that emerges from these results is clear.
Chaotic inflation can take place in the presence of initial
inhomogeneities, but these do not "help" it. The crucial
feature necessary for inflation is a sufficiently high aver-
age value of the scalar field over a region of several ho-
rizon sizes. If the amplitude of the scalar field is large
enough, gradients can exist on top of this average field.
These gradients will decay and will not disturb the onset
of inflation. If the average value of the scalar field is mar-
ginal, the gradients may not have sufficient time to decay
and they can prevent the onset of inAation. The initial
homogeneity requirement is moderate. All that is needed
is homogeneity over a few initial horizons. However, this
condition cannot be ignored, From this point of view, it
seems that inAation is an amplifier of homogeneity, but it
is not the sole answer to the homogeneity question. It is
essential to realize that an extremely chaotic field which
oscillated rapidly will not inAate even if the amplitude of
these oscillations is large. The intuitive picture in which
(see Fig. 7) sharp peaks of such a random field infiate and
lead to separate inAationary regimes is misleading. High
peaks can exist, but inflation will start only if by the time
that they decay there is a homogeneous and large average
field in the background. The inflating region must be
moderately large and relatively smooth.

The inAuence of inhomogeneity on new inflation is

Linde ' argues that because of the uncertainty princi-
ple, the value of the potential energy V(P) at

tp~ vl p] can be determined only with an accuracy
O(m p, ). Therefore, P initially can have any value satisfy-
ing conditions (12); i.e., the initial distribution of the field
i)) is more or less chaotic One can expe. ct, therefore, that
at the end of the quantum era (when R =mp, and

—1

p =m p, ) the energy of the scalar field is distributed equal-
ly between the kinetic, gradient, and potential terms:

We use here and in the following the potential
V =m P /2 as an example. This specific choice is for il-
lustrative purpose and does not affect at all our con-
clusions. The scalar field varies with a typical wave-
length Rb, =mz~' and amplitude 5g=mpi. 5$ is much
smaller than the average value of the scalar field P. To
see this, recall that the quantum Auctuation constraint
5$/P=H/2' «10 limits the coupling constant of the
scalar field: m &&mp) ~ The scalar field must have a very
large average value P=mp, /m ))mp, in order that the
potential term will be in equipartition with the kinetic
and gradient terms in spite of its small coupling constant.
Since P »5$, large regions with P ))a few mpi will exist.
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The preinAationary scalar field is drastically different if
we assume that the scalar field P emerges from the quan-
tum era in thermal equilibrium (with T=mp]). (It has
been argued ' that a weakly coupled scalar field does
not have enough time to thermalize during the quantum
era, but Brout, Horowitz, and Weil assert that the sca-
lar field is in a thermal equilibrium during the whole
quantum phase. ) In this case,

(14)

We see that the conditions at the preinAationary epoch
can be completely different depending on which assump-
tion we make. Only a theory of quantum gravity will be
able to reveal what were the conditions at the end of the
preinAationary era. The hope is that quantum processes
will favor configurations in which the average scalar field

will have a large value over domains larger than the hor-
izon, which will lead to inflation. Lacking a clear theory,
we are left with an uncertainty about the initial condi-
tions even within the context of the inflationary scenario.

and 6/=m p&. The potential energy is, in this case, much
lower than the kinetic energy:

m P m

2 T2
I pf

and P=mp&. /=5' for a thermal field at T))m, and
we do not expect to find the required large regions with
y))a few mp, .
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