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Three exceptions in the calculation of relic abundances
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The calculation of relic abundances of elementary particles by following their annihilation and
freeze-out in the early Universe has become an important and standard tool in discussing particle
dark-rnatter candidates. We find three situations, all occurring in the literature, in which the stan-
dard methods of calculating relic abundances fail. The first situation occurs when another particle
lies near in mass to the relic particle and shares a quantum number with it. An example is a light
squark with neutralino dark matter. The additional particle must be included in the reaction net-
work, since its annihilation can control the relic abundance. The second situation occurs when the
relic particle lies near a mass threshold. Previously, annihilation into particles heavier than the rel-
ic particle was considered kinematically forbidden, but we show that if the mass diA'erence is
—5 —15%%uo, these "forbidden" channels can dominate the cross section and determine the relic abun-
dance. The third situation occurs when the annihilation takes place near a pole in the cross section.
Proper treatment of the thermal averaging and the annihilation after freeze-out shows that the dip
in relic abundance caused by a pole is not nearly as sharp or deep as previously thought.

I. INTRODUCTION

The calculation of the present-day density of elementa-
ry particles which were in thermal equilibrium in the ear-
ly Universe has become quite commonplace. ' Of particu-
lar interest is the so-called Lee-Weinberg ' calculation in
which annihilation after a particle species has become
nonrelativistic determines the present-day abundance of
that species. Standard approximate solutions to the
Boltzmann equation exist for this calculation and have
been tested numerically. In this paper we wish to point
out three cases where naive application of the standard
methods fails to give correct results and a modified treat-
ment is required. All three cases exist in the literature,
and in all three cases erroneous conclusions have been
drawn. For each case we present appropriate approxi-
mate solutions to the Boltzmann equation(s) and describe
the values of the parameters for which they apply.

The first case occurs when the relic particle is the light-
est of a set of similar particles whose masses are nearly
degenerate. In this case the relic abundance of the light-
est particle is determined not only by its annihilation
cross section, but also by the annihilation of the heavier
particles, which will later decay into the lightest. We call
this the case of "coannihilation. " As an example, consid-
er a supersymmetric theory in which the scalar quarks or
scalar electrons are only slightly more massive than the
lightest supersymmetric particle (LSP), usually taken to
be a neutralino. Previous calculations of the relic abun-
dance which consider only the LSP annihilation can be in
error by more than two orders of magnitude.

The second case concerns annihilation into particles
which are more massive than the relic particle. Previous

treatments regarded this as kinematically forbidden, but
we show that if the heavier particles are on1y 5 —1S%
more massive, these channels can dominate the annihila-
tion cross section and determine the relic abundance. We
call this the "forbidden" channel annihilation case. Ex-
amples include annihilation into bb, tt, W+ W, or Higgs
bosons, when the annihilating particle is lighter than the
final-state particle.

The third case occurs when the annihilation takes
place near a pole in the cross section. This happens, for
example, in Z -exchange annihilation when the mass of
the relic particle is near mz/2. Previous treatments have
incorrectly handled the thermal averages and the integra-
tion of the Boltzmann equation in these situations. The
dip in relic abundance caused by a pole is broader and
not nearly as deep as previous treatments imply.

For all three cases we present simple formulas which
allow for a more correct treatment. We also present ex-
amples for each case and describe the precise conditions
under which the modified treatment is necessary. In Sec.
II we review the standard method for performing the
Lee-Weinberg calculation and describe the approxima-
tions within which we will work. In Sec. III we discuss
the coannihilation case, in Sec. IV we discuss the forbid-
den channel case, and in Sec. V we discuss annihilation
near a pole.

II. STANDARD CALCULATION
OF RELIC ABUNDANCE

Here we summarize the standard technique for calcu-
lating the relic abundance of a particle species y in the
Lee-Weinberg scenario. First, a note about the philoso-
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phy of this presentation. We are considering cases where
the "standard" technique fails by a factor of 2 or more,
and so we wish to highlight the modifications necessary
to avoid these gross errors. Thus we are not overly con-
cerned with 10—20% corrections, and our presentation
will not emphasize some recent improvements which
make the calculations more precise, but more cumber-
some.

The relic abundance is found by solving the Boltzmann
equation for the evolution of the g number density n:

= —3Hn —(o u ) [n' —(n'q) ],
dt

where H is the Hubble parameter, n'" is the g equilibri-
um number density, U is the "relative velocity, " and
( o.u ) is the thermal average of the annihilation cross sec-
tion (y+g~all). For the equilibrium number density,
we will use the nonrelativistic approximation

n' q= g( mT/2') exp( —m/T), where g is the number
of spin, color, etc. , degrees of freedom of y, T is the tem-
perature, and m is the mass of the relic. For particles
which may potentially play the role of cold dark matter,
the relevant temperatures are of order m/25 and the
nonrelativistic equilibrium abundance is well justified.
Typically, the cross section is Taylor expanded in U be-
fore the thermal average is taken, o. =a + bv . The
thermal average then shows a linear temperature depen-
dence (o u ) =a +6bT/m

Equation (1) can be solved numerically, but a con-
venient and accurate approximation exists. At early
times n is approximated by n', but as the temperature
drops below the mass m, n' drops exponentially, and
eventually a point, denoted "freeze-out, " is reached
where the reaction rate is not fast enough to maintain
equilibrium. From this point on, the n'q term in Eq. (1)
can be ignored and the resulting equation is easily in-
tegrated. Thus the solution of Eq. (1) is given by solving
in two regimes and matching those solutions at the
freeze-out point.

For ease of presentation we will follow the method de-
tailed in Ref. 1. The freeze-out point is given in terms of
the scaled inverse temperature x =m /T:

0.038gm p, m ( o u )
xy —ln

1/2 1/2
g~ xy

where mp~ =1.22X10' GeV and g, is the total number
of effectively relativistic degrees of freedom at the time of
freeze-out. Equation (2) is usually solved iteratively. In
Ref. 1 this is done analytically by substituting for x& on
the right side of Eq. (2). For the cases considered in this
paper, the thermal averaged cross section changes rapidly
with temperature and we will take a numerical approach
to solving Eq. (2).

At freeze-out the abundance of relic particles is usually
taken to be the equilibrium abundance; however, after
freeze-out there is further significant annihilation of relic
particles which reduces the abundance to its final and
present value. The efliciency of this post-freeze-out an-
nihilation is expressed through the integral J:

J(x/)= f —,dx .
- (o-u)
f x

The present-day mass density of g particles is then given
by

1.07 X 10 GeV
1/2Jg, mp)

(4)

where 0 is the present-day mass density divided by the
critical density for closure and h is the present day Hub-
ble parameter in units of 100 km s ' Mpc '. For the
standard scenarios where (o.u ) is expressed in terms of
its Taylor expansion, the present-day abundance of y par-
ticles is approximately

1.07X10 xInh'=
1/2

g „m p, (GeV)(a +3b /x& )

We now list the known weaknesses with the calculation
as summarized above. First, as already mentioned, the
derivation assumes the nonrelativistic approximation in

calculating equllibriu01 Rbundances. It also assumes R

nonrelativistic approach in calculating thermal average
cross sections, and as pointed out in Ref. 3, this may lead
to 10% errors. Next, the derivation assumes that g~
remains constant throughout the period of annihilation,
which is not generally correct. The approximation is
worst when freeze-out occurs during the quark-hadron
transition, but even in this case the errors ' are not large.
Except where noted, we will ignore these small omissions
for the remainder of this paper.

Potentially more problematic, for our discussion, is the
determination of x& or the matching point for the two re-
gimes ~here the Boltzmann equation may be easily
solved. The value of x& is derived by assuming that at
early times n =n'q. It is then simple to solve for the
difference 5 = n —n ' . The freeze-out point is given by
when 6=en'q, where the constant c is determined empiri-
cally by comparing to some numerical integrations of the
Boltzmann equation. For annihilation cross sections that
are relatively temperature insensitive, the choice of c is
not critical. A convenient choice for thermal-averaged
cross sections with power-law temperature dependence,
(ou) —T", is c(c+2)=n+1. The value of x& given in
Eq. (2) uses n =0, c =&2—1.

For the cases discussed later in th1s paper, the question
of matching and determining of x& may have to be read-
dressed since the cross sections we consider have much
stronger temperature dependences than simple power
laws. Thus, whereas a small error in xI usually makes lit-
tle difference to the annihilation integral J, in our case it
may. With this in mind, for most of our paper we present
results based on the use of Eq. (2) (c =+2—1); however,
we will show some explicit numerical integrations of the
Boltzmann equation to show that this choice does not
lead to large errors.

The plan for the remainder of this paper is now
straightforward. (a) Put the problem in the form of Eq.
(1). (b) Solve for x& using Eq. (2) and an appropriate
(ou). (c) Evaluate the annihilation integral J and plug
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the result into Eq. (4). The vital point in the above pro-
cedure is to use an appropriate ( o.u ) in steps (b) and (c).

III. RELIC ABUNDANCE
FROM COANNIHILATION

y;y ~XX',

y;X~y X',
y~~y;XX',

(6b)

(6c)

where X,X' denote any standard-model particles. There
may be many choices for the pair X and X', but generally
they are not independent; a choice of g, , y, and X will
determine X'. Reactions such as g;g ~g& X and
y;X~XX are forbidden by the assumed symmetry. Note
that as long as reactions of type (6c) take place at a
reasonable rate, we expect all the X (j ) 1) particles to
have decayed into g, particles by today. In the example
of supersymmetry, Xi would be the LSP and X (j ) 1)
would be the squarks, etc.

The abundances of the y; are determined by a set of X
Boltzmann equations:

dni
3Hn; —g [ ( o—;i u ) ( n; n J

—n "n,' )

j,x
—( ( o ,', u )n, nz —( cr,',.v ) n, nz, )

—I;,(n; —n,'q)], (7)

The first two cases we discuss, coannihilation and for-
bidden channel, have a common theme. In both cases
particles are presumed to exist which are nearly degen-
erate with, but have masses slightly greater than, the rel-
ic, here denoted by g&. If the mass difference
5m =—m —nz, is large compared to the temperature T&,
when y& annihilations freeze-out, then the extra particles
play no significant role. However, if 5m = Tf, the extra
particles are thermally accessible. In the coannihilation
case, this implies that the extra particles will be nearly as
abundant as the relic species. Given that Tf is of orderI I /25 for the cases of interest, if the mass degeneracy
holds at the —5 —10% level, annihilations involving the
extra particles can play a significant role in determining
the relic abundance.

Consider the evolution in the early Universe of a class
of particles g, , i =1, . . . , N, which differ from standard-
model particles by a multiplicatively conserved quantum
number. Examples include the supersymmetric particles
under R parity and the pseudo-Higgs particles of Ref. 9
under their symmetry. We assume that the particles are
labeled such that m; (m, when i (j; that is, g, has mass
m, and is the lightest, while g2 is the second lightest, etc.
Note that since we are interested in the case where the
lightest of these particles is stable and perhaps even a
dark-matter candidate, the assumption of the existence of
a conserved quantum number is not particularly ad hoc.
Reactions of the following types change the g, number
densities and determine their abundances in the early
Universe:

dn = —3Hn —g (o;iv)(n, n —n n' ) .
l, J =I

(8)

A few subtleties regarding Eq. (8) should be pointed out.
First, we have implicitly assumed that the g particles are
scalars or Majorana fermions which can annihilate with
themselves and do not have a cosmic asymmetry. The
corresponding equations for Dirac fermions can be easily
found. Second, since in reactions such as Eq. (6a) with
i =j, two g; particles are lost, one might expect a factor
of 2 in Eqs. (7) and (8) when i =j. However, a factor of —,

'

occurs in the thermal average (because of identical parti-
cles) and so there is no factor of two. Last, note that the
sum in Eq. (8) is over both i and j, and since o," is sym-
metric, there is effectively a factor of 2 in front of terms
such as 0 I2.

Next, we note that there is a huge quantitative
difference in the rates of reactions of type Eq. (6a) as
compared to those of types (6b) and (6c) at the tempera-
tures relevant for freeze-out. The rate of a reaction of
type (6a) is

n, n cr; —T m; m r~cr; exp[ —(m;+mi)/T],
while the rate for a reaction of type (6b) is

n, neo,' —T m; ~ o,', exp( —m; IT) .

So the latter rates are larger by a factor of roughly

n~ln —(Tlm )
r exp(m /T) —10

where the last relation follows from the fact that for a
particle species to be a dark-matter candidate the freeze-
out temperature will be roughly Tf -m, /25, and we
have assumed that the cross sections 0. j and o.

,
'" are not

radically different. Reactions of type (6c) may take place
even faster than (6b), depending upon details of the kine-
matics. Since it is reactions of type Eq. (6a) which deter-

where the n~ are number densities of the standard-model
particles involved in the interactions. Their nature will
not be important, apart from the assumption that they
are light enough that they are relativistic at freeze-out.
The sum over X implies that all relevant reactions are to
be included. In Eq. (7) we have defined the cross sections
and decay rates

o; =o(X;X ~XX'),
cr,

' ="cr(X,X~X X'),
r„=r(x, x,xx') .

The first term on the right of Eq. (7) is the dilution of
number density due to the expansion of the Universe.
The second term is due to both forward and backward re-
actions of type Eq. (6a). The third term is due to forward
and backward reactions of type Eq. (6b), which only
change n, if i' The. fourth term refers to decays and
inverse decays [Eq. (6c)].

Since all the y; which survive annihilation eventually
decay into yl, the relevant quantity is the total density of
X; particles, n =gp, n, . Using Eq. (7), we find
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mine the freeze-out [see Eq. (8)], this allows us to approx-
imate accurately n; /n =ne /n'"; i.e., the ratio of g; den-
sity to total y density maintains its equilibrium value be-
fore, during, and after freeze-out. It is convenient then to
define

be evaluated at the new value of xf.
We are now in a position to evaluate the relic abun-

dance in several cases and discuss the effect of the heavier
y's. We compare to the result ignoring the heavier g's by
forming the ratio

g;(1+6,;) ~ exp( —xb, , )
r; =—n /n' =

geff

R =A,1d/0„,

=J„, (xf )/J ]d(xf ]d) (16)
where

b, , =(m, —m, )/m, ,

and

N

g,s.= g g, (l+b, ;) exp( —xh;) . (10)

= —3Hn —(o,~)(n —n, ),
where

N

O,ff=
«J

N= g o,, ', ' (1+b., )'"(1+a, )'"
«j geff

Xexpt' —x(h, +5 )] .

Equation (11) is now in the form of the standard equation
[Eq. (1)] and can be solved using similar techniques, i.e.,
solving for xf and performing the appropriate annihila-
tion integral.

The freeze-out temperature [Eq. (2)] is replaced by

0.038g,trm p, m, ( o.,~ )
1/2 1/2 (13)

g~ Xf
xf =ln

We write the annihilation integral [Eq. (3)] in the form

J =(a»I, +3b&&Ib/xf )/xf,
where

' f x 'a„dx-,
a11 xf

Using these definitions and the approximation
n, /n =n /n', Eq. (8) can be written in the form

First, we note that in the limit where the o.; are all
equal, both the integrals I, and Ib are unity, and so, in
this limit, the only change to the relic abundance comes
from the change to the freeze-out temperature, where g1
is replaced by g,ff. If, in addition, there is mass' and
degree-of-freedom degeneracy, then g,ff =F1. This is
just as expected, since in this limit the extra y,. particles
act precisely as extra degrees of freedom of the g, parti-
cle. For particles with only s-wave annihilations, the
change in relic abundance is given in this limit by
R =1—xf 'in%=1 —0.041nN. We see that for typical
values of X (such as N =2) this is less than a S%%uo effect.
So just having extra particles near in mass to a dark-
matter candidate will not make a big diff'erence as long as
the cross sections are similar.

As the next example, consider the case of supersym-
metry. Suppose that a squark (q) (y2 in our notation),
the supersymmetric partner of a quark, exists with a mass
near to that of the LSP [which we will denote g& and as-
sume to be a photino ( y ) or neutralino (y) ]. In this case
the cross sections o.

,
" will not all be identical.

In fact, examination of the appropriate Feynman dia-
grams shows that one expects

Oeff
1+ Am

1+m

~22('0 I gg ) (~ /~ )~12(xe Ig )

= (~, /~)'~ »(xx K»
where g denotes a gluon, q denotes a quark, a, is the
strong-interaction coupling, and a is the electroweak
coupling. Since cz, /+=20, we will consider, as an exam-
ple, a system of two particles (X =2) with cross sections
which do not depend on temperature (a terms only) and
have the values o.22= Ao12=A o.», with A =20. The
effective cross section [Eq. (12)] then becomes

2

2Xf2
II — X 6effdX

f
and for comparison with the normal formulas, we have
Taylor expanded the cross sections o.; =a; +b; v, and
o eff a eff + beff v The formulas for a eff and b eff are the
same as Eq. (12) with o; replaced by a,, or b; . The cor-
responding formula for the relic abundance is then

1.07X 10 xfnh'=
1/2

g „mp, (GeV)(a»I, +3b»Ib /xf )

which is the same as Eq. (5) except for the replacement of
a11 with a»I, and 611 with b11II„and, of course, it must

where w =(1+8.) ~ exp( —xA)gz/g„h=(mz —m, )/
m„and x =m1/T. The effective number of degrees of
freedom becomes g,s=g&(1+w). First, consider the de-
generate limit 6=0; then

o,tr(deg) =o.„(1+Ag2/g, ) /(1+g, /g~)

=cr„A /(1+g, /g~)

and R(deg)=I, = 2 /(1+g&/g2) . Thus, for the case of
a single degenerate squark, we have g2/g1=3, and the
relic abundance is smaller by a factor of about 200. If all
six squark flavors and both left and right chiral states
were degenerate, then g2/g, = 18, and the final relic
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abundance of neutralinos would be smaller than previous
calculations would indicate by a factor of around 350.
We see that this can be a very substantial effect.

For nondegenerate masses we must return to the in-
tegrals of Eq. (14). In Fig. 1 we show the result of the nu-
merical integration" for several relevant values of 3,
xf Id, and g2. Figure 1(a) shows 2 =20 and g2/gI =3,
relevant if only one chiral state of one flavor of squark is
light. Curves for scaled freeze-out temperatures of
xf Jd 20, 25, and 30 are shown. The actual value of
xf ]d depends upon the details of the neutralino composi-
tion and mass, but typically falls within this range.

The crosses in Fig. 1(a) show the result of numerically
solving the Boltzmann equation [Eq. (11)j for a cross sec-
tion corresponding to xf,&d=25, while the solid lines use
the standard matching technique. It is clear that the
standard technique gives good agreement with the nu-

merical computation. This allays our fears about using
the standard matching technique at freeze-out, and we
will herewith dispense with numerically integrating the
Boltzmann equation. If one desires solutions of higher
accuracy, then such numerical integration must be done,
but one should also include the refinements discussed in
Sec. II.

Figure 1(b) shows the effect of varying the coannihila-
tion cross-section enhancement A, while Fig. 1(c) shows
the effect of varying the number of coannihilating species.
The g2/g, =18 case is relevant when there are six light
squarks. From these figures one can decide how near in
mass g2 must be for our coannihilation effect to be impor-
tant. We see that a sizable effect on the relic abundance
occurs as long as 6 &0. 1, that is, as long as the second
lightest particle is within around 10% of the lightest
particle's mass. For values of 3 larger than 20 or when

—
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I I I I I I I
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A=(m, —m, )/m,

(a)

.2
a=(m, —m, )/m,

(b)
I I I I I I I I I I

,d —25

100

10

.2
A=(rn, —m, }/'m,

I I I I I I I

FID. 1. Decrease in relic abundance due to coannihilation. The decrease in relic abundance, R =A„d/0, „, , is plotted vs the mass
splitting 6 for several cases. In {a) the cross-section enhancement is 3 =20 and g2/g, =3, relevant for the case of one light squark.
Curves are shown for several relevant values of scaled freeze-out temperature xf,~d. For comparison the crosses show the result of a
numerical solution of the Boltzmann equation for a cross section equivalent to xf,~d=25. In (b) the eAect of varying the enhance-
ment 2 =o.»/o. » is shown. In (c) the effect of varying the number of coannihilating species g2 is shown. The curve for g2/g& =18 is
relevant for six light squarks.
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there are several coannihilating degrees of freedom, mass
differences of 15% or even 20% can be important.

We conclude that whenever additional particles exist
within around 10% of the LSP mass, annihilations of the
heavier particles cannot be ignored, and the techniques
developed in this section should be used.

IV. ANNIHILATION INTO FORBIDDEN CHANNELS

In this section we consider the case where a dark-
matter candidate is slightly below the mass threshold for
annihilation and for which a substantial cross section
would exist if the candidate were more massive. For ex-
ample, suppose that 2m

&

~ m~ +mH, where m
&

is the
2 3'

mass of the LSP of supersymmetry (a photino or neutrali-
no) and mH and mH are the masses of the Higgs bosons.

2 3

It is known that when the channel gy~H203 is open, it
dominates the annihilation cross section by up to a factor
of 500 and therefore determines the relic abundance. ' In
the standard treatment this channel would not be con-
sidered when it was forbidden at zero relative velocity.
However, since freeze-out occurs at a temperature
T~ =m, /25, and since the g particles are Boltzmann dis-
tributed, the annihilation into heavier particles does take
place at some rate. If the masses of the annihilation
products are not too much greater, this kind of annihila-
tion can dominate the cross section.

Before considering the forbidden case, it is useful to
consider the case where annihilation occurs into an al-
lowed channel, but the mass of the final-state particles is
large enough so that it cannot be neglected. We will
denote the relic particle by y, and its mass by m&. For

simplicity we consider the case where both final-state par-
ticles have the same mass m2. As stated earlier, it is
common practice to Taylor expand the cross section' in
the form (o v ) =a +bu . When the mass of the final-state
particles is small, so they are moving relativistically, this
is fine; however, near kinematic thresholds this expansion
breaks down and it is more appropriate to write the cross
section in the form (ou)=(a'+b'v )uz, where vz is the
velocity of the final-state particles in the center-of-mass
frame. The factor of U2 is always there, ' it arises from
doing the integral over the phase space of the outgoing
particles, and it is the reason the expansion blows up near
thresh olds.

Defining the mass ratio z =m 2/m &, we write

uz =(1—z +z v /4)'

=z(u /4+@ )' (18)

where p+ =(1—z )'~ /z is the minimum value of vz and,
as always, v =2p, /E, is the "relative velocity" of the
g&'s in the center-of-mass frame. To approximate the
effects of finite m 2, U2 is often Taylor expanded in U:

Z2U 2

v =(1—z )' 1+
8(1—z )

(19)

however, very near the threshold this formula is clearly
inadequate since then z~ 1, and the "small" term in the
expansion becomes infinite. Therefore, when calculating
cross sections and relic abundances near a threshold, it is
essential to keep the factor of U2 without approximation.
The thermally averaged cross section above the threshold
(z &1 or "allowed" ) is

3/2
(ou),»=((a'+b'v )vz)=, f dv u e ' ~ uz(a'+b'u ), (20)

and after a change of variables, t = v x /4,

(ou),s=, ~z
(t/x+p+)' t' (a'+4b't/x)e 'dt .= 2z

(21)

Similar formulas may be written when m, is below the threshold (z ) 1 or forbidden). In thermally averaging the
cross section, we now integrate from v =u, to ~, where u, =2@, =2(1—m

& /mz )'~ is the critical velocity to activate
the reaction. The analogous formula to Eq. (20) is

3/2
(o.v)t„=((a'+b'u )vz) =, f uz(a'+b'v )u e ' ~ dv . (22)

Now we change variables to t =U x/4 —p x and find

2z(ou )t„=e, f (t/x+p )'~ t' [(a'+4b'p )+4b't/x je 'dt, (23)

p x2

where p =(z —I)'~ /z. Apart from the factor of e, a change from p+ to p, and the 4b'p term, Eq. (23) is
identical to Eq. (21). At threshold (p+ =p =0 or z =1) the formulas are identical, and a simple integration leads to

((a'+b'u )vz), ,=, , (a'+8b'/x) .
2

(24)

Near freeze-out, x~ =25, the s-wave annihilation is suppressed at threshold by a factor of about 0.25, but it does not
vanish or blow up. Similarly, the p-wave cross section is suppressed by a factor of =0.30 from its value at z =0.
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In general, Eqs. (21) and (23) may be evaluated numerically, but for the case of an s-wave cross section (b'=0) the in-
tegral may be done analytically:

2 1/2p+zx
(a'u2) =a', e — K, (p+x/2),7T'"

where K, is a modified Bessel function. Far from threshold (p+ —+~) the Bessel function is approximated by
p~x /2

Ki(p+x /2) —Qm /p+x e —,and the thermal averages reduce to

a'p+z=a'(I —z )' m, ))m2,
(a'v, ) = .

a p Ze, rn& ((rn2 .

The first relation contains the usual (1 —z )'~ correction for the mass of the final-state particle. At threshold, z~1,
@+~0, the Bessel function is given by K& (p~+x /2) =2/(p+x), and the thermal average is (a'uz ) =2a'/(vrx )', as be-
fore.

Unfortunately, placing the thermally averaged cross section in the form of Eq. (25) is not all that useful since to cal-
culate the relic abundance one must still perform the annihilation integrations. Although these can be done numerical-
ly, various expansions for (cru ) allow approximate analytic results. For large p+x, an asymptotic expansion can be
performed. Above threshold this gives the familiar result

((a'+b'u )u~)„,=(1—z )'i a' 1+ + 1+3Z2 6b' 5Z2

4x(1 —z ) x 4x(1 —z )
(26)

and, in the deeply forbidden region,

((a'+b'v )v2)r„=zp exp( —p x) a' 1+ 3

4p x
+4b'p 1+ +9 45

4p' x 32p4 x' (27)

Very near threshold we expand in p+x ((1,

((a'+b'u )u ),„,=, a'(1 —xb. )+~'"x '" x
xA

2
(28)

where h=z —1=(m~ —m
&
)/m

&
is the fractional mass

excess of the final-state particles.
The three approximate results, as well as the numerical

integration, are shown in Fig. 2 for x =25. Figure 2(a)
shows a "pure s-wave" annihilation (a' terms only) re-
sults, while Fig. 2(b) shows a "p-wave" (b' terms only)
annihilation. The problem at z = 1 for the usual (allowed)
approximation is evident, as is the error caused by the
standard approximation (0 u ) =0, for z ) 1. Far from
the threshold the expansions work well; however, near
the threshold one is advised to use Eq. (28). More exact-
ly, the best piecewise (PW) approximation for s-wave an-
nihilation is

( o.u )„, , x 5 & —0.023,
(au ), = (crv ),„, , —0.023 (xb, (—0.023,

( 0 v )r„, 0.023 & x b, ,

and for p-wave annihilation,

( cr u ),1, , x b, & —0.046,
( a'v ) i, pw

= ( o u ),h„, —0.046 & x 5 & 0.023,
( o u )r„, 0.023 & x b, .

(29b)

I

The vertical lines in Fig. 2 mark the transition values.
Using the various results for the thermally averaged

cross sections, the relic abundance can be calculated from
Eqs. (3) and (4) as described in Sec. II. To compare with
the standard results, we will explicitly separate out the
forbidden channel from the ordinary (i.e., X,X,—+XX)
channels.

(o )„u,= »a+b» +u[(a'+b'v )v2], (30)

where (a'+b'u )u~ is the forbidden piece and a»+b»u2
is the ordinary piece. The annihilation integral may be
written as

I.'=, I (a'v, )x 'dx,g' Xf

2xf (b'u'u, )I'= x —2dx .b' &f 6

(31)

J =(a„,+3b„,/xf )/xf,
where xf is the new value of xf computed by iteratively
using (o u )„,and Eq. (2). The quantities a„, and b„, also
contain an explicit separation of the forbidden and ordi-
nary channels: a„,= » ',', b„,=b» O'

I,
', where

we define
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.01

where the behavior near z = 1 has dictated the number of
terms kept in the expansion. Above threshold (z & 1), the
nonrelativistic expansion gives

3Z2
I,'„,=(1—z )'i 1+

8(1—z )xf

.001

Ib II (1 z ) 1+ Sz'
6(1—z )xf

(34)
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Using Eq. (28) near threshold (z = 1), we have

4zI, ,h, =, , (1—3xf6),
3'7T' xf

32z 5
1 ——x 61/2 1/2 6 f

7T Xf

(32)

For the forbidden region (z ) 1), we use Eq. (27) and
evaluate the integral in Eq. (31) by asymptotic expansion
to find

FIG. 2. Cross section for annihilation into a forbidden chan-
nel. The thermal average of the cross section is shown for (a) a
pure s-wave and (b) a pure p-wave cross section as defined in the
text. The solid line is the result of a numerical integration, and
the dashed lines are the approximations 3: (ou ),~~,

' T: (o u ),h, ,
and F: (cru)t, „', where the mass of the relic particle is respec-
tively above, near, and below threshold for annihilation into the
forbidden channel. The best piecewise continuation is also indi-
cated.

Far above threshold (z « 1), we see that I,' =Ib =1 and
we recover the standard result. Note that while previous
calculations would have predicted no effect on relic abun-
dance for annihilation at threshold, Eq. (32) shows an
effect of 15% of the z «1 limit for s-wave annihilation
and a 25% effect for p-wave annihilation (for xf =25).

We now discuss the values of 4 for which forbidden
channel annihilation may be significant. First, consider
the case of pure s-wave annihilation. We define the an-
nihilation cross section into massless particles as
(o.u)=a» and the forbidden channel cross section as
(o.u)f„=a'u2. We characterize the strength of the for-
bidden channel by a'= 3'a»,' i.e., 2' is the factor by
which the forbidden annihilation would dominate the
cross section if it were not kinematically suppressed. Re-
call that for the previously mentioned example of neu-
tralinos annihilating into Higgs bosons A —50—500.
Large values of 2 ' can also arise for other channels such
as top quarks or 8'+ 8'

In Fig. 3 we plot the resulting decrease in relic abun-
dance for xf „d=25. Figure 3(a) shows the reduction in
0 for pure s-wave annihilation (a' terms only), where
R =Q„d/Q„,„=(1+3'I,') xf, Id/xf„, , and in Fig. 3(b)
we show the result for pure p-wave annihilation (b' terms
only), where R =(1+2'Ib)xf Id/xf . The solid
curves show the results of performing the integrations for
( cr u ) numerically for A

' =20, 100, and 500. For
3'=500 we also show both of the asymptotic expansion
approximations as well as the threshold approximation
for appropriate ranges of xfA. Unfortunately, no ap-
proximation is particularly good for s-wave annihilation
in the interesting range 0.01~xf6 ~0.05. As an alterna-
tive to the full double integration performed for the solid
curves, we have evaluated the annihilation integral nu-
merically using the piecewise cross sections of Eq. (29).
The result is shown as the dot-dashed curve. The agree-
ment between the dot-dashed curve and the A'=500
solid curve is better than 10%.

We see from Fig. 3 that, depending on A ', new chan-
nels are important even when the masses are 10—15 %
below threshold. We conclude that if 6 &0.05 —0. 1 and
the unsuppressed forbidden cross section is more than 10
times larger than the allowed cross section, this effect is
important. For the example of neutralino annihilation
into Higgs bosons discussed earlier, an enhancement of
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(ov )o= 1+ P(0),
M,„

(3&)

(cYu )subs=(cTu) 2=6' (39)

The main point of this section is to show that all of
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where the 3/2x terms comes from the thermal average of
(u /4) in Eq. (37). (It is actually superAuous for our
purposes. ) Another possibility is to approximate (o.u)
by just substituting u ~6/x in cru .This gives the
correct expansion far from the pole and moves the peak
away from v =0 and closer to where one might think it
belongs:

these approximations are quite unreliable near a pole
when e is small. In Fig. 4 we plot a numerical evaluation
of ( cr u ) as a function of u and compare it with the Tay-
lor expansion, ( cr u )o, and ( cr v ),„». The numerical
( cr u ) is found from

3/2
(cru)„„= „,J "du v'(ou)e (40)

In Fig. 4(a) we show the comparison for e=7. 5 X 10
M,„=91 GeV, o; =0.01, and x =25, corresponding
roughly to a pole due to Z-boson exchange. Note that if
this were the Z pole the limits of the plot would corre-
spond to Vu =0.6 or m, =27.3 GeV and +u =1.2 orI

&
=54.6 GeV. Although the Taylor expansion does

reasonably well for m, (M,„, it does very poorly (even
producing a negative cross section) for m, )M,„. For
the Z pole, the ( o u ),„b, approximation does slightly
better than the ( cr u )z approximation away from the
pole, but neither puts the pole in the right place. The nu-
merical results di6'er in places from both approximations
by more than a factor of 3. Figure 4(b) shows the same
for a deeper pole, e=l0 . In this case the disagree-
ments between the approximations and the numerical in-
tegration are even more striking. Here the approxima-
tions give poles which are much too narrow and much
too strongly peak and which dN'er greatly from the nu-
merical results over a wide range of masses.

Note, however, that even in Eq. (40) at least two ap-
proximations are being made. First, we are assuming
that x is large enough so that exp( —xu /4) is very small
before u approaches its maximum (relativistic) value of 2.
Second, we are averaging in the center-of-mass system,
which as pointed out by Srednicki, Watkins, and Olive,
is not completely correct. Since in the pole case the cross
section has a dependence on U which is nonpolynomial,
and only polynomial dependence has been previously
tested, we might worry that these approximations intro-
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FICz. 4. Thermal average of annihilation cross section near a
pole. The solid curves show the numerical integration (cru )„„
[Eq. (40)], while the two short-dashed curves show the common-
ly used approximations (cru )o [Eq. (38)] and (o.u ),„b, [Eq. (39)].
The (cru )0 curve peaks at &u =1, while the (o.v ),„b,. curve
peaks at &u (1. The dot-dashed curve shows the Taylor ex-
pansion, which goes negative for a while. Parameter values
x=25, M,„=91GeV, and o, =0.01 were chosen. The units of
the abscissa are CieV '. In (a) we set @=7.5 X 10, roughly ap-
proximating a pole from Z-boson exchange. In (b) we set
e = 10 . The long-dashed curve in (b) is our new approxima-
tion [Eq. (43)].

10

10
.8 .9

~u = 2III,/M, „
1.2

FIG. 5. Comparison of numerically performed thermal aver-
ages. The solid curve shows (o.v )„„[Eq.(40)], which uses the
center-of-mass and nonrelativistic approximations. The crosses
show the three-dimensional integral of Ref. 3. The same value
of parameters were used as in Fig. 4(a) ~
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duce errors larger than our 10—20% criteria. To check
that the approximations in Eq. (40) are valid, we can per-
form numerically the three-dimensional integration given
in Ref. 3 [their Eq. (26)]. In Fig. 5 we show a comparison
of the numerical evaluation of Eq. (40) and a numerical
evaluation of the three-dimensional integral. As shown
by the figure, the two methods agree quite well, differing
in general by less than 20%. Some of the differences
which do occur may, in fact, be due to the numerical in-
tegration routine, which has trouble performing three-
dimensional integrals of very sharply peaked functions.
We will from now on use Eq. (40). In a case where max-
imum accuracy is important, Eq. (40) should be replaced
with Eq. (26) of Ref. 3 as discussed in Sec. II. Note that
the expansion given in Ref. 3 should not be used since it

has the same problems near a pole as the Taylor expan-
sion in U and, therefore, is more unreliable than the sim-
ple approximations discussed above.

Returning to Fig. 4, we can understand the discrepan-
cies between the simple approximations and the numeri-
cal evaluation by examining Eq. (40). This formula for
the thermal average results in a "weighted" area under
the cross-section peak, while both approximations just
use the height of the peak as the average. For small e
and 0 & 1, one sees that the integral is dominated by the
area under the peak and, in fact, can be approximated by
expanding about the peak [v =2(1—u)' for u & 1].
Changing variables to v=U —U, where v is small, we can
approximate u/(1 —

U /4)=1+v(1 —u)'~ /u and ap-
proximate the thermal average integral as

—xv /4 O,' 0 dV( o.v ) = „,U,'e
M,„o[v (1 —u)/u ]+e

0 dV

o [v (1—u)/u ]+@
20 1 —0arctan vo

e(1 —u) E0

where vo « U~ defines a small interval around the peak. The integral above can be evaluated (for u & 1):
1/2

(41)

(42)

If v'e is small compared to vov'1 —u, the inverse tangent
can be approximated as ~/2, independent of vp. Com-
paring the resulting formula for ( o U ) with the maximum
cross section (cru )„,&,

=o. /(eM, „),we find

I"
(oU) =2V'~rx u V'e(1 —u)' e

(ou) „,

Finally, taking v'u =0.98 as the rough position of the
thermally averaged pole, with x =25, we find r =31Ve.
For @=10 this gives r =0.03, just as shown in Fig.
4(b). For e=7. 5 X 10 the inequalities v e&(vov'I —u

and vp«U are not satisfied for reasonable values of vp,
and so we must include the inverse tangent term. Choos-
ing vp=0. 1, we find r =0.37, again in agreement with
the curve in Fig. 4(a). In general, for e small enough so
that the answer is independent of vo, Eq. (43) gives a good
approximation near the pole (for u ( I). This approxi-
mation is shown in Fig. 4(b) as the long-dashed curve.
For larger e the approximations made in deriving Eq. (41)
are no longer valid.

We have been discussing (o U ), but are actually in-
terested in the relic abundance Q,h, for which we must
evaluate the annihilation integral [Eq. (3)]. Here we find
it useful to rewrite Eq. (3) as an explicit double integral
over x and U, one of which may be easily performed:

2J=f "dU' ' ' f dxx-'"e-" '"
v 4n

= f du U(ov)erfc(U+x&/2) . (44)
0

In Eq. (44), (o v ) is the unaueraged cross section and erfc

4o.' 0 1 —0J= —erfc[+x&(1 —u) ]arctan vo
60

1/2

(45)

where the inverse tangent can be taken as ir/2 when
i/e(&voi/1 —u. The resulting value of fl is shown for
e=10 (u &1 only) as the long-dashed curve in Fig.
6(b). Again, it is a good approximation near the pole for
small e. As before, for @=7.5X10, it does not do as
well. For small e the reduction in Q can be estimated us-
ing

is the complementary error function. Note that this for-
mula is quite general and can be used in all cases to find
the J integral. For o v of the form a +bu, Eq. (44) gives
the standard result of Eq. (5), but for our pole cross sec-
tion it must be performed numerically [or expanded
about the pole as per Eq. (41)].

In Fig. 6 we plot the relic abundance which results
from an iterative solution of the freeze-out equation and a
numerical evaluation of Eq. (44). For comparison we
show the results obtained using the two approximations
for ( o.v ) described earlier. In particular, the approxima-
tions give Jo=(a u/M, „)[1+3/(4x&)]P(0)/x& for Ao
and J,„»=(o'U)«b, [1—3/(4x&)]/x& for fI,„b,. Figure
6(a) shows @=7.5 X 10 and Fig. 6(b) shows e = 10
While the approximations do better here than for ( o v ),
we still find that they give results offby up to a factor of 3
in the case of a Z-like pole and by several orders of mag-
nitude for @=10

We can again find an analytic understanding of the re-
sults shown in the figure by expanding about the pole.
We find (for u & 1)
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FIG. 6. Relic abundance near a pole. The solid curves show the result of proper thermal averaging and integration of the
Boltzmann equation, while the two short-dashed curves show the commonly used approximations (a U )o with Jo and (o U ),„b, with
J,„b,. The (o v )o curve bottoms at &u =1, while the (o.u ),„b, curve bottoms at &u (1. Parameter values xf,~d =25, M,„=91GeV,
and a=0.01 were chosen. In (a) we set a=7. 5 X 10 roughly approximating a pole from Z-boson exchange. In (b) we set @=10
The long-dashed curve in (b) uses the approximation Eqs. (43) and {46).

rn= = = I2~e' uxferfc[+xf(1 —u )]I
n Jpi,

0 ,), I
(46)

where J~,I, =a uz/(M, „exf ), and fl,I, is the relic abun-
dance at the peak of the pole.

In conclusion, we find that while the standard Taylor
expansion in U gives reasonable results away from pole
regions, whenever dark-matter annihilation takes place
near a pole, special care must be taken, especially if re-
sults accurate to within a factor of two are desired.
While we considered only one type of pole structure, we
see that in general narrow resonances in the cross section

do not survive the thermal averaging and annihilation in-
tegration, giving features in the relic abundance curves
which are broader and more shallow than naively expect-
ed.
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