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Resistive tearing is a primary candidate for flares occurring in stressed magnetic fields. Its possi-
ble application to the strongly magnetized environments (H, —10' G) near the surface of neutron
stars motivates a quantum treatment of this process, which requires knowledge of the electrical con-
ductivity o. of a relativistic gas in a new domain, i.e., that of a low-density (n, ) plasma in oblique
electric [E=(O, E~,E, ) j and magnetic fields. We derive the mathematical formalism for calculating
o. and present numerical results for the range of parameter values 10 ~H, ~ 10' G, E, /H, 10
E~ +10 H, /E„and 10 ~n, +10 ' cm . We find that o. -EyEzplp/Hz over this range.

I. INTRODUCTION

The electrical conductivity Of a relativistic electron gas
has received considerable attention, particularly in the
cases of high density (p ~ 10 g cm ) and no external
magnetic field, ' high density with a magnetic field paral-
lel to the electric field, and high density with perpendic-
ular magnetic and electric fields. Subsequent extensions
have been made by, e.g. , Ventura, Yakovlev, and Hern-
quist. Our development of a theory of resistive magnet-
ic tearing in a quantizing field has led us to consider the
electrical conductivity of a relativistic gas in yet another
domain, i.e., that of a low-density plasma (n„S 10
cm ) in oblique electric (E) and magnetic (H) fields with
H —10'2 G and E/H + 10 4.

It is known from the classical treatment of magnetic-
field reconnection that resistive tearing is the only mecha-
nism that develops in time, making it a primary candi-
date for "Rare" processes occurring in stressed magnetic
fields. These processes are known to occur on size scales
ranging from galaxies down to the Sun. Our quantum
treatment of this process is motivated by its possible ap-
plication to the strong magnetic fields usually encoun-
tered in neutron-star environments, particularly as a
mechanism for generating the plasma heating and parti-
cle acceleration leading to y-ray bursts. The presence of
a strong magnetic field changes the conductivity in the
magnetosphere from a scalar to a tensor o.

~ The free
motion of the electron is not altered in the direction of
the magnetic field, but can be strongly constrained in a
direction perpendicular to it, which results in a larger
transverse resistivity with respect to the longitudinal
case. This difI'erence is generally greater at lower densi-

ties. Our concern here will be to determine the "trans-
verse" conductivity ot—:(o +o.„)/o of an electron-
ion plasma, where o.

,
" are the elements of o., when H is

along z and E=(O,E,E, ). The component o depends
solely on the scattering process, whereas o. is due en-

tirely to the drift velocity vD =c(EXH)/H . If, as we
assume in this paper, the ions are free to move, there is
no net current in the x direction, so that o. =0.

As is usually done in problems of Ohmic conductivity,
the electric field E is treated as a perturbation. When E
is parallel to the magnetic field H, the particle transport
may be handled adequately with the Boltzmann equation.
However, when E and H are not parallel, this approach
cannot be used because the velocity operators perpendic-
ular to H vanish. Instead, the density-matrix approach
must be used. We discuss the relevant wave function and
matrix elements of the velocity operator in Sec. II. A
brief summary of the density-matrix formalism is given in
Sec. III. In Sec. IV we evaluate the density matrix itself,
and we complete the calculation of o.

~ in Sec. V. Numeri-
cal values of o.

z are given for the ranges 10 ~H, + 10'
G, E, /H, ~10, E ~10 H, /E„and 10 ~n, ~10
cm, and a comparison with the zero-field conductivity
is made in Sec. VI. The relevance of this computation is
discusse'd in Sec. VII.

II. DIRAC WAVE FUNCTIONS FOR
OBLIQUE ELECTRIC AND MAGNETIC FIELDS

The general normalized solution to the Dirac equation
with oblique electric E= (0,E,E, ) and magnetic
H=(O, O, H, ) fields is'

r

u+
1n

+
1 2ll p~x

N„(C„C )2u i„
exp i

u2n
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where u I„, u 2„, A ', B', g', 2), and the normalization constant N„(CI, C2) are defined by Eqs. (7)—(49) of Ref. 10 and are
reproduced in the Appendix. The two independent solutions, corresponding to the positive- and negative-helicity states
in the absence of an electric field, are given by the choice of parameters (C, =1, C2 =0) (collectively labeled C = 1) and

(C, =0, C2 = 1) (collectively labeled C =0) in the expressions for u —,„and u 2„.
In this scheme the velocity operators a„and o. are given as

0 op

o~ 0

Thus, putting

CX+ CXX idly 7
+'

the appropriate velocity matrix elements (needed in the evaluation of the transverse currents) are"

(3)

( np c„1;EH
I a+ I mp e 1;EH )

X 1, 1 1, 1 1, 1 1, 1 1, 1

N„(1,0)N (1,0)(B')Iy4 ( n, m ~n, m + n+2, m~n+2, m + n+ I, m ~n+ I, m + n m —I ~nm —I,+ Tn —I, m ~n —I, m

1, 1 1, 1 1, 1+ Tn —2, m ~n —2, m + Tn + I, m —I ~n+ I, m —I+ Tn —I, m —I 5n —I, m —I )

( np„e„O;EH
I a+ I mp„E 0;EH )

(4)

X 0,0 0,0 0,0 0,0 0,0

N„(0, 1)N (0, 1)(B')Iy4 ( Tn, ~mnm+ , n +2, m ~n +2, m Tn + 1m ~n + Im nm —I ~, n, m —I+ n —I, m ~n —I, m

0,0 0,0 0,0+ Tn —2, m ~n —2, m + Tn + I, m —I ~n+ I, m —I+ Tn —I, m —I ~n —I, m —I )

(np. e. 1;EHla+ Imp. E 0;EH &

X 1,0 1,0 1,0 1,0 1,0

N (1,0)N (0, 1)(B')Iy4 ( n, m~n, m + Tn+2, m~n+2, m + n+ I, m~n+ I, m + nm —I ~n, m —I+, n —I, m fi —I, m

1,0 1,0 1,0+ Tn —2, m ~n —2, m + Tn + I, m —I ~n + I, m —I+ Tn —I, m —I ~n —I, m —I )

( np„e„O;EH
I a+ I mp, E 1;EH )

X 0, 1 0, 1 0, 1 0, 1 0, 1

N„(0, 1)N (1,0)(B')Iy4 Tnm~nm, + n+, 2, m~n+2, m + Tn+I, m~n+I, m nm —I ~n, , m —I n —I, m~n —I, m

0, 1 0, 1 0, 1
Tn —2, m ~n —2, m + Tn+ I, m —I ~n+ I, m —I+ Tn —I, m —I ~n —I, m —I )

(np„e„ 1;EHla mp E 1;EH ) = (mp, e 1;EHla+ Inp, e„1;EH )

(np„E„O EHIa Imp e 0;EH)—=(mp„E 0;EH a+lnp E„O;EH)*,

(np e„l; EHlalmp„e 0;EH) =(mp, e 0;EHla+Inp e„l;EH )

(7)

(10)

and

(np, E„O;EHIa Imp, e 1;EH ) =(mp, e 1;EH a+Inp E„O;EH )

where the constants T„'J are defined in the Appendix, and

I np. «;EH &
=P.,p„,e, c,E, H e—'"'" .

III. DENSITY-MATRIX FORMALISM %'(r, t)= g a„(t)y„(r) . (13)

The average electron current may be calculated using a
density-matrix approach, ' with a one-electron approxi-
mation for the description of the electron gas, in which
each electron is described by a normalized wave function

The g„ form a complete set of orthonormal functions,
and the a„are time-dependent coefficients. The density
matrix p is defined as'
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(14)

where the angular brackets indicate a statistical averag-
ing. The macroscopic average value of any physical vari-
able Q is then calculated by taking the trace of its prod-
uct with the density matrix:

(15)

IV. EVALUATION OF THE DENSITY MATRIX

In the presence of electric and magnetic fields and the
impurity potential V, the density matrix satisfies the
equation of motion

iA —=[p, &0+&,+ V],c)p

electric field when scattering is present, we employ a
two-step process whereby we first calculate the change in

po due to an electric field E, parallel to H=H, z and then
find the correction to this new density matrix pII when
scattering in the presence of a perpendicular electric field

Ey 1s inc luded .

A. Density matrix for E=(O, O, E, )

In the first of these steps, we use the Boltzmann tech-
nique, generalizing the distribution function to describe
populations of electrons over the magnetic quantum
states n. Assuming that the first-order effect of the elec-
tric field is to shift the equilibrium distribution in the
direction of the electric field, the solution of the
Boltzmann equation to first order in E, is given by'

where &0 is the Hamiltonian in the absence of an electric
field, and &, is the potential energy associated with the
electric field.

The diagonal elements of the density matrix p are in-
terpreted as giving the probability of occupation of the
various states; i.e., they play the role of a distribution
function. ' In the absence of an electric field (and hence
the effects of scatterings), the system is assumed to be in
thermal equilibrium, in which case p will have its thermal
equilibrium value po, such that

r I
p p

I
5'z Pz

I I
n, p,p;n, p, p5'z

with

where ~„ is the relaxation time, defined by

(19)

(20)

f0(eo )

(np„p, p0 n'p„'p, ') = 5„„5,58' px px pz pz

where W is the volume of the system, and f (e„„)is
the Fermi-Dirac distribution function, i.e.,

exp[(e„—p )/kT]+1
(18)

where p is the chemical potential 6 p p is the kineticn,p, p

energy of the given state, and
I np„p, ) is the Dirac wave

function for an electron in a magnetic field with zero elec-
tric field. Here we have used the postulate of random
phases, which implies that the state of the system in equi-
librium may be regarded as an incoherent superposition
of the independent eigenstates so that the off-diagonal
elements vanish. Another way to see this is to realize
that in an equilibrium state the density matrix is time in-
dependent and must therefore commute with the system
Hamiltonian.

The density of particle states can be drastically
different in the presence of a magnetic field compared to
that in the zero-field case. Not surprisingly, therefore,
the chemical potential has the characteristic oscillatory
dependence on H, which is, however, only evident in the
limit of one Landau level being occupied because of
thermal smoothing. ' In our application the electron
number density n, is sufficiently small (~ 10 cm ) that
the plasma is nondegenerate. The value of p thus corre-
sponds to the number density normalization in the usual
Maxwell-Boltzmann distribution function, i.e.,f ~n We '/" /Tr(e ' "

)

To evaluate the density matrix in the presence of an

V . . . :—
I (np„p, I

VIn'p'p, ')
I

X5(e„—e. . . ) .' px pz n', px, p,
(21)

4~Ze 1
exp[ —iq (R —r)],

q
9'

(22)

where Z is the ion's atomic number and 8 is the volume.
In this case it can be shown that the relaxation time is
given by the expression'

g( g2 2
)
—1/2

7 o r o

1/2e —a„
2 a2

g( g2 2
)
—I /2

To I o

where

X 1—
6 —a2 2

n

R (23)

—=4~go; Z
7 O m, e

H,
(24)

a d g =(2s +1)=2, cL=e /Pic, H, =m, c3/efi=4. 414
X 10' G, a„=1+2n (H, /H, ),

When the chief scattering process is due to Coulomb
interactions with slowly moving, randomly distributed
ions, the interaction potential t/'between the electron at r
and the o.th ion at position R may be written

Ze
IR.—rI



322 FULVIO MELIA AND MARCO FATUZZO 43

2 1+
meC

2
H,+2'
H,

(25)
I I I I

I

I I

H — 10 G

i /1„„.(t, u, +u')i
R+= f dt ' 4(b+),[t+(u+u') ]

(26)

Pz
1/2

C

m, c 2H,

H,
u~ —(g2 2 )1/2

2H,

1/2 (27)

b+(t)= 3

4~

1/3 I c
2 3

Energy (kev)

2H z
[t +(u+u') ]'

+(n~n') =+(n'~n)

X
C

@(b+ ) =1+3f ™(xb+) 'sin(xb+ )dx,
0

= [a1—, %'(n In ') —co2~%'(n —1 In
' —1) ]

(28)

(29)

(30)

FIG. 1. Distribution function f„=f (e„) as a function of en

ergy e„ for H, =10" G, T=10', K, n, =10"cm, and n =0,
and three electric-field intensities: E, =0 {curve 1), 5 X 10'
V/cm (curve 2), and 1.1 X 10 V/cm (curve 3).

f (e'„)
(np eC;E =O, E, H~p ~~Inp eC;E =O, E,H ) =

i1)
—1/2e —t l2t ( n + n') l2

X2Fo( —n', —n; —1/t),
(a)&(c)kx"

2Fo(a, c;x) = 1+
k=1

k

(a)k = g(a+s —1),
s=1

( +)2 ( +)2 1 [1+P
—2+@—2(g2 2)1/2

X ( g2 2 )1/2]

(31)

(33)

(34)

H,
co ru =8 (nn')'

1 2
C

(35)

We note that these values of co have been averaged over
the initial and final spins, and that X;/8'is the ion num-
ber density. In addition, although n could in principle
take any value 0 ~ n ' ~ ~, the requirement that
6 —a„)0 places a finite upper limit on its range.

As a result of scattering in the presence of E„the den-
sity matrix p evolves away from p0 and, in general, can no
longer be diagonalized simultaneously with the Hamil-
tonian. Its diagonal elements, representing the probabili-
ty of occupation of the new states in the presence of both
H, and E„will now be given approximately by

(36)

where ~np eC;E =O, E„H ) is the Dirac wave function
given in Eq. (12) with E =0. Although the oft-diagonal
elements of

p~~
cannot be determined in this way, they do

not contribute to the transverse current and may there-
fore be neglected in our present application.

The distribution function f„=f (e, ) is sh—own in Fig. 1

for the illustrative parameter values H, = 10" G, T = 10
K, n, =10 cm, and n =0, and three electric field in-
tensities E, =O (curve 1), 5X10 V/cm (curve 2), and
1. 1 X 10 V/cm (curve 3). The relaxation time r„depends
on the value of the particle energy relative to the bottom
of the oscillator states. Thus, as p, varies, e, crosses the
Landau levels, causing an oscillatory behavior in ~, and
hence f„. The least variation in f„relative to the field-
free case arises when the relaxation time is very short,
which occurs at multiples of the cyclotron fundamental
energy.

Because of the reduced scattering cross section at high
energy, the relaxation time r„ is longer ( —10 —10
sec) than the time ( & 10 ' sec) required to "deplete" the
distribution function f (e„) [Eq. (19)] when the particle
Lorentz factor is large (y= 1.2 —10 ). Thus, in this re-
gime, it is more appropriate to solve the relativistic
Boltzmann equation without the collisional term
rjf/"r)t+F. V f =0 (where F=eE is the driving force),
whose solution is

f (e) =(n, W)e ' /Tr(e ' "
) = [n, (2trh') fi epx[( m, c—e)/kT]] /(2m, "1/2m, kTtrkT),

as indicated above. Here,

e=—[m, c +(p, eE, t) c +2n~e~cAH, ]'/ ——m, 2, (37)

[

where e carries the sign of the charge [cf. Eq. (46) below].
Figure 2 shows the region in y —E, phase space where
the collisional term may be neglected. Above a given
curve, labeled by the appropriate value of magnetic-field
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I I

)

I I I I

f

I I I I

/

I I B. Density matrix for E=(O, E~,E, )

2 4
log, o E, (V/cm)

I I I I

Following a procedure first employed by Kohn and
Luttinger, ' we now let the electric-field component E„
turn on adiabatically; i.e., we replace E by E e", where s
is a small positive number that will eventually be set to
zero. This effectively disconnects the y component of the
electric field at t ~—~, so that knowledge of the proba-
bility function f„calculated above (for E= [O, O, E, ]) can
be used to determine the initial value of the solution to
Eq. (16), giving the density matrix for the full electric
field E=(O, E~,E, ) at time t =0.

With the assumption that &, ((&o, we can write the
density matrix as

FICx. 2. Regions (shaded) in y —E, phase space for which the
relaxation time ~„(with n =5 in this example) is sufficiently
short that no significant depletion in the distribution function

f„ takes place. The solid curves are labeled by values of the
magnetic-field intensity H, . For each value of H„ the zone
above the corresponding curve represents the values of y and E,
for which the collisionless Boltzmann equation gives an ade-
quate representation off„.

~=~~~+~ie' (38)

and then substitute this into the equation of motion [Eq.
(16)] to solve for p&, which represents the effect of scatter-
ing in the presence of E . Solving for p, at t =0, we get

intensity H„r„ is sufficiently long that depletion of f„
takes place. This region thus corresponds to values of y
and E, for which the collisionless Boltzmann equation
gives an adequate representation of f.

—ihsP1 [P~I ~0+~ ]+[Pl ~0+~ ]

+ [p(( V] + [p) V] (39)

for which we now take matrix elements in the reference
system of Eq. (12). This results in the relation

(e„z c—e'. . .
—ihs ) ( np EC; EH I

p&
I n 'p„'e'C'; EH )

[f ( ~'„)—f (~'„)]

8 ( np„EC; EH
~
V

~
n 'p,' e' C', EH ) + ( np „eC;EH

~ [p &, V] ~
n 'p„' e'C', EH ), (40)

where e„c=e„„c(E,H) is the full energy in the presence of the electric field. As may be seen from Eqs. (4)—(11)
and (15), the elements of pt diagonal in the momentum (i.e., p ) determine the current. These elements satisfy the equa-
tion

(np eC;EH~p, ~n'p„E'C', EH )

(~n I„,c ~n Ic' «', s )

f (~'„)—f(~'„)
X (np„EC;EH~ V~In'p E'C';EH )+(np eC;EH~[p„V]In'p„c'C', EH )

Since

(np eC;EH VIIn'p„'E'C';EH ) = (n'p'E'C', EHl VInp„eC;EH ),
the first term on the right-hand side does not contribute to the current and may therefore be ignored. Thus',

(np cC;EH~p, ~n'p„e'C', EH )

((np eC;EH~p, In "p "F."C";EH )(n "p,"e"C";EH~I V~n'p c'C', EH )
E'&pC6'&~pc~ l ks ff tf ffgg/

X

—( np, eC;EH
~
V

~
n "p "e"C";EH ) ( n "p "e"C";EH

~ p, I n 'p e'C '; EH ) ) . (42)
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We note here that the summation over n" and p„" includes the degeneracy arising from the particle's motion in the xy
plane. This degeneracy is finite if the motion is restricted to an area L„Ly All values of the momentum p" are permit-
ted for which the Landau orbit center (xo,yo) lies inside L,L (neglecting the orbit s radius r„, in comparison to L ).
From the condition that 0&yo &L [see Eq. (A7) in the Appendix], we find that the number of states per Landau level
is therefore = [eH,L,L ]/[2rrIic ]. In practical terms, this degeneracy determines the range bp,"of integration over p"
when converting the sum through the relation g „~(L /2rrA) Jdp„", such that bp,"=eH,L /c, which is independent

X

of n" as long as r„„«L». To determine (n "p„"e"C";EH p, ln'p e'C';EH ), we note that the first term in Eq. (41) is of
order lower than the second, so that

( n "p„"e"C";EH pi l
n 'p e'C'; EH )

[[f(e„)—f (e„)](n"p "e"C";EHl Vln'p, e'C';EH ) ] .
E' „c„E„„clRS

(43)

If we now let s ~0 and use the relation

X lS
(44)

then, since the principal part P does not contribute to the current, we get

( np„e C;EH
l p i l

n 'p„e'C', EH )

(np„eC;EH l Vln "p,"e"C";EH ) ( n "p„"e"C";EHl Vln'p e'C';EH )
( „c—'„)W

X

X [[f(e„) f (e„)]5—(e—e")+[f(e„)—f (e„-)]5(e' e")—] . (45)

The electric field enters into this expression only through the argument of the 6 functions and the matrix elements of V.
If we now choose the origin of our coordinate system to have zero potential energy [i.e., &,(0,0, 0)=0, where

yeE —zeE—,], then the "shift" (yo, zo) in the center of the cyclotron orbit corresponds to the electron energy in
the presence of the electric field. ' In our application we have Ey E «H «Hp so that

e„c=(m,c +p, c +2nlelcAH, )' +(E /H, )cp

giving

enpc e„" ~ =(e „c e„" )+(E /H )c(p„—p,"),
X

(46)

and similarly for e„', c,—e"„„„,where e„c——e„c(E=O, H) is the full energy in the absence of an electric field.
X

Therefore, we find after some manipulation that the off-diagonal elements to first order in E are

(np„eC;EHlp, n'p„e'C';EH )

l 77cEy

(e, „,c e ', „,c')H JV

(p~ —px')(np„eC;E» =O, Hl Vln "p,"e"C";E =O, H )
n "p e"C"

X ( n "p "e"C";E =O, Hl Vln'p„e'C', E =O, H ) [5(e~ —eo)+5(e —e )]f'(eo„),
where f ' is the derivative of the probability function f with respect to energy.

V. TRANSVERSE CONDUCTIVITY

In the single-particle Dirac theory, the quantity s„=cd a„itt is interpreted as the four-vector probability current. In
this context the single-particle charge-current density is j„=es„=ecPa„g. With Eqs. (4)—(11) and (48), we can now
determine the expectation value of the average current components:

J+ —=J +iJ (49)

given by

(J+ ) =ec Tr(pa+), (50)
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that is,

(J+ ) =ec g g (np eC;EHlpln'p„e'C', EH ) (n'p, e'C', EHla+lnp, eC;EH ) .
n, p„,e, C n', e', C'

Substituting for p =pll+p, and keeping only the dominant (i.e., diagonal) elements of pii, we get

f (e'„)
(J+)=ec g g 5„„5,,5cc (n'p, e'C', EH a+ np eC;EH )

(51)

+ec g g (np, eC;EHlp, ln'p e'C';EH )(n'p, e'C';EHla+lnp„eC;EH ) . (52)

The first term in this expression describes a current in the x direction of magnitude n, lelcE /H, and is related to the
well-known classical result that a charged particle in crossed electric and magnetic fields drifts on the average with a ve-
locity vD=c(EXH)/H . This current is independent of the scattering and is not affected by orbital quantization.
Thus, for each species of charge e,

o. »= J„/E»=n, le c/H, .

Evidently,

(53)

(J —J+ )
2

(np eC;EHl'p&ln'p e'C';EH)
n, p, e, C n', e', C'

X((n'p„e'C', EHla lnp eC;EH) —(n'p„e'C', EHla+ np„eC;EH)) .

Introducing Eq. (48) into Eq. (54), we obtain

2

((n'p e'C', EH a lnp eC;EH) —(n'p e'C';EH a+lnp eC;EH))
np EC n e Cn, p, E, n, c,

(p —p„")(np„eC;E =O, Hl Vln "p "e"C";E =O, H )
n p e

X (n "p,"e"C";E =O, Hl V n'p„e'C';E =O, H )

X[5(eo —e )+5(e —e )]f'(e„) .

(54)

(55)

If we now carry out the sum over p, e and e' in the limit where Eq. (46) can be used to express e in terms ofp„ then
tl

Px Px

n,p, c en, p, c
f'(p, )&

X f dp,'((n'p, e'C', EHla np„eC;EH )

—(n'p„e'C', EHla+ lnp eC;EH ) )

X (np eC;E =O, Hl Vln "p,"e"C";E»=O, H)

X (n "p "e"C";E»=O, HI Vln'p„e'C', E» =O, H )

X [(p,") c +21elcfiH, (n" —n)]

+ f dp, ((n'p, ec';EHla lnp. «;EH )

—(n'p eC';EHla+ lnp eC;EH ) )

X(np eC;E =O, Hl Vln "p„"e"C";E=O, H)
X (n "p„"e"C";E=O, Hl Vln'p eC';E» =O, H )

X [(p,") c +2lelcfiH, (n" n')]— (56)
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where

For the electron-ion (elastic scattering) interaction potential given by Eq. (22),

4 Z 1
N,.

(np cC;EH~ VIn "p "F."C";EH&= g 2
(np„eC;EHIe' '~n "p„"e"C";EH& g e

q q a=1

where X, is the total number of ions. If we now take the ensemble average over the scattering centers, we get

(58)

z e ' ")=))';5q
q 4'(q),

ao."

where

C&(q) = 1+3f (xs) 'sin(xs)dx,
0

and
1/3

(59)

(6O)

3

4 Iql . (61)

In our application, 4(q) —1 ((1,so that with a conversion of the sum into an integration through the usual relation

we get

(np„eC;EHI VIn "p "e"C";EH&(n "p„"C";EH~V~In'p, e'C';EH &

22 ~
=(4vrZe )

3

f d q „(np eC;EH~e' 'In "p "e"C";EH&(n "p "e"C";EHIe ' 'In'p E'C', EH &

7T

(63)

Note that with the dependence on p indicated in Eq. (1),
q in this integral must satisfy the condition

q, =(p, —p,")/fi.

VI. RESULTS

to yield a nonzero contribution to the particle transport.
For temperatures above the value kT,h

= ~eIfiH, /m, c, cr~

displays the familiar oscillatory behavior resulting from
sweeps across increasing Landau excitations. The overall

The conductivity o ~
—= (cr +o )/o =o calculated

from Eq. (56) is shown graphically in Figs. 3 —5 for vari-
ous combinations of the parameters II„E~, E„y, and
n, . (A more complete survey of the results will be pub-
lished elsewhere. '

) The horizontal scale shows the
"characteristic*' (perpendicular) temperature T,„, such
that the highest accessible Landau level is given as

26

25—

I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

I,
I I I

n „:—int
fpze ck T~h

/e/eH,

24—

These calculations assume a minimum value of the
electron-ion momentum transfer corresponding to the
Debye wave number

1/2
4~n, e

kD—= (65)
3 T

In all cases the conductivity is zero when the thermal
energy is insufhcient to excite particles above the ground
state, a necessary condition for the interaction potential

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5 6 7 8

T,„(10 K)

FIG. 3. Perpendicular conductivity o.
& as a function of

characteristic temperature T,h, for a magnetic field H, = 10' G,
electric field E=(0,10,10 ) V/cm, Lorentz factor y=10, and
particle number density n, = 10 cm
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12

14
1 2 3 4 5 6 7 8

T,„(10 K)

FIG. 4. Perpendicular conductivity o.
& as a function of

characteristic temperature T,h, for a magnetic field H, = 10"G,
electric field E= (0,0. 1,0. 1 ) V/cm, Lorentz factor y = 10, and
particle number density n, = 10 cm

dependence of o ~ on T,„ is due to two main competing
effects. The first of these results from the temperature
dependence of the particle distribution function f„(see
Sec. IV A above), which yields f„' —T / . Since f„' is a
measure of the phase space available to electrons ac-
celerated by the applied electric field, this effect results in
a decrease of o.

~ as T,h increases. However, the Debye
wave number kD [Eq. (65)], specifying the minimum al-
lowed momentum transfer during electron-ion interac-
tions, decreases with increasing temperature and results
in a greater contribution to the particle transport. This
effect is particularly important at the higher densities, as
illustrated in Fig. 5.

The conductivity is only weakly dependent on y be-

cause the relaxation time ~„ is sufTiciently long that the
dependence of the scattering cross section on particle en-
ergy is not an important factor. However, o.

~ depends
very strongly on the electric field, though we are still
justified in using a first-order analysis due to the very
small value of the "expansion" parameter E/H, (((1).
These results indicate that o.~-E to better than 0.01%
and is roughly linear in E, (to within 10') for tempera-
tures kT, h

~ ~e~AH, /m, c. As discussed in Sec. III, the
theory we have developed here assumes a one-electron
approximation for the description of the electron gas; i.e.,
it does not take into account Auctuations of the particle
motion when the partic1e mean free path is small com-
pared to the classical orbital radius of the Landau excita-
tions. Thus the strong dependence of o.

~ on E is not

realistic for densities n, ~ (3kT) QeH, /8rre &cklnA„
where lnA, is the usual Coulomb cutoff' arising from the
Debye screening. In fact, it is expected that for these
physical conditions the conductivity tensor should reduce
to its classical counterpart' o.~, which is independent of
E . We have thus chosen to "normalize" o.

~ so that it
correctly reduces to o'~ in the region where the thermal
fluctuations are important, and we have included this
scaling in the results presented in Figs. 3 —5.

This second-order dependence on the electric field E
reflects the intrinsic difference between the particle wave
function for E,WO [Eq. (1)] and that for E, =0. In the
latter case, the particle motion is unrestricted (i.e., a
plane wave) in the z direction, whereas in the former,
the z momentum directly affects the quantization of the
particle motion in the xy plane through the energy of the
state. The fact that motion in the z direction is now cou-
pled to the harmonic oscillator greatly restricts the al-

20—
E, = 10 V cm

I I I I
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I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

f

I I I I

18— 14—
Ez 10 V cm

12

10
1

I I I I I I I I I I I I I I I

5 6 7 8 9

T,„(10 K)

10
1

I II I I

3 4

Tch

5 6

(10 K)

I I I I I I I I I I I

7 8 9

FIG. 5. Perpendicular conductivity o ~ as a function of
characteristic temperature T„.h, for a magnetic field H, =10 G,
electric field E=(0,10,10 ) V/cm, Lorentz factor @=10,and
particle number density n, = 10 cm

FIG. 6. Comparison between the conductivity calculated
here (solid with two values of E,) with the classical expression
(dashed) cr; co„ [/4vrv(—1+co ~s/v)], where co~ is the electronic
plasma (precession) frequency, co& =eB/m, c is the cyclotron
frequency, and v is the collision frequency. The parameter
values are H, =10 G, n,, =10 ' cm, and E =8X 10 Vcm
The steep dropoA in o ] at low T,&, is due to the temperature

dependence of the classical Debye screening length, which re-
sults in v~0 for T~4X10 K.
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I I I I

)

I I I I & I I I I

I

I I I I

I

I I I I

I

I I I I

I

I

—1V cm ' (Fig. 6), but o i ))o i when E ))10 V cm
and/or E, ))10 ' V cm ' (Figs. 6 and 7).

14— VII. CONCLUDING REMARKS

10—

8—

4 I

1 2
» I I I I I I I I I I I I I I I I I I I I I I I

3 4 5 6 7

v.„(io K)

I I

8

FIG. 7. Comparison between the conductivity calculated
here (solid) with the classical expression (dashed)
o'-co~/[4irv(1+cos/v )], assuming II, =10' G, n, =10
cm, E~=10 Vcm ', and E, =0. 1 Vcm '. The difference re-
sulting from the strong dependence of o.

& on E is clearly evident
(see also Fig. 6).

lowed transitions in the 0.'-matrix elements given by Eqs.
(4)—(11), in such a way that only second- (and ig e-
der terms in E contribute to the conductivity oi [Eq.
(56)].

A simple relation that incorporates all of these effects
n /H with g J 5 X 1 0 s when

G, n, =10 cm, E =8X10 Vcm, and E, =
V cm ' (see Figs. 3 —7). It is interesting to see how this
conductivity compares with the results of earlier wor

manifestation o ef ' f th quantized particle motion in strong
magnetic fields and has, of' course, been evident whenever
these uantizing effects have been taken into account.
The previous calculations that most close y1 resemble
those discussed here are those reported by Canuto and
Chiuderi, in which the electric and magnetic fields were

d t b erpendicular. These earlier calcu ations
also assumed a degenerate, high-density gas wit p
g cm corre( responding to a particle num er density

with, ) 10 ) as opposed to the ideal plasma wi
(10 cm used here. This difference in the p ysica
conditions is rejected in the functional form of oyy for

f ' o. -n H' with n the ion num-the former case ~i.e., o. -n, i

ber density), where the dependence on density enters only
in first order because of the electron degeneracy. A
direct comparison between our conductiv' yvit and the clas-
sical expression oi-cp /[4irv(1+coil/v )], where cp is

~~ =eB/m c is the cyclotron frequency, and v is the col-&lee is
lision frequency, is shown in Figs. 6 and 7 for representa-
tive field intensities. Although o.

~ and o.
~ are comparable

in regions w ere eh th thermal Auctuations are important
see above and Fig. 6), the difference between the two can

be significant as a result of the strong dependence of o i
Con E. Thus, for example, o.

z =O.
z when H, ~ 10

n ) 10 cm, E =8X10 Vcm ', and E, =10ne-
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APPENDIX

In this appendix we reproduce the constants appearing
in the normalized Dirac wave function and the velocity
matrix elements:

[ F+(F +4G —)' ],c2

28'= [F+(F +4G )'/~],
c2

F=H —E

G =E-H,

g = (y —
yp )cos@p+ (z zp )slnlPp,

ii = (y yp )slngp+ (z zp )cos+p

(A2)

(A3)

(A4)

(A5)

c Px
3'p = (A7)

c +xE& 6Hz / c
(AS)

tangp= [2E, +F+ (F + 4G )' ] /(2E E, ), (A9)

We have developed a formalism for calculating the
"transverse" conductivity o.

~
= 0

yy zy yy
= o +o. )/o. of an

electron-ion plasma, where o.; are the elements of the
conductivity tensor o., in the case where H is along z and
E=(O,E,E,). The component a~ depends solely on t e
scattering process, whereas o. is dis due entirel to the drift

2velocity vD =c(EXH)/H .
These results will be applied to a quantum treatment of

magnetic-field reconnection, which has been motivated
by its relevance to the superstrong magnetic fields usually
encountered in neutron-star environments, particularly as
a mechanism for generating the plasma heating and parti-
cle acceleration leading to the sudden release of magne-
tosp eric energy.h

' . The dependence of the perpendicular
conductivity on the electric-field intensity implies that
strong electric fields generated by tearing mode fIuctua-
tions in the magnetic field can significantly alter the c as-
sically derived particle transport properties. A descrip-
tion of the theory for resistive magnetic tearing in a
quantizing e anfi ld d the application of the results present-

17ed in this paper will be reported elsewhere.
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2

u —,„= g C [K, [ifisinyoO, H„+iRcosyo( K—zqH„+K3„H„,)0 +mcH„0 ]
j=1

coslp DQ JH +Pi sin@0( K—&qH„+K3 H ) )0j
2

u2, = g C [K) [ fi—cosyoA H„+A'sinyo( K—5qH„+K3„H„))0~]
j=1

+i fi sin()()DQ H„+i' coscpo(K6riH„+K3„H„) )0 +mcH„0 ]

where

E
Ki=

H, +(chile))/B' sgn H, +i [E,+(chile))/A']

cubi iB'
e E,

K3„=2n (B')'

H,
K =)/B'+

4 c

H,
K~ =')/B' ——

c

(A10)

(A 1 1)

(A12)

(A13)

(A14)

(A15)

(A16)

cubi

(B'
e E,

Here H„=H„((B')' g) are the Hermite polynomials, and 0) and 0z are the conAuent hypergeometric functions

0,(g)=F, —, i&A—'g
I'. A 1 . , 2

4&Ax&'' 2'

(A17)

(A18)

02(g) =(F —+,—, i & A 'g—1 iA 3 . , 2

4& A Vi'
'

2
'

and 0& and Az are their first derivatives:

A
&,(g)= =g F 1+,—, i&A'g'—

(A19)

(A20)

O~(g) = =F —+,—, i v'A'(—2

4& A Vi'
' 2 '

where

A=[(mc) +(2n +1+ sgn H, )A'2VB'] .

(A21)

The constants T„'J—:T„(C,=i, C2= j) appearing in the matrix elements of the velocity operator a are given in
terms of the integrals

190 (g) —f 0s(g)0 (g+g) i(6 +2gh)+A'/2dg

198 (g) f r 0e(g)0 (g+ g )e & (6 +2/A)V '3'/2dg

inn(g) f r ~e(g)~ ((+g) i(h +2/6))/A'/2dg

IQQ(i) ) f & ~e(g)~ (g+i) )
i(k +2/6)VA'/2dg

19Q (g) f r 0s(g)~ (g+ i( )
i(A +2/6)+3'/2dg

(A23)

(A25)

(A26)

(A27)
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ISl9 (g )
& ~4(g)g (g+ g) i (6 +2/6)V A'/zd

g

II19(2) ) gs(g)~ (g+ g )
i(A +2/6)v A'/zd

gi

I9n(g) & ~4(g)g (g+g) i(A +2/6)v A'/zdg

IÃl (g) —
J

~ g4(g)~ (g+z) )
i(h +2/6)v A'/zdg

I$19(g)— ~4(g)g (g+ g) /(5 +2/5)V A'/zdgL(

L.
I9n (5)— ~ g4(g)O (g+ 6) i(A +2/6)v A /2d

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

In9 ( Q )
— @4(g)g ( g+ 2)) )9 i

(6 + zgh)v A'/zd
g

L( ~ 2

where 6 —=zp zp. They are

(A34)

T/'" =(2"ir' n! )K7Iz 2 k + [2" 'ir' (2n + 1)n!](1/3/B')KSIz .z

+(2" 'ir' n!)[1/(B')'/ ]K I „+(2"ir' n!)K*m c I
i

T~'+2 = [2"ir'/ (n +2)!](1/3/B')K Is2 z

T '"
z

=(2" ir' n! )(1/3/B')KSIz 2 k + [2" ir' (n —1)!][1/(B')' ]K9Izi 9 2 g, 2 k

T„'+1 1=[2"ir' (n +1)!][1/(B')' ]KlpI2 /2 k

T„'", , =(2" 'rr' n!)[1/(B')' ]K)pI2 / 2 k+[2" 'ir' (n —1)!]K»Iz i z

T '
1
= (2 ir n! )K12I2

Tj'+, = [2"ir' (n + 1) ][1/(B')' ]K13I2 z k + [2"ir' (n + 1)!][1/(B')' ]K14Iz

(A35)

(A36)

(A37)

(A38)

(A39)

(A40)

(A41)

and

Tj, k (2n
—1 1/2 1)[ 1 /(B )1/4]K I$19 + (2n

—1 1/2 1)[ 1 /(B )1/4]K I9(l

+ [2" 'w' (n —1)!]K15I2 (A42)

where

K7 = ~K, ~
i' singpcosgp+K*, A sin Pp+K, i)i cos Pp

—i' singpcosgp,

Ks = —~K)~ iA cos(tpsinppK2K~ —K) fi cos ppKzK6+K)fi sin ppK4K5 —i' sinppcosppK4K6,

K9 = ~K( i' cosppsin'(tlpK3K5 +K 1
A' cos ppK3K6 —K( Ii sin t))pK3K& + i' sin(()pcos(! pK3K9

K,p
= ~K) ~

i' cosgpsin(()pKz K3 —K1 A' cos PpKzK3 —K, fi sin ppK4K3 —iA singpcosgpK4K3

K» = —~K) ~
i' cosgpsin(()p~K3~ +K1 ~K3~ fi cos Pp+K( K3 iri sin Pp+ifi singpcosgp~K3~

K,z
= —~K( ~

ih sin PpK3+K*, A sin/peas(I)pK3 —K) fi singpcosgpK3 —ih' cos PpK3,

K 13 ~
K 1 ~

i%' sin ppK3 +K *(K6A' sin())pcospp+ K
1

A' sinppcosppK3 1 f1 cQs ppK6

K,4= —K, ~
if& cos ppK2 —K)*)ii cos(()psinppKz +K)A cosppsinppK4 —iiii sin ppK4,

ancl

K )5 ~K) ~

i'Il cos (()pK3 +K
1

f2 cosgpsingpK3 —K, A cosgpsingpK3 + iA' sin PpK3

The normalization constant is given as

(A43)

(A44)

(A45)

(A46)

(A47)

(A48)

(A49)

(A50)

(A51)
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L +
X„(C„Cz)=f ~g„„,~ dx dy dz = f dx f

draff

dg g„~
oo

4L
iC (2"n' n!)(iKi ~

+1)IA' Ioo+(mc)~Its]+[2" 'm' ~(n —1)!4n~]R V B'(~Ki
i

+1)Is~
j=l

n —1

+ ~'"(2n+1)n![(iK,K, I'+iK, ~')&'»n'(to+(IK, K, I'+IKpI')&'cos'Po

+i (K,Kz K*,—Kz )(K4 —Ks )fi sin(tocosgo]I, .
J

+(2n2" 'rr' n!)[—2(iK, i
Ks+K„)A' sin Po

—2( K, ~

+1)&B'A' cos Po

+i' singocosgo(K& —K~& )(Ks —K4)]I~s (A52)
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