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We examine mechanisms, several of which are proposed here, to generate structure formation, or
to just add large-scale features, through either gauged or global cosmic strings or global texture,
within the framework of inflation. We first explore the possibility that strings or texture form if
there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1)
quantum creation, and {2)a sufticiently high reheat temperature. In addition, we examine the pros-
pects for the inflaton field itself to generate strings or texture. Then, models with the string/texture
field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are con-
sidered in detail. The requirement that inflationary density fluctuations are not so large as to
conflict with observations leads to a number of constraints on model parameters. We find that
strings of relevance for structure formation can form in the absence of coupling to the inflaton or
curvature through the process of quantum creation, but only if the strings are strongly type I, or if
they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings
correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via con-
formal coupling /=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to
evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I. Type-
II strings are possible if g is large or if the strength of direct coupling between the string field and
inflaton is chosen appropriately. We improve upon the understanding of the formation process of
strings and texture during inflation, and find that the alternative fractal string scenario put forth by
Vishniac et al. is further restricted in parameter space, but the model still turns out to be much
more plausible than the authors had realized. The fractal model, as originally proposed, may in fact
lead to ordinary scaling scenarios of structure formation. However, new structure formation
scenarios still appear to be quite possible, especially for global strings. Gauged strings leading to
nonstandard scenarios must be type I, and the quartic coupling for global texture should satisfy
A, ~4X10 if a new scenario of texture formation is to be possible. We find that the formation of
strings and/or texture difFers from the standard picture if g~ 1/12, and that the string and/or
texture-curvature interaction is not sufficient to place the characteristic formation scale of texture
or strings within the horizon if g 0.002. We estimate the likelihood P, in terms of model parame-
ters, that structure in a universe of our size may be described by a nonstandard string or texture
scenario. We find that P can be of order unity.

I. INTRODUCTION

At present, there are only a few well-received theories
that can provide the large-scale Auctuations required for
cosmological structure formation. InAation is one such
theory, which seems to be required to explain a host of
cosmological problems, and as a bonus it can provide the
density inhomogeneities needed to explain the observed
structure in the Universe. For reviews of the inAationary
scenario, see Ref. 1. Competitive topological models for
structure formation include cosmic strings, reviewed in
Ref. 2, and global texture. These models are all generic,
in the sense that they each arise in large classes of field
theories containing appropriate scalar fields. (Of course,
with inAation there are other possibilities for generating
geometrical structures. )

In this paper we examine various means by which
strings and texture can be made compatible with inAation
and explore the constraints on model parameters that
arise when the inAationary Auctuations are constrained to
be small enough that inAation does not overproduce den-
sity inhomogeneities. Contrary to the conclusion from
simple estimates, reviewed in the following paragraphs, it
is possible to generate strings and texture in inflationary
models via a number of diA'erent mechanisms.

Simple estimates indicate that strings and texture are
not produced after inAation, as the reheating temperature
after inAation is expected to be below the scale at which
these topological structures form. Then they form be-
fore or during inAation and are diluted into oblivion
(scales outside our horizon), along with monopoles and
other unwanted relics, by the inAationary expansion. In
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This constraint assumes a cold-dark-matter scenario of
structure formation; it remains valid if there is biasing,
and it applies to all scales below the normalization scale
( =8 Mpc). The derivation of (1.1) follows from the rela-
tion between the power spectrum and the inAationary po-
tential in the slow-roll approximation and a constraint on
the potential that allows inAation to occur. Hence mod-
els that nearly violate slow-roll conditions, such as
power-law inflation, ' can saturate the bound given by
(1.1). The constraint resulting from the observed isotropy
of the microwave background ' ' " is 0 ~ 8 X 10' GeV,
which is relatively close to the constraint (1.1).

The constraint (1.1) can easily be translated into a con-
straint on the reheating temperature T, of ordinary radi-
ation after inAation:

T, ~ 2 X 10' ~„GeV y (1.2)

where the effective particle degrees of freedom were taken
to be those of the standard model g = 106.75 [this may be
increased somewhat by grand unified theories (G.U.T.'s)
and supersymmetryj. The efficiency of reheating e„(~ 1)
is expected to be small since typical inAationary models
have difficulty achieving e%cient reheating as a conse-
quence of the small potential couplings required for an
observably acceptable Auctuation amplitude. The actual
reheat temperature may be far below its maximum possi-
ble value. For completeness, we mention that additional
assumptions about the inflationary model can
significantly tighten the bound (1.2). For potentials cor-
responding to inflationary power spectra that do not
exceed the constraint on the power spectrum at the nor-
malization scale, as well as for scales below it, the follow-
ing bound arises:

T, ~6X10' e„GeV . (1.3)

Keep in mind that the above constraints correspond to
the inAationary Auctuations having the largest values al-
lowed if it is these Auctuations that form cosmological
structures. If we want strings or texture to be solely re-
sponsible for structure formation, then constraints
(1.1)—(1.3) would become even stronger. (The precise
constraints would be dependent on the details of struc-
ture formation with strings and/or texture, which are not
yet fully understood. )

The preferred value of the string energy per length p
for galaxy and large-scale structure formation is
Gp = 10 . The naive expectation is that the symmetry-
breaking scale il=&Gpmp, =10' GeV (mp, =G
=1.22X10' GeV is the Planck mass) and that the criti-
cal temperature T, of the phase transition in which
strings form is =g. It therefore appears marginal that
strings could form after inflation, taking into considera-
tion the constraint (1.2). Even if a sufficiently high reheat

the simplest models of inAation, e.g. , chaotic inAation,
there is a constraint on the energy density, or Hubble pa-
rameter H, during inAation from the requirement that
inflation does not overproduce density inhomogeneities
on large scales: '

H &7X10' GeV .

temperature was possible to generate strings (or texture),
one is left with the disastrous possibility that monopoles
also form after inflation. Therefore, one has to ensure
that the mechanism leading to strings or texture with a
high T, does not automatically lead to monopoles;
perhaps, certain higher-dimension models of gravity can
do this. ' An accurate determination of g for texture
will not be available until it becomes clearer how galaxies
and large-scale structure form with texture, but
g=5 X 10' GeV is expected. ' If this scale is much small-
er than that for monopoles, and the reheat temperature is
in between these scales, then topological structure can be
relevant for structure formation in inflationary models.

The basic Lagrangian that we shall consider for strings
is of the form

L =(D„4)*(D"4) 'F„F—"—' V(&b )—, (1.4)

In this section we consider the formation of strings and
texture in inflationary cosmologies for the case that the
string and/or texture field is not coupled to the inflaton
or curvature. We first consider what is perhaps the sim-
plest possibility: lowering the critical temperature for lo-
cal string formation by an appropriate choice of gauge
and quartic couplings. Next, we discuss the formation of
strings and/or texture via quantum Auctuations in the
corresponding scalar fields during inAation and the possi-
bility of nonstandard structure formation scenarios. Fi-
nally, we examine the possibility that a global string
and/or texture theory may also be responsible for
inAation, with decoherence of the relevant fields at the
end of inAation leading to a scaling pattern of global
strings and/or texture.

where N is a complex scalar field, D =8„—iq A„,
F„,=B,A„—B„A„and the U(1) potential is

v(e)= —m,'fef'+sic /'. (1.5)

The case of global strings can be obtained by setting the
gauge coupling charge q =0, and dropping the terms in-
volving the gauge field 2 . Writing @=f exp(iy) /v'2,
where f and y are real fields, the scale g (expectation
value) that arises upon minimization of the potential with
respect to f is i) =ms/A, . In the case of global texture,
we generalize the complex global string field N to a com-
plex doublet —which can form texture when the global
SU(2) symmetry is broken. In fact, the majority of results
for global strings and global texture are the same, owing
to the similarity of the theories. We therefore concen-
trate on the string case, but note differences between pro-
ducing global strings and global texture when they arise.

In Sec. II we explore several mechanisms for string and
texture formation that do not involve coupling the
symmetry-breaking field to other fields or to the gravita-
tional curvature R. Then, in Sec. III, we consider the
coupled case. In Sec. IV we discuss our results and men-
tion other constraints that must be considered. The Ap-
pendix discusses the equilibrium distribution of scalar
fields during inAation.

II. FORMATION OF STRINGS AND TEXTURE
WITHOUT ADDITIONAL COUPLING
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A. Adjusting the critical temperature

For global strings or global texture, the critical temper-
ature T, of the transition is determined by g alone. The
value of g required for global texture structure formation
is within a factor of a few of the bound (1.2) and is nearly
ruled out by (1.3). A global string scenario of structure
formation is easier to realize since g is somewhat smaller
than that for texture (discussed later), and constraint (1.3)
can be satisfied if e„0.03. Gauge strings have additional
freedom owing to the gauge field, and perhaps one of the
simplest proposals made to have a string scenario be
compatible with inflation is to utilize the parameter space
of the theory [Eqs. (1.4) and (1.5)] to adjust the critical
temperature of the string-forming phase transition below
the reheat temperature. ' '

The critical temperature of the gauge string-formation
transition is given by (see, e.g. , Ref. 16)

12m~

4k+3q 4+3q /A,
(2.1)

@=1.04m' //3 (2.3)

for the range 0.01»/3» 100; and in the limits P))1,
P «1, the energy per length only varies logarithmically,
p —i) /ln(P), p —g in(1/f3), respectively.

The model [Eqs. (1.4) and (1.5)] is subject to radiative
corrections, unless canceled because of symmetry con-
siderations (e.g. , supersymmetry), which become impor-
tant when A, »q . Also, (2.1) assumes T, ))mi„m~ or,
equivalently, A, ))q", q ((1. If we require that the circle
of degenerate vacua in the effective potential be at the
global minimum of the potential, which is necessary for a
plausible cosmic-string theory, then one finds that

A, ) 3q /32~ or /3(16' /3q (2.4)

Naturalness suggests that the gauge coupling q =O(e),
which implies P»10, and that the critical temperature
can at most be smaller than g by a factor —10 '. In this
case the string network could form after inAation if there
is fairly efficient reheating. Assuming the self-interaction
of @ is perturbative (A, » 1) leads to the additional natu-
ralness constraint P & 10

Acceptable values of P can be pinned down by requir-
ing that the critical temperature (2.1) be below the
reheating temperature. The constraint (1.2) allows the
formation of strings for all values of /3 if reheating is very
efficient. More stringent conditions can be placed on the
wide class of inflationary models leading to constraint

and one has the freedom to make T, well below the scale

g for q ))k, hence bypassing the naive problems dis-
cussed in the Introduction. The other critical feature of
this scenario is that the energy per length of the string

p =q, practically independent of the ratio

(2.2)

where m i, =q g/i/2 is the vector-boson mass and mz is
the scalar mass. [If /3) 1 (P & 1) the strings exhibit type-I
(type-II) superconductivity in the Ginzburg-Landau
theory. ] More precisely, '

(1.3). Applying constraint (1.3), using Eqs. (2.1)—(2.3),
and taking Gp =10,we find that

/3 & 3e '4' «P» 10
—'e'o'4 (2.5)

B. Quantum fluctuations
in the string and/or texture field

A critical temperature above the reheating tempera-
ture does not necessarily preclude the formation of
strings and/or texture at a cosmologically significant lev-
el if the effects of fluctuations in the corresponding scalar
fields during the inflationary era are taken into account.
It turns out, however, that the constraints on the ampli-
tude of inAationary Auctuations necessitate that the
Hawking temperature be sufficiently low during the last
=60 e-folds of inflation, which corresponds to scales
within the observable Universe, so that an infinite net-
work of strings of relevance for structure formation can-
not form via previously known mechanisms. However,
we find, with a likelihood which we calculate, that the
global structure of the Universe may have local regions
(miniuniverses) where string scaling solutions are possi-
ble. In addition, there are regions containing strings that

Technically, the latter condition pushes the use of (2.3),
and it suffices to say that this constraint cannot be
satisfied for natural values of P. Since e„& 1, the range
10»P» 3 is excluded. The entire "natural" range of /3

is excluded for type-II strings. Strongly type-II strings,
though unnatural, are able to form after reheating be-
cause smaller values of /3 require lowering the scale i)
(and hence T, ) to maintain a fixed string energy per
length p. However, the weak (logarithmic) dependence
of i) on /3, for /3(&(1 (unnaturally small), prevents g
from being lowered below =7 X 10' GeV —in which
case the horizon scale becomes a cutoff and the limit of a
global string is achieved. It appears much more natural
that the strings are type I. We note that if e, ~0. 1, even
"natural" type-I strings are no longer a possibility. A
large reheating efFiciency is required for the formation of
natura1 strings.

Even though the inAaton might deposit its energy into
ordinary fields at a very-high-energy scale, it is still not
clear that strings will form because our analysis assumes
that the string field is in a state of thermal equilibrium.
After inflation, and before the inAaton decays away, the
string field could be coherently lying in one of its vacua
and it is crucia1 that it become excited enough to hop
over the potential barrier during the short time interval
that it is energetically feasible. A suggestive, but by no
means rigorous, analysis of whether or not the string field
should be in equilibrium is to calculate the interaction
rate of the scalar particles among themselves. The cross
sections are o. =A, /T and cr =q /T =AP'/T for, in-
teractions via scalar and gauge particles, respectively.
Comparison of the interaction rate with the expansion
rate requires T/mp, »(q, A, )i/g for equilibrium, where

g is the particle degrees of freedom. This seems
moderately difFicult to satisfy in light of additional con-
straints and the fact that naturalness suggests that T, be
larger than =10' GeV.
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If the mass scale satisfies m + H, the field Auctuates by
an amount 5$=H /m in each Hubble expansion time,
but does not random walk.

Now we introduce topological features in the potential
and restrict attention to the case that the field of interest
has a strong bias to live near the minimum of the poten-
tial, and we presently assume that the field on the horizon
scale was near the minimum. For a real scalar field with
potential V =A, (P —i) ) /4, it is clear that such a restric-
tion effectively excludes the possibility of making domain
walls (unless very improbable fiuctuations take the field
to the top of the potential). (For a discussion of domain
walls, see Vilenkin. ) Similarly, it is not topologically
possible to make strings. However, texture-antitexture
pairs could, in principle, form. To consider this possibili-
ty, it is simplest to consider the formation of texture in
the U(1) model (1.5) in one spatial dimension and argue
that analogous results should hold in our spacetime. Ra-
dial Auctuations in N are unimportant if

(2.7)

and the radial degrees of freedom are frozen out, yielding
an effective Lagrangian given by L =i) B~B"g/2, where

y is the phase of N.
The typical phase fluctuation in an expansion time is

given by 5y=H/2~g, and texture-antitexture pairs will
form on scales corresponding to 5y=1. That is, when H
drops below

H~ =2m', (2.8)

in the course of the inflationary expansion, the Auctua-
tions in the phase are no longer large enough to efhciently
produce further pairs. Taking into consideration con-
straint (1.1) and values of i) required for structure forma-
tion, this condition can only be satisfied on scales well
outside our present horizon. We further note that the as-
sumption of the scenario (2.7) coupled with condition
(2.8) implies A, 1, which is distasteful if one believes in
perturbative interactions. [The constraint A. ~ 1 could be
weakened if H remains approximately constant from the

could give rise to a nonscaling scenario of structure for-
mation. A nonscaling scenario was discussed by Vishni-
ac, Olive, and Seckel (cf. also Ref. 4) for models where
there is coupling of the string and/or texture field to the
infiaton (discussed further in Sec. III)—the novel feature
here is that no extra couplings are required.

Let us recall a few of the basic properties of a real sca-
lar field P in de Sitter space. The effective (Hawking)
temperature T of the Universe during inAation is simply
related to the Hubble parameter H, i.e., T =H/2m. An
effectively massless (m &H ) real scalar field P fiuctu-
ates, on average, by an amount 5$=H/2' during an e-
fold of expansion during infiation. ' (Whenever we refer
to fields, it is the long-wavelength A, ~ H ' portion that
we are really considering. ) These fiuctuations occur in-
dependently in domains of size -H '. In a time interval
b, t -H/m, the field loses memory of its initial value and
is Gaussian distributed about /=0 with

(2.6)

horizon scale to the end of inAation. The time and length
scales associated with the creation of a texture-
antitexture pair is related to the number of expansion
times required to encircle the U(l) potential:
N =(rl/H) If. N & 50 or H/i) ~ 0. 14, texture may still
be relevant for large-scale structure —and the constraint
on A, weakens to A, 0.01. The former constraint still
cannot be satisfied, however, if texture is to be responsi-
ble for structure formation. ] There is the additional pos-
sibility, however, that the string or texture field happened
to be near the top of the potential on scales correspond-
ing to our horizon. As we shall discuss later, these cir-
cumstances coupled with appropriate choices of the pa-
rameters of the theory, subject to the constraint (2.7), can
in fact lead to texture and string scenarios —albeit they
may be very different from the standard scaling scenarios.

We now explore the opposite inequality of (2.7), i.e. ,

(2.9)

in which case radial fluctuations are important, and we
presently consider this case for the string model (1.5). In
the vicinity of the degenerate vacua and the top of the
potential ~(4~ &g), the magnitude of the effective mass
squared m, ~ of the string field is no larger than -A,g,
which is smaller than the infiationary scale H (if i) ~H
or A, i) &H for rj &H), and the classical radial motion of
N is friction dominated. However, the classical motion
of the field is unimportant, and 4 effectively takes a ran-
dom walk of typical size H/2~ in an expansion time.
The field N will typically not walk too far up the outer
sides of the potential, however, since the downward clas-
sical motion of the field will overtake a typical fluctuation
in one expansion time if ~4~ ~ H/A, '~ .

We now discuss, heuristically, the possibility of quan-
tum fluctuations leading to a standard string scaling
scenario or standard texture scenario. A string scaling
model will arise if an infinite network of strings forms on
scales below structure formation scales. The usual pic-
ture of string formation will arise if the string field is
prevented from significantly random walking away from
the origin, so that there will be small phase correlations
between typical neighboring Hubble volumes. Infinite
string formation should then be possible when the typical
size of a field Auctuation -H is comparable to the scale
-H /A, ', within which N is typically confined [the
latter estimate is obtained by setting m —A, ( ~@~ & in
(2.6), which is appropriate if (2.9) is satisfied]. This leads
to the condition that the field must be strongly coupled
A, -1, which further leads to the constraint i) &H [from
(2.9)]. The latter constraint, along with (1.1), cannot be
satisfied by ordinary or global strings, or texture, for
values of g necessary for structure formation.

A more rigorous analysis of scaling scenarios leads to
slightly less stringent results. In principle, scaling solu-
tions might be expected whenever the symmetry is nearly
restored. The crucial question, however, is the length
scale associated with the restoration of symmetry, i.e.,
the scale over which different vacua are nearly uncorre-
lated. We estimate this scale by finding the minimum
number of e-folds, NI, before the end of inAation, which
corresponds to a Hubble region in which the symmetry is
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typically restored, with the simplifying assumption that H
is approximately constant (a number of inflationary mod-
els can lead to H='const; see, e.g. , Ref. 18). That is, the
symmetry will be restored on the scale N if N~N, ,
where N, is the number of expansion times needed to
realize an equilibrium distribution of fields, and

Neq is the smal lest scale that satisfies this in-
equality. The equilibrium distribution of fields is given in
the Appendix, and the time scale N, can be estimated by
the number of Hubble expansion times it would take to
go from P =0 to P =H /&A, (or, equivalently, when the
dispersion of fields associated with random walking "cov-
ers" most of the equilibrium distribution phase space).
For a A, (P —g ) /4 theory (which we presently consider
for the sake of simplicity), the effective mass squared is
given by m, tr=3A, Q

—
A,il, and using (tI) ) =H /(m, ~),

we find that m, it=+AH . The symmetry is restored in
less than a Hubble time if n, z ~ H or A, ~ 1. For
Ul ff H, one easily finds

ed. We shall consider the domain-wa11 case for the pur-
pose of simplicity —but our results for l are equally appl-
icable to strings and texture.

Let us consider the correlations between two
inflationary domains, at the end of inflation, of causal size
6 separated by a distance L. The domains were in causal
contact N, =In(L/b, ) e-folds before the end of inflation.
We presently assume that the mean value of P, (Ph) is
less than dispersion in P, and later check for conditions
of self-consistency. Then the value of the fields P, at the
epoch N, will typically lie in the range

Ha+—Nh N, /2~ —-P, Ha+Ni, N, /—2~, where
a-1. After N, steps within a domain of initial field
value P„ the field values at the end of inflation will be
dispersed by an amount 5/= +N, H/2~ If th.is disper-
sion is larger than P„by some factor y (of order unity),
we expect inflationary domains to be nearly uncorrelated
on the scale L. The minimum scale L that satisfies
5P & yP, we call l, and we find

Ni =N =(2' /A, )'
eq (2.10) I/b, =exp(N, ), (2.13)

Therefore, if N&
~ 50 or

(2.11)

N, —= (2m/i, /H) (2.12)

which represents the time scale for the dispersion of the
distribution to become larger than the initial horizon-
scale value P& (equivalently, Pi, is the mean-field value in
our Universe). (Note that if N„»Ni, , an inconsequen-
tial amount of walls, string, or texture forms. ) We shall
provide an estimate of the length scale l corresponding to
the scale over which the vacua are essentially uncorrelat-

the symmetry is restored well within our horizon, and
scaling scenarios relevant for structure formation may
arise. This constraint is the most favorable that can be
imagined and becomes more stringent in relation to when
the Hubble parameter significantly changes from its value
on structure formation scales. Constraints (2.9) and
(2.11) may only be consistent with inflationary con-
straints if global strings give rise to structure formation.

Even if N, & NI, (we define Nh =60 to be the number
of e-folds corresponding to the horizon scale and HI, to
be the Hubble parameter at that time), within a universe
of our size it may be possible to satisfy N& Nz. The ini-
tial value of the relevant field on the scale corresponding
to our horizon will determine whether or not a string or
texture scenario is possible and whether or not a scaling
solution is even relevant for structure formation. We first
examine the initial conditions required for a scaling
scenario and then determine the likelihood of such condi-
tions. Then we explore the possibility of a nonscaling
scenario.

First, we point out that it is not at all obvious that a
network of strings can even form on scales small enough
to allow a scaling solution to be relevant for structure for-
mation when N, ~ NI, . To consider this case, we return
to the real scalar field model and examine the limit
N, ~NI„' here

where Ni=Ng/[I+(ay) ], and we have taken

P, =Ha+Nh N, /2~. —For a scaling solution to be
relevant for large-scale structure, we require N& ~ 50,
which yields the constraint

exp ~2.2 (2.14)

N, &Ni, /(y +cz y ) . (2.15)

We briefly discuss these results and an alternative way
of viewing our analysis. We have just examined the case
that a field on the horizon scale is quite close to the top
of the potential, with subsequent field values typically ly-
ing within a few deviations of a Gaussian distribution of
width corresponding to how many e-foldings occurred.
There is no characteristic length scale in our problem,
and strings have a continuous range of length scales su-
perposed upon them (fractal-like). It should be clear that
a large-scale string should exist, but perhaps it is less ob-
vious that (2.13) implies that, viewed from the comoving
present horizon scale, the scale over which the long-

A benchmark value of y is the required value for per-
colation. If one of the two discrete vacuum states in a
domain-wall theory is randomly assigned, with a proba-
bility p to inflationary domains, percolation occurs if
0.31&p &0.69 (see, e.g. , Ref. 19). This translates to the
condition y ~ 2. Although our model is somewhat
different, we do not expect significantly different results.
The possibility of scaling solutions seems to be rather
marginal, but because of the nature of the problem and
our calculation, we are unable to make a definite con-
clusion one way or the other. Our difficulty primarily
stems from a coincidence of numbers in which a and y of
order unity lead to a correlation length of the order of 10
e-folds below the horizon scale. For the purposes of
classification, we shall simply refer to this case as a scal-
ing solution. Our calculation is self-consistent (with
respect to our choice of P, ) if the dispersion on the scale I
satisfies 5$(N, =Ni ) & yPz or
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string network is randomized gets continually smaller as
inAation proceeds. This is easily understood if we recall
that if we look inside a subdomain the symmetry will

eventually be restored if one allows enough inAation to
occur, and a large-scale string will traverse the sub-
domain. If one waits further until most of the sub-
domains go through restoration, then the long strings in
each subdomain may connect (percolate) and an finite
string network can appear with l corresponding to the
subdomain scale. Hence the amount of inflation plays an
important role in determining the scale of the network.

Now we consider initial conditions that lead to P, =Ph.

XI=@ N, . (2.16)

This result applies when the dispersion of fields Nt e-folds
before the end of infiation is less than Ph or

Nhl(y —1) ~N„~NI, I(y +1) . (2.17)

This corresponds to a / larger than that given by Eq.
(2.13). Taking y =2 implies 20 ~ N„~ 12, which
represents a much larger range of initial condition space

Following the previous calculations with this choice of
P„we find

(b)

0"
0

0
0

FIG. 1. Shown are the zero contours of a real scalar field in de Sitter space after =5 e-folds of expansion for various initial values

of the field. In terms of the ratio of the initial field value to the expected field dispersion at the end of the simulation, (a) —(c) corre-
spond to 0, 1, and 2, respectively. If this ratio is significantly smaller than unity, there is an abundant amount of large-scale defects.
For ratios exceeding unity, defects become sparse.



43 STRINGS, TEXTURE, AND INFLATION 3161

P =A.
'

Xh /y (2.18)

This matches smoothly (at P = 1) with Eq. (2.10). For our
purposes, P is best thought of as representing the likeli-
hood of universes of size —10 Mpc that had N near the
top of the potential on the horizon scale during
inflation —and which correspond to universes that lead

than in our previous calculation —and typically leads to a
long network of strings that will be useless for structure
formation (1 exceeds the horizon scale for
N, ~ NI, /y = 15). However, there may still be plenty of
string to initiate structure formation (see Sec. III for fur-
ther details). We classify this set of initial conditions as
leading to nonscaling scenarios.

To illustrate the effects of different values of Pz on the
distribution of defects, we have performed a simple nu-
merical simulation of an effectively massless real scalar
field in de Sitter space in two dimensions (which is
equivalent to looking at a slice of a three-dimensional dis-
tribution). We fix our coordinates to the scale corre-
sponding to Ph and, after each twofold of expansion,
divide a previous inflationary domain into four pieces and
add Auctuations drawn from a Gaussian distribution of
width crz -—H ln(2)/4vr . In Figs. 1(a)—1(c) we show the
resulting wall distribution after N =7 twofoldings of
infiation for P&/&N cr&=0, 1,2. To facilitate compar-
ison, we have used the same set of quantum fluctuations
(random numbers) in each figure. It should be recalled
that we expect the wall network to be further randomized
on small scales as N is increased, so that the networks of
Fig. 1 are not representative of initial string or wall dis-
tributions in our Universe.

We point out that there exists strong connections be-
tween domain walls, strings, and monopoles in the limit
that the fields are freely random walking and the poten-
tial can be ignored. A realization of a string distribution
may be obtained from the intersections of two indepen-
dent domain-wall distributions because zeros of a com-
plex field N only occur where the two independent real
field components are simultaneously zero. We then see
that if an initial condition leads to large-scale walls (per-
colation), analogous conditions are likely to give rise to
"infinite" strings. Similarly, monopoles could be de-
scribed by the intersections of walls drawn from three in-
dependent domain-wall distributions or, equivalently,
from the intersections of wall and string distributions.

Assuming, for simplicity, that H remains constant and
that inAation has occurred long enough for an equilibri-
um distribution to be realized, we can obtain a rough esti-
mate of the likelihood that we happen to live in a
Universe that had the string field close enough to the
point of symmetry on the horizon scale so that a scaling
solution will develop. To estimate the likelihood P of
string formation via this scenario, we merely take the ra-
tio of the 4-space area relevant for string formation
about 4=0 [-H N„/y from Eq. (2.15)] to the typical
area that is populated by N. The latter ingredient can be
estimated by setting m —A, (P ) in (2.6), which implies
an area -H /A. ' (for a more rigorous analysis, see the
Appendix). We then find

to structure formation via a string scenario. Of course, it
may be questionable to apply (2.18) to our Universe
directly as there may be an anthropic selection e6'ect
that enhances the likelihood we live in a universe contain-
ing strings. However, we presently show that it is not
terribly unreasonable, anthropic arguments aside, that we
happen to live in a universe that had the string field close
to +=0 on the horizon scale during inAation.

Although (2.18) looks rather large for reasonable
values of k, we must recall the assumption that A,g" ~H
(which could easily be relaxed in a more complete
analysis —see the Appendix for further details) and con-
straint (1.1). For ordinary strings the scale
i)=&Gpmp&=10' GeV is required to be useful for
structure formation, and we find that Eq. (2.18) can only
be valid if A. + 10, and hence P can be as large as -0.1.
This value of A, corresponds to a strongly type-I super-
conductor, and it may be difficult to reconcile such a
small value without supersymmetry. Global strings can
form much more naturally than ordinary ones because of
the fact that the energy per length of a global string is
two orders of magnitude larger than that of ordinary
strings (if i) is the same) as a consequence of long-range
interactions. The global string energy per length is
p=7ri) 1n(m A), where A is a large-scale cutoff compara-
ble to the typical separation of strings, and presumably of
order the horizon scale. Therefore, global strings require
i)=7X10' GeV; and ki) ~H and constraint (1.1) im-
plies A, ~ 1. Note that the case P & 1 just leads to the pa-
rameter space (2.11), in which global strings may
definitely form well within our present horizon.

Generalizing these results to texture, the likelihood of
texture formation is found from taking the ratio of the
@-space four-volume relevant for texture formation
(-NI, H /y ) to the total four-volume over which N is
typically populated ( —H /A, if A.i) SH ): P —NI, k, /y .
The constraints on this scenario imply A. ~4X10, and
P can again be of order unity. It should be clear that a
theory becomes less favorable as the number of real sca-
lar field components increases (assuming i) is the same)
because the space occupied within -H of the origin be-
comes an increasingly smaller portion of the available
phase space.

We now examine the probability that strings or texture
give rise to large-scale structure in a manner that is not
described by the usual scaling solutions. The maximum
allowed value of N~ for such a scenario to be plausible
corresponds to N& ~Ni, (otherwise the string density will
significantly drop), and following our previous calcula-
tion, the area relevant for a nonscaling scenario of string
formation is =NI, H /y and the resulting probability is

P», ——Nhk, ' /y . The ratio of P», to P„ is just =y .
We briefly return to the parameter range specified by

(2.7), i.e., A, i) ~ H . Taking A, i) ~ H, one can use the re-
sults of the Appendix to see that the long-time distribu-
tion of fields favors the minima of the potential over the
top by an exponential factor exp(2~ A, i) /3H ) and that
there is rather strong biasing for a field to be near the
minimum of the potential. Although it is a remote possi-
bility, the only way for string or texture formation to
occur is if the field happened to be near the top of the po-
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tential on scales corresponding to our horizon. However,
we briefly discuss it nonetheless because anthropic con-
siderations could, in principle, give this case some
significance. The equilibration time scale teq H /m is
of great relevance, as a field will quickly wind up in the
minimum of the potential if this scale is shorter than an
expansion time -H ', and strings or texture will not
form. (Texture can form if H~g, as previously dis-
cussed, but it will be irrelevant for structure formation. )

This case corresponds to kg H . En the limit
A,g (&H, the relevant field could random walk near the
top of the potential for a relatively long time and, de-
pending upon a local sample of the global universe, could
lead to a scaling network of strings, no strings, or a struc-
ture formation scenario by strings that is not described by
a scaling solution. To be more specific, we determine the

necessary parameters for a field placed at the top of the
scalar potential to random walk for N& =60 e-folds
without su6'ering significant biasing. The change in po-
tential energy from the top of the potential to a distance
P becomes comparable to H when P=H /&A, rl, and the
number of e-folds Nb required to reach this characteristic
value is Xb -—(H/rl) /A, . Setting Xb ~Ni, , we find that
biasing is not a consideration if

(2.19)

We summarize some of the results of this section below
and in Fig. 2. A field can random walk from the
minimum of the potential to the maximum without ex-
periencing a bias due to an increased potential energy if

H (and A,g H ). And, if A, ~ 1 —10, the time
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FIG. 2. Schematic diagram showing the types of scenarios that are possible as a function of the parameter space H/g, A. for a
string and/or monopole and/or wall and/or texture theory that is completely decoupled from the inAaton or curvature. In region I a
field will quickly be driven {in an expansion time) toward the minimum of the potential, if it is not already there, and it will not be to-
pologically possible to make strings once in the trough —texture-antitexture pairs can be created but the creation rate is too slow to
be of interest; II corresponds to a region of parameter space that has an exponentially suppressed likelihood of the field being near the
top of the potential, and there is a limited range over which the field can random walk before "falling down" the potential hill —a
field at the origin on the horizon scale will not see the effects of the potential during 60 e-folds of inflation for parameter space in the
shaded region; III corresponds to either a nonscaling or scaling scenario, occurring with probability P-A, '

Nz for strings and
P -NqA, for texture; in region IV an infinite network of strings, or scaling pattern of texture, can form on scales relevant for structure
formation —the dashed boundary applies if H remains nearly constant for Nz ——60 e-folds of inflation; V corresponds to a fuzzy re-
gion for strings {texture-antitexture pairs can form), interpolating between the properties of regions IV and VI—it can have a large
negative m near the top of the potential, which would seem to hamper string formation; VI corresponds to texture-antitexture for-
mation only, which can be extended {dashed line) if H remains constant for =60 e-folds of inflation. Inflationary constraints on H ex-
clude strings or texture from playing a role in structure formation in regions IV {global strings may be allowed, however), V, and VI.
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scale for an equilibrium distribution of fields, or restora-
tion of symmetry, is suKciently fast so that a scaling net-
work may develop within our horizon. If kg ~H and
A,g «H, string scaling solutions may not be possible for
some potential parameters as the time scale to hop over
the potential barrier should significantly increase with in-
creasing A,rl /H, but texture-antitexture pairs can be
created. Observational constraints on H, for values of rI
required for a structure formation scenario, exclude the
possibility of a scaling scenario for gauge strings or tex-
ture, but scaling scenarios for global strings might be pos-
sible. If A, «1—10 and A,g «H, a string or texture
structure formation scenario is possible, and the initial
value of the relevant field on the horizon scale
differentiates between a scaling scenario (which we are
uncertain even exist for this range of parameters) and a
nonscaling scenario. If A,g ~H and kg H, strings
and texture scenarios can also result, but the required ini-
tial conditions are exponentially disfavored.

Thus far, we have not explicitly considered the effects
of the gauge field on the formation properties of strings;
e.g., Auctuations in A„should give an effective-mass term
for P. Presumably, a simple estimate of such effects could
be obtained by replacing T, in (2.1) with H, /2', the
Hawking temperature. Then strings roughly form when
H drops below H, during the course of the inflationary
expansion. Application of constraint (1.1) implies that
the characteristic formation scale is within our horizon if
13~ 10, which is o'utside of the natural range of P, and
also corresponds to the strong type-I limit.

Finally, we discuss some differences that can arise in
models where H may significantly vary. For definiteness,
we consider the inflationary model specified by the poten-
tial V(%')=m~% /2 (which will also be studied in Sec.
III when we consider couplings between the inAaton and
string and/or texture sectors). If Xg ~ m ~, we find that
NI ——I /&1, (recovering our previous estimate). This was
derived from setting (Nl N+)H =H —/&A, and finding
the smallest value of NI (N&) consistent with the condi-
tion XL —X+ «X+. The latter condition states that H
should not significantly change during the approach to
equilibrium. (If A,q ~ m+, we find NI —-VA, g /m+,
which is effectively determined by the smallest XL con-
sistent with Xg 5 H .) Variation of H can affect our pre-
vious calculations on the likelihood that the string or tex-
ture field will be near the top of the potential. The region
near the top of the string potential is specified by -H
on the horizon scale, but the dispersion of the field is
given by 5$& —H& /&k, so that—the probability of finding
a string field near the top of the potential is P-A, . The
dependence of P on X is a factor &A, larger than the case
with H nearly constant. For general power-law
infiationary potentials of the form V(%)—4", we find
P —A,

'" + ' ", and so we effectively recover the result
(2.18) in the limit n ~0.

C. Global strings and/or texture from the in8aton

We now discuss the possibility that the inflaton poten-
tial itself has a global U(1) or SU(2) symmetry, which is

broken. The symmetries must be global so that radiative
corrections associated with a gauge coupling do not de-
stroy the fatness of the inflaton potential and lead to
unacceptably large density Auctuations. Naively, one
might think it is impossible for the inflating field to give
rise to strings or texture as the inflaton is spatially very
uniform, but we shall demonstrate that, under certain
conditions, it is possible.

We consider the potential V( 4& ) = A ( ~
4

~

—g /2) dur-
ing a coherent-oscillation stage at the end of inflation
and, for the present, leave the form of the potential at
higher energies, where inAation occurred, unspecified.
We assume that the height of the potential barrier A, iI /4
is less than the energy scale at the end of inflation, which
is presumably very reasonable. If the inflaton were per-
fectly coherent, it would undergo a large number of oscil-
lations, gradually losing energy through Hubble redshift-
ing (we presently assume that reheating is unimportant
for energy densities above the potential barrier), and
eventually its energy density would fall below the barrier
and the vacuum would be determined.

We now address the possibility that the inflationary
density Auctuations produced near the end of inflation
can suSciently destroy the coherence of the field oscilla-
tions so that different vacua are chosen, in different re-
gions of space, as the energy density drops below the po-
tential barrier. Without loss of generality, we can think
of the oscillations of the complex field occurring over its
real portion P, i.e., N=(/+i g)/+2, with /=0, in which
case the energy density p=P /2+ V(P) and pressure

p =P /2 —V(P). The energy density evolves according
to

p= 3H(p+p)=——3HQ (2.20)

where we have assumed, for simplicity, that the decay
rate I of the field is less than the expansion rate H. The
time scale of an oscillation is given by the mass scale
t», ——1/m =1/&kil, which is much shorter than the ex-
pansion time scale -H ' in the proximity of the barrier
energy density A,q /4 —which we now focus upon. The
change in energy density associated with a —,

' cycle of os-
cillation is

5p & y2 ~ 3Hpt ~pg/m p] (2.21)

where mp& is the Planck mass and we have used p =A,g
to determine the Hubble parameter. Therefore, if the
inflationary density Auctuations satisfy 5p 5p, &2, phase
coherence will be lost, different horizons should end up in
very different vacua, and strings or texture can form.
This requirement can be rewritten, using (2.21), as

5p/p~g/mp) . (2.22)

Since this applies at the end of inflation, the initial scale
of a string network will be of microscopic size and the
usual scaling solution will ensue. Recall that for global
strings g/m p&

——6 X 10 corresponds to Gp = 10
Whether or not the inflationary Auctuations satisfy this

criterion near the end of inflation depends upon the pre-
cise form of the potential in the regime where inflation
occurs and the type of defect being formed [e.g. , global
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strings can satisfy (2.22) significantly easier than texture].
In some of the simplest infiationary models, e.g. , A, ~@

(where A, is also the string and/or texture quartic cou-
pling), it is not possible to satisfy (2.22) and simultaneous-
ly have an acceptable Auctuation amplitude on large
scales. Part of the difficulty is that 6p/p decreases in am-
plitude from large to small scales (the usual expectation').
However, the scale of the initial string network need not
correspond to the scale at the end of inflation to be useful
for structure formation, which may relax the constraint
(2.22). It is also conceivable that the infiationary piece of
the potential can lead to Auctuation spectra that either
remain approximately Zel'dovich or even fall ofF'with an
increase in scale —in which case (2.22) may be satisfied
in addition to having inconsequential inAationary Auctua-
tions on large scales.

III. FORMATION OF STRINGS AND TEXTURE
VIA COUPLING TO THE INFLATON

OR CURVATURE

Perhaps the most well-studied theories for achieving
compatibility of strings and/or texture with inflation in-
volve some sort of coupling between the two sectors. It
has recently been pointed out ' that such scenarios
may actually save the cosmic-string scenario from run-
ning into problems with the millisecond pulsar con-
straints. (Significant evasion of the constraints may also
occur in some of the models of Sec. II.) We will first
brieAy review the current status of these constraints and
also explain how the constraints can be evaded with
inAation via coupling of the string field to the inAaton or
to the curvature. In the following subsections, we clarify
how either scaling or fractal networks of strings can form
and the constraints on model parameters that can arise in
such scenarios.

A. Millisecond pulsar constraints

Last year, a preliminary limit from millisecond pulsar
timing 0 h & 4 X 10 on the density of gravitational ra-
diation in units of critical density was used ' to deduce
a very restrictive limit on the string energy per unit
length: p & 10 /G. This is probably an order of magni-
tude too small to permit sufficient structure formation
and, if valid, would probably rule out the standard
cosmic-string scenario for galaxy formation. More re-
cently, the Taylor group has reported that the present
noise level in the millisecond pulsar timing residuals is
consistent with 0 h ~ 10,with a 95%-C.L. upper lim-
it of Q h &4X10 per logarithmic frequency interval
near f =(7y) '. This weakening of the preliminary limit
by an order of magnitude would weaken the bound on
Gp to about 3X10, still bad for the cosmic-string
scenario.

But theorists may have rescued it: Recent cosmic
string simulations ' find more small-scale structure
than the earlier simulations, implying that most of the
gravitational radiation comes from very small loops of
cosmic string. Bouchet and Bennett assume that the in-
itial loop size a (in units of the horizon size) does not
exceed the gravitational radiation back-reaction scale

1 Gp (where I"= 50), from which it follows that
6@=100 h, or Gp(2X10 (Ref. 30) using the new
millisecond pulsar limit, which is a very weak limit-
not nearly as restrictive as the cosmic-microwave-
background anisotropy limit Gp & 5 X 10 . ' Although
in this case a cosmic-string scenario could still be viable,
the scenario has changed: If loop sizes are indeed much
smaller than the horizon, then the wakes of long strings,
rather than loops, must be the dominant source of struc-
ture formation.

The assumption is that a I Gp is conservative, in the
sense that the bound deduced on Gp is less restrictive
than for larger a, but Turok has recently argued that it
may not be justified since the numerical simulations
on which it is based may sufFer from a critical Aaw: They
allow small-scale string structure to be preserved on
scales below those on which loops are allowed to be
chopped ofF'. It appears that higher-resolution simula-
tions will be required to settle this issue.

If the string network forms during inflation, evasion of
the millisecond timing constraint on Gp is possible. This
arises because the string loops (in the old picture) or
wakes (in the new picture) that form galaxies or clusters
are much larger than those whose redshifted gravitation-
al radiation is today in the frequency range to which the
pulsar timing measurements are sensitive, around

f =(7y) '. Indeed, unless a(l Gp, virtually all the
gravitational radiation emitted by cosmic strings since
matter-radiation equality has periods longer than 100
years today. By coupling the string field N to the
infiaton 4 (Refs. 4 and 6) or to the curvature R, ' it is
possible to arrange for the string network to form when
4 reaches a certain value, corresponding to a particular
comoving length scale. Thus —at the cost of introducing
this new scale and adjusting it appropriately —the large
cosmic strings needed to form galaxies or large-scale
structures can be formed without any need for the small-
er loops whose gravitational radiation could be detected.
Of course, this also evades any constraints from primor-
dial nucleosynthesis on the density of gravitational radia-
tion from cosmic strings. (It is also possible that a little
inflation, just from a largest scale l much less than our
present horizon scale l&, could evade these constraints;
but such a small amount of inAation would not solve the
horizon problem or other cosmological problems. ) Glo-
bal strings emit much less gravitational radiation than
gauged strings, and the millisecond pulsar constraints do
not significantly constrain the scenario. A model for the
formation of global strings during inflation is given in
Ref. 33.

B. Models with coupling to the inAaton or curvature

The inAationary potential we consider is

V(%)=m q, 4 /2, (3.1)

where + is a real scalar field. We couple this field to the
theory described by (1.4) and (1.5) via the interaction

(3.2)

in the spirit of Refs. 4 and 6. Yokoyama ' considered
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coupling the string field to the spacetime curvature scalar
R =12H through a term

(3.3)

and took g= —,', corresponding to conformal coupling.
However, with the potential (3.1) these interactions are of
the same form and we shall primarily consider (3.2), al-
though one can always translate to (3.3) through the rela-
tion

Translating the above constraint to the interaction (3.3),
we see that one requires

(3.9)

It is readily verified that this result is independent of the
form of the inflaton potential (3.1). Strings or texture
form, in the standard picture, when m, ff =0 or
CO=A, i) If, which corresponds to

Xo:2m'% o/m p] (3.10)f =16~/(mq, Immi) (3.4)

In order that the inflationary model (3.1) lead to ac-
ceptably small Auctuations' on the normalization scale,
one finds that

mq, /mpi 59X10 (3.5)

Analogously, to avoid generating large inflationary Auc-
tuations via an induced A, q,

-f quartic inflaton coupling
will require

f ~mq, /mp, 510 (3.6)

Assuming that the string or texture sector has little effect
on the inAationary expansion implies

4& 2 2
/I7/ ~ m gym p] ~ (3.7)

The effective mass of the string or texture field will be
of great importance. Expanding the string potential near
the origin @=0, dropping terms of order l@/pl, and ex-
pressing 4 in terms of the components
4 =(P, +if')/&2, the motion of the fields P„Pz is
effectively described by the Lagrangian

+ ,'(Xg f4 )P—,+ ~(—A,q f4 )P~ . —

So, to this order, we have two decoupled scalar fields with
effective mass squared m, s. —- A,g +f4; 4—&-dependent
corrections to the mass become important for
l4l ~m, s/A, ' . In what follows we shall always mean
the effective mass near 4=0 when we refer to m, ff.

We now consider separately further constraints arising
in the standard scaling models and in alternative models
that may lead to significantly different descriptions of
structure formation.

e-folds before the end of inflation. If this scale is to be
within our horizon, we require

f & 2vri, r) /Nhm pi . (3.11)

=3H /4rr m (3.12)

from the APPendix, and we shall take m, s =f% —A.il .
Dropped from the latter expression is a term -A,P . Re-
call that this term was crucial in Sec. II and allowed scal-
ing solutions for A, ~ 10 and A.il ~ H, even when f =0.
We shall shortly determine conditions that allow our cal-
culations to be self-consistent with the neglect of this
term.

The notion of equilibrium, and our use of Eq. (3.12),
hinges upon 6m, ff and 5H between +L and the scale cor-
responding to 5P =P, being smaller than m, ir and H,
respectively (the former constraint is the most stringent).
Then we equate 5$ =H (NL Nq, )/4' with—Eq. (3.12)
and find the smallest value of O'L consistent with
6m of /m, ff

~ 1 . We found that

Therefore, the mass scales A,g and m + effectively deter-
mine which of the constraints, (3.8) or (3.11), is most
relevant.

Scaling scenarios are still possible if condition (3.8),
when more stringent than (3.11), is not strongly violated.
The initial network may not be characterized, however,
by a correlation length ( corresponding to a Hubble size
when m, ff-—0. To consider this case in greater detail, we
follow the analysis of the previous section. We estimate I
by finding the minimum number of e-folds, X&, before the
end of inAation that typically leads to a restoration of
symmetry. Operationally, we take the minimum value of
'pL (~p&) such that the dispersion 5p becomes comparable
to the equilibration distribution width P,q, where

C. Scaling models
and

/Xo =1+m+/ms for ms - m+ (3.13)

Central to the usual picture of string formation is the
assumption that the field N is sufficiently near the
minimum &=0 (everywhere in space), before the effective
mass squared becomes negative, so that fluctuations
effectively randomly pick out vacua. A necessary, but
insufficient, requirement for this to occur is that
m ff

)H is satisfied sometime before symmetry break-
ing. Using the asymptotic limit (large 4) of m, fr/H, we
find

NI /No =m+/ms for ms -m (3.14)

(recall that ms =A,i) ). These limits can be recovered
from N& INO ——1+m q, /ms + ( m q, Ims ), which we will
use when convenient.

The scale of the network is similar to the scale set by
No (within a few e-folds) if N&

—No is no larger than a few
OI

f — (mq, /mpi )) 4m 2

3
(3.8)

and

f ~ (ms/mq, )(mq, /mpi) for ms ~mq, (3.15)
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f &(mq, /mp, ) for m~&mq, . (3.16)

In the limit mz ))mq„ this reduces to (3.11). Even if this
condition is not satisfied, it may still be possible to pro-
duce strings or texture via the probabilistic scenario dis-
cussed in Sec. IIB, now extended to the case with cou-
pling.

There is another way to view some of our results,
which we mention for completeness. Naively, the infinite
network of strings is set when m, it=H (the smallest
scale in which the Higgs phases get highly randomized
over a Hubble distance in a Hubble time). However, sub-
sequent fluctuations in the field can add small-scale struc-
ture to the long strings until the evolution of the field be-
comes dominated by the potential at m,z-——H, and the
phases become effectively fixed. For reference, this scale
corresponds to N=NO(1+4vrmq, /3fm pi) '. Loops of
string can also form in this regime. The duration and lo-
cation of this interval are potentially important —if it is
long and corresponds to scales within our horizon, the
scale of the infinite network may differ substantially from
the scale given by m, ~ =0. A spectrum of loops may also
exist on scales significantly smaller than the scale of the
infinite network, which may have important conse-
quences for large-scale structure. The difference between
the time t, =t(m, tt=H ) and the time when the fluctua-
tions become impotent (or when the potential becomes
important), t2 = t (m, tt= H), can be—characterized in
terms of the number of e-folds, hN —= IH dt, between the
two events. Using the slow-roll approximation for the
evolution of the inflaton, i.e., 3H%'+ 0 V/0%'=0, we find

8~ q') p(lp) 1677 A, 7) m qId%=
m +2 V(P) 3m f (3.18)

This calculation assumes that f & (mq, /mp&), in which
case it is possible for m, z to exceed H . Otherwise, bN
corresponding to ~m, tt~

& H is formally infinite. So, if
AN 1, the transition proceeds rapidly, and the initial
network of strings can effectively be modeled by random-
ly assigned phases to inAationary domains of typical size
-H ' at formation —identical to the procedure that
was first used to obtain a rough look at strings formed in
a thermal phase transition. It is readily verified that the
condition b N & 1, along with f & (m q, /mpi ), reproduces
conditions (3.15) and (3.16).

Implicit in our previous analysis is that strings form
during inAation, which requires No 1 or

f & 2n(mq, Imp& ) (ms/mq ) . (3.19)

Comparison with (3.15) and (3.16) indicates that there ex-

These constraints are consistent with our previous con-
straint (3.8). In terms of the curvature coupling, we find
g& m~/mq, (mz & mq, ) and $& 1 (mz & mq, ). For scaling
scenarios to be relevant for structure formation, we re-
quire NI ~ Nz, which leads to the constraint

f &2~Nh '[1+ms/mq, +(ms lmq, ) ](mq, Imp~)

(3.17)

ists a relatively narrow window in f that allows string
formation during inflation. If mz m+, the ratio of the
limits of f, from Eqs. (3.15) and (3.16), is Nh -60, and in
the limit m& m+ the range narrows until it disappears
altogether when mz lm q,

——I/NI, .
We presently determine the conditions that allow our

calculation of NI to be self-consistent with the neglect of
the A,P term in the effective mass squared for the string
field. The analysis should be self-consistent if the scale of
the network in the absence of inflaton-string coupling is
larger than the scale Ni. In either limit of mz/mq„we
find that our analysis is appropriate if

f & &A(mq, lmpi) or g& v'X . (3.20)

A &3X10 g(10' GeV/21)

Using (2.2), (2.3), and (3.21), we see that

P & 2 X 10 q
2.48( Gp/10

—6)1.24/gi. 24

(3.21)

(3.22)

Therefore, strings formed during inflation via curvature
coupling are expected to be strongly type I unless the
coupling g is significantly larger than the conformally
coupled case. Applying constraint (2.4) to (3.22), for non-
supersymmetric theories, we find that

q &0.45/ (3.23)

which is certainly within the realm of possibility if g is
not made terribly small. Constraints on f are rather un-
restrictive and are not particularly illuminating.

D. Nonscaling model

In this subsection we consider the case that CO=A, rt /f
corresponds to scales well outside of our horizon or

f &2~Ag2/Nh . , (3.24)

As in Sec. II B, there can still be regions, which may en-
compass our Universe, with plenty of string and/or tex-
ture. However, the probabilities that we calculated in

In Fig. 3 we summarize constraints (3.15), (3.17), and
(3.19) in terms of a plot of the parameter space character-
ized by fm p, /16irm q,

=g and ms /m q, .
A large portion of the parameter space in Fig. 3 corre-

sponds to the formation of strings or texture after
inflation. Before reheating occurs, the field %' can rapidly
oscillate on the time scale -m + ', and the effective mass
of the string field varies according to m, tt=f% A,rt. —
Strings form when (4 ) drops below =A,g If. The ratio
of the energy densities in the inflaton (pq, -m q, ( ~II )) and
string field (p, -A,q ) at the string-forming epoch is just
pq, lp, =(mq, /g) If. For 21=10' GeV we see that this
ratio approaches unity only if constraint (3.6) is near sat-
uration.

The constraint (3.11) can be used to constrain A, and,
particularly, provides insight to the case of N coupled to
the spacetime curvature. [Technically, we should use
(3.17)—this would have the effect of making our con-
straints even more stringent in the limit mz & mq, .] Ap-
plying (3.4) and (3.5) to (3.11), we find
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P =NqHh /5/II, =Nh /NI (3.25)

where H& =m+X& is the value of the Hubble parameter2 2

on the horizon scale. Analogous to the analysis of Sec.
II 8, the likelihood J' of texture formation is given by the
square of (3.25). As discussed in Sec. II B, scaling
scenarios may arise if the string and/or texture mean-

Sec. II B for the string or texture field to be near the top
of the potential may be significantly enhanced because
the coupling term can help to localize the field near the
origin. We presently calculate these probabilities and
then discuss in greater detail the properties of strings that
may arise in nonscaling models.

Assuming that the scale NI [Eqs. (3.13) and (3.14)] is
significantly larger than the scale of our horizon Xz, the
field dispersion arising between N& and N& is just
5$&& ——m +Nl . Using (3.13) and (3.14), we find that the
dispersion on the scale NI, p, =HI /m PIfNI, is similar to
5plh for m+ ~ ms and is less than 5$Ih for mz 8 m~. So,
in either limit, the probability that the field is within
-"t/NI, HI, of the top of the potential on the horizon
scale is

k +N~ /N(

for A,q ~H&, and

A,q /m q,
~ (Nh /Nl )

(3.26)

(3.27)

for A,g ~Hh. [The latter two constraints imply that
(3.27) is relevant when m ~ /g 5 1/NI. ] Hence a necessary

field value in our Universe is very close to the origin, and
(3.25) also gives a rough estimate of this possibility.

Our previous analysis only applies to a specified set of
parameters in which the string or texture field does not
feel the effects of the potential on scales from the horizon
to N& —otherwise P would be further suppressed. If
A,g ~Hz, there is no suppression if the fields typically lie
within a distance p, =HI, /&1, from the origin, and if
A, g ~Hh there is no suppression if the fields typically lie
within a distance p, =HI, /A, g from @=0. Recall that in
Sec. II B we found suppression if A,g ~ H&, the difference
in the case of coupling is that the fields can be sufficiently
localized near the origin on the scale X& so that the effects
of the potential are still not felt by the time horizon scales
are reached. Requiring 5glh 5 P„we find

1E6
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1E5

10000 =

1000 =

100 = V. FORMATION AFTER I

.001

.0001

iE —5 =

P=10

P=io

P=io

IV.

III. NO DEFECTS

1E—6 '

.001
I I I I I IIII I I I I I IIII

.01
I I I I I IIII I I I I I III

10
I I I I I I III

100
I I I I I I II

1000

FIG. 3. Plot of the types of scenarios that are possible as a function of the parameter space ms/m+, fm p, /16~m ~ = g. In region I
strings or texture form during inflation and on a well-defined scale within our horizon. Region II is similar to region I, except that
the duration of the string- or texture-forming transition exceeds a Hubble expansion time. In region III structure formation scenarios
are very unlikely. In region IV new structure formation scenarios might be possible, and the probability contours for a string to be
near the top of the potential on horizon scales are plotted for P =10, 10, and 10 (note that additional constraints might be
applicable in this parameter space —see the text). The probability contours are valid if gR &I,; otherwise, P —A. (independent of g).
Region V corresponds to the formation of strings or texture after inflation is over.
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condition for a nonstandard scenario (N& ~ NI, ) with

g = 10' GeV is that m&/I + ~ 1 or

A, S(mq, /g) 810 (3.28)

where we have used constraint (3.5). Here A, is
sufFiciently small so that strings should be strongly type I.
We note that the above condition is consistent with Eq.
(2.19). For global strings we find A, S3X10 . Because
this analysis also assumes that N& & 1/&A, (i.e., the A,P
term in the effective mass can be neglected), we see that
P kX& for mz m+. No matter how small the quartic
coupling, the probability can always be made relatively
large with an appropriate choice of the f coupling con-
stant. In Fig. 3 we have plotted probability contours for
string formation using Eqs. (3.13) and (3.14) for N&.

We presently examine further features of the string or
texture distribution that may arise in nonscaling
scenarios. The likelihood of string formation occurring
in an inflationary domain in one expansion time can easi-
ly be calculated numerically for a scenario in which N is
random walking. In an expansion time, a domain splits
up into =e domains, each of which acquire independent
Gaussian fluctuations of the fields $„$2. Focusing upon
a cubic cell that has split into eight independent domains,
we examine the probability that a string passes through a
face of the cell as a function of the initial field
configuration. Because of the U(1) symmetry, only the

dP r 2exp( —r /2M),
QP

(3.29)

and hence most of the domains have r ~ &M. (We have
assumed that the Hubble parameter is approximately
constant, for simplicity. ) This result is easily generalized
to the case of T scalar fields ( T=3 . monopoles,
T =4 = texture, . . .):

distance r =(Pi+/&)' (H/2m) from the point of symme-
try, +=0, is relevant for our calculation. For conveni-
ence, we measure the fields in terms of the width
o. =H/2n of the Gaussian distribution of fluctuations
5$„5/2. Upon specification of r, we then add field Auc-

tuations to the four subcells, which comprise a face of the
original cubic inflationary domain, calculate phases, and
then determine if there is a net phase change (and hence a
string) upon traversing a closed loop. The probability of
finding a string through a face as a function of r is plotted
in Fig. 4. As expected, the probability drops markedly
for r ~1.

Within an inflationary domain in which N is always
random walking, the distribution of domains with a given
field configuration r can also be easily calculated. If we
start with 4 localized near the origin, then after Pi and

take a total of M random walks of typical size
0. =H/2m. we find

.Oi

.00 i

.0001—
0

FIG. 4. Likelihood I' of string formation occurring in an inAationary domain, in one Hubble expansion, as a function of the initial
displacement r of the field N from the origin.
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dP
dT

T —1

exp( r—/2M ),(2M)'"r(T/2) (3.30)

where I is the gamma function and r is now generalized
to r =gT,P;/(H/2') . It follows from Fig. 4 that
most of the strings that form will come from domains
that had r ~1, and the likelihood of encountering such
domains is

~dp 1p~ dr =1—exp
o dr 2M

(3.31)

This generalizes to P(M, T)=M . The expected
number of string wiggles on a given scale. t, within the
original %=0 domain characterized by a length scale L,
is easily found from multiplying P(M, T) by the number
of inflationary domains =e arising after M steps. El-
iminating M via the relation L /t =e, we find the num-
ber density n of string wiggles, or texture or monopoles,
formed on scale =t, to be

n =t '/lnT~'(L/t) . (3.32)

IV. DISCUSSION

We have seen that the formation of cosmic strings or
texture is consistent with inflationary cosmology in a
number of different ways. Perhaps the simplest is the
possibility of lowering the critical temperature for local
string formation by choosing the quartic string field cou-
pling A, somewhat smaller than the squared gauge cou-
pling q; as we have pointed out, A, «q corresponds to
strongly type-I superconductivity. However, this mecha-
nism only works if there is efficient reheating. Global
strings may also form after reheating, without too much

This is nearly a scale-invariant distribution, with only
weak dependence on L.

We now extend the previous analysis to the more gen-
eral case of + displaced by a distance r& from @=0 on
the horizon scale t&. Putting the angular dependence
back into (3.29), the string forming region subtends an
angle = 1/rh, and the resulting density of string wiggles
formed on scale t is

n =t 'r„' [exp[ —(rh + 1)'/2 ln(t„/t)]
—exp[ —(r& —1) /21n(t& /t)]] . (3.33)

This density reduces to (3.32) if rh Sin(tt, It) (which cor-
responds to a time interval that allows the field to ran-
dom walk from rt, to the origin); otherwise, there is ex-
ponential suppression. It is crucial to note that although
there may be few or even no pieces of string with curva-
ture -t on large scales according to Eq. (3.33), strings
formed on smaller scales can connect to form infinite
strings. In Sec. IIB we found that infinite strings ap-
peared on a scale corresponding to when the field disper-
sion became comparable to the displacement of the field
from the origin on the horizon scale. This suggests that
the string distribution may be described by two scales
when the field is significantly displaced from the origin on
horizon scales.

difficulty. We have also explored in some detail the for-
mation of topological defects as a result of quantum fluc-
tuations of the associated scalar fields during the
inflationary epoch, reviewed further below. With cou-
pling to the inflaton (or coupling to the curvature, which
is essentially equivalent for this purpose), an infinite net-
work of strings and/or texture leading to a scaling solu-
tion can also arise. Finally, we considered the possibility
that the string and/or texture field was also responsible
for infiation, with a network of global strings and/or tex-
ture arising from decoherence of the inflaton at the end of
inflation.

In Sec. IIB we examined the quantum creation of
strings and texture during inflation, without extra cou-
plings to the inflaton or curvature. For the case of a
nearly constant Hubble parameter H, we fully delineated
the properties associated with the parameter space A, , g
(string and/or texture quartic coupling and vacuum ex-
pectation value, respectively), and H. We found that
gauge strings or global texture, of relevance for structure
formation, cannot be guaranteed to form via this mecha-
nism. However, we found that there was a likelihood
P-&A, (strings) and -A. (texture) that such a scenario
could occur, which might be further enhanced by anthro-
pic considerations. The assumptions behind this scenario
require A, ~ 3 X 10 (gauge strings), A. ~ 1 (global strings),
and k ~ 4 X 10 (texture). Hence the gauge strings must
be strongly type I. Our upper limit on A, is much larger
than that suggested in Ref. 6 (although they focused on
the case of strings coupled to the infiaton) even though
they used a weaker constraint (A,g 8 H ) to demarcate
this scenario, because they took an overly stringent value
of H. If kg 8H, the characteristic scale of string
and/or texture at formation corresponds to Nt-—I/&A,
e-folds before the end of inflation, and for global strings
there exists the possibility that this scale is within our
horizon.

In Sec. III we explored the formation of strings and
texture in a specific inflationary model
[ V(q') =m q, %' /2] with specific interactions (either
f4 ~N~ or gR ~C&~, 0& being the string and/or
texture field and R the gravitational curvature), which
were shown to be effectively equivalent
[f 16m/(m + /m t ~

) ]. We mapped out the formation
properties of strings and texture in the interaction cou-
pling g and mass ratio &A,g/m+ parameter space. If g is
of order unity, only small quartic couplings are allowed
and the strings must be strongly type I. For large g or
m+/mt, ~

~f ))(m+/mz~), type-II strings are possible.
If the interaction coupling becomes too small (g~ &A, if
A,g SH ), then the mechanism for string and/or texture
formation discussed in Sec. IIB may be relevant. If
$50.002, the characteristic formation scale of gauge
strings or texture lies outside of our horizon. However,
the probabilistic scenario is again possible, and the proba-
bilities calculated in Sec. III can be significantly enhanced
over the probabilities calculated in Sec. IIB because of
the effects of the interaction term.

In scenarios where cosmological structure forms solely
from strings or texture that arose during inflation, it is
necessary to fully suppress the amplitude of the usual
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inflationary density fluctuations. We have not considered
the constraints from this, because they are dependent on
the details of how structure forms in such scenarios,
which are not yet fully understood. However, it may in
fact be desirable to combine effects from inflationary and
string and/or texture fluctuations. In one of the most at-
tractive theories of structure formation, the cold-dark-
matter scenario, an inflationary Harrison-Zel dovich
spectrum can be normalized to fit a great number of ob-
servations on small scales ~10 Mpc, but the predicted
large-scale features are not nearly as prominent as the ob-
servations would suggest. Adding large-scale power via
the formation of strings and/or texture on large-scale
structure scales might do the job. One could go even fur-
ther and speculate that the characteristic scale suggested
by the "cosmic picket fence" is directly related to the
scale of string and/or texture at formation. For example,
a quartic coupling of X=10 for global strings can
translate to a characteristic length scale on large-scale
structure scales.

The possibility of new string or texture structure for-
mation scenarios may be worthy of further investigation.
Rather small quartic couplings are required, except for
global strings. Depending upon how far the strings
and/or texture field is displaced from the origin on scales
corresponding to the horizon, strings and/or texture may
form in a very sparse pattern. At some point there will
be inconsistencies with constraints from limits on fluctua-
tions of x-ray sources (see, e.g., Ref. 37) and number
counts of galaxies (see, e.g. , Ref. 38). We expect that the
formalism in Sec. III can be extended so that a relatively
straightforward comparison of these data with the inho-
mogeneity predicted by these models can be made, on the
assumption that x-ray sources or galaxies are distributed
in roughly the same way as the strings and/or texture.

In many of the cases we have considered, we have
found that gauged strings need to be strongly type I in or-
der to be consistent with inflation. In this regime it is not
energetically favorable for a winding number 8 =2
string to split into two 8'=1 strings. Indeed, two over-
lapping 8 =1 strings are bound by an energy per unit
length comparable to that of an isolated 8'=1 string.
One might well ask if this interaction is sufticient to have
an effect on the usual string scenario. What is the proba-
bility of string intercommutation for strongly type-I
strings? To our knowledge this limit has not been ade-
quately explored in simulations of intercommutation. A
numerical difhculty inherent to this limit is that a large
grid is required to handle the disparity of length scales as-
sociated with the scalar and vector masses. It has been
argued, however, that intercommutation is rather in-
sensitive to energetics and is more a question of topology.
Another question is whether or not higher winding num-
ber

~
W~ ~ 2 strings can form, and if so, how do they in-

teract with other strings? It has been found that two
8'=1 strings join into a 8'=2 string in about 1 out of
every —5 correlation domains at formation. ' However,
simple energetics seem to indicate that further evolution
of the string network would lead to the destruction of
such joinings on a time scale corresponding to the corre-
lation length at formation. Simulations of the interaction

of strings with different winding numbers, for weakly
type-I strings, indicates that higher-winding-number
strings tend to peel into lower-winding-number strings.
In view of the several cases that we found to be strongly
type I, we believe that it would be an interesting exercise
to continue this analysis, especially considering the in-
teractions of ordinary 8'=1 strings, well into the type-I
regime.

Note added. After this paper was submitted, several
recent related works have come to our attention. The
possibility of the quantum creation of axionic domain
walls is investigated in Ref. 43. In Ref. 44 constraints on
string and texture models were explored via inflationary
constraints. Lyth found that the string quartic coupling
in Yokoyama's model is significantly more constrained
and agrees with our Eq. (3.21). Also, we mention that the
constraint (1.3) on the reheating temperature used in Sec.
II A (taken from Hodges and Blumenthal ) is very close
to the one presented by Lyth.
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APPENMX

3H Q+ V' =3H g( t) /2m, (A 1)

where rj is Gaussian distributed noise with (g(t) ) =0 and
(~~(t)il(t')) =o(t t') The field —

p is. smoothed over a
Hubble distance -H '. Explicit gradient terms are of
higher order, and the spatial distribution of the field is
effectively determined through the noise term.

The equilibrium distribution of fields can easily be ex-
plored via the associated time-independent Fokker-

Here we present further details concerning "typical"
values of fields in an inflationary universe. We make the
simplifying assumption that the Hubble parameter is
fixed. To begin, let us consider the simplest case of a sin-
gle real scalar field P with a double-well potential
V=A, (p —il ) /4 and decoupled from any other fields.
If

~

V"
~
5 9H (which we presently assume to be the case),

where primes denote derivatives with respect to P, the
classical motion of the field is friction dominated. The
effects of fluctuations can be included by adding a noise
term to the equation of motion, which leads to the slow-
roll Langevin equation" for P:
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Planck equation

8 2P"+ ( V'P )' =0,
3H4

(A2)

where P is the probability distribution of P. This equa-
tion can be directly integrated twice and yields

P =C exp[ —Svr V($)/3H ], (A3)

when the appropriate boundary conditions are applied.
The constant C is obtained by normalizing the probabili-
ty to unity. The form of this expression should not be too
surprising if one remembers that the effective tempera-
ture of de Sitter space is T =H/2~ and that one expects
the energy in a Hubble volume, = V/H, to be an ex-
ponentially (Boltzmann) unsuppressed configuration only
if V~H . Therefore, only in the limit kq ~H can Hub-
ble volumes be populated with P at the top of the poten-
tial as often as it is found near one of the minima

~ P ~

=g.

P =«xp[ —ger'~(
I
C I' —g'/2)'/3H'] . (A4)

Therefore, the 4-space area which is typically populated
in the limit A,g ~H is given by =H /A, ' . One can go
beyond the parameter space constrained by A,q &H by
using (A4) to calculate directly the likelihood of string
formation, and one will find exponential suppression.
Such results could be trusted as long as (Al) and (A2) are
valid (i.e., while the slow-roll approximation is valid) be-
tween the top of the potential and the degenerate vacua,
which requires A,g ~ H .

Hubble volumes with ~P~ ~H/A, ' will be suppressed in
likelihood.

For strings and texture, one obtains analogous results.
The Fokker-Planck equation for strings is similar to that
used in a description of the statistical properties of laser
light, and one finds that the long-time distribution of
~4 ~, for the potential V=X(~4&~ —g /2), is given by
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