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Intertwining of the equations of black-hole perturbations
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For both Schwarzschild and Reissner-Nordstrom black holes, equations have been given in
which the dynamics of perturbations are governed by effective potentials. These potentials have
different form for odd- and for even-parity perturbations, yet they are equivalent. In particular,
they give rise to the same spectrum of quasinormal frequencies. Though all the potentials are
rational functions of the radial coordinate, the odd-parity potentials are markedly simpler and
are necessary for certain semianalytic approaches to numerical studies. We investigate here
whether there can be yet simpler equivalent potentials which could further simplify numerical
work. With the "intertwining operator" viewpoint we show that no such further simplification
is possible. This viewpoint also gives added insights into the relationship of the equivalent
effective potentials.

I. INTRODUCTION

The perturbations of a Schwarzschild black-hole space-
time can be described by a "potential-form" equation, the
Zerilli equation

d @ + (~ —Vz)@ = 0.

Here, time dependence e' ' (in terms of Schwarzschild
time t) is assumed, and the z variable is related to the
Schwarzschild radial coordinate r by

dg

p-1 d

r dr
(2)

2(n + 1)rs + 3r ~ + 9r/2n + 9/4n2
r4(r + 3/2n)' (3)

where the parameter n, in terms of the multipole index
I ) 2 of the perturbation, is

n = 2i(/ —1)(l+ 2). (4)

The perturbations can also be described by an-
other potential-form equation, the Regge-Wheeler (RW)
equation

which differs only in the details of the potential

The Zerilli equation arose initially in the study of even-
parity metric perturbations of the Schwarzschild solution

(The z variable is often written as r, in equations de-
scribing black-hole dynamics. ) Units are used in which
G = c = 2M = 1, so that the horizon is at r = 1. In
these units the Zerilli potential Vz is given by

in a particular gauge choice; the RW equation arose in
the study of odd-parity perturbations in the same for-
malism. A very different formalism for perturbations is
based an Newman-Penrose projections on null tetrads.
This formalism leads to the Bardeen-Press equation-
an equation of a somewhat different form from that af
Eqs. (1) or (5)—which has the same form for even and
odd parity. These equations all describe the same dynam-
ics, and Chandrasekhar showed explicitly the connection
between the Zerilli and Bardeen-Press equations, and be-
tween the RW and Bardeen-Press equations, and finally,
between the RW and Zerilli equations. (Many of the orig-
inal papers in this area did not make clear the relation-
ships among the various descriptions, relationships that
were not understood until later. An excellent presenta-
tion which includes an exhaustive treatment of results
and relationships is the monograph by Chandrasekhar. ")

Work on perturbations of the Reissner-Nor dstrom
spacetime paralleled that for the Schwarzschild case.
For a charged black hole the two degrees of freedom—
gravitational and electromagnetic —require two wave
functions. Equations were given by Zerilli, and decou-
pled potential-form equations were given by Moncrief. 9

Two different potentials were found for each of the decou-
pled wave functions, with the simpler potentials, analo-
gous to the RIV potential, arising from the equations for
odd-parity perturbations, and the more intricate poten-
tials, analogous to the Zerilli potential, arising from the
even-parity equations. The Newman-Penrose formalism
gave equations, analogous to the Bardeen-Press equa-
tion, which simultaneously described both even and odd
perturbations. ii This was used by Chandrasekharii to
show the relationship between the potential-form equa-
tions of different parity.

The existence of different descriptians of perturbations
of black holes led Chandrasekhar (see also Ref. 7, Sec.
28) to consider the general question of the relationship of
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two potentials which are "equivalent" in the sense of pro-
ducing the same physical consequences (more specifically,
having the same reflection and transmission coeflicients).
He found that a suKcient condition for two potentials
V~+& and V~ l to be equivalent is that they are related
by

+~&'+ J, (7)
GZ

where f is some function of z. It turns out that this rela-
tionship is mathematically identical to the relationship of
two potential-form equations in Anderson's formalism 3

of "intertwining operators. " That formalism, however,
gives a slightly different viewpoint on the issue and clar-
ifies the fact that for any potential there are equivalent
potentials, in fact, an infinite number of equivalent po-
tentials. For Schwarzschild black holes, for example, the
Zerilli and RW potentials are only two of an infinite set
of possible potentials.

This range of possibilities raises a question that is not
only of interest as a matter of principle, but which has
important practical consequences. With laser interfero-
metric gravity-wave detection more or less imminent,
renewed attention has been given to quasinormal (QN)
modes of black holes since quasinormal oscillations may
provide the strongest gravitational waves and would pro-
vide a signal with a signature characterizing their black-
hole origin.

The computation of QN frequencies, and other aspects
of QN excitations, can involve numerical problems. An-
alytic or semi-analytic approaches are often far superior
to brute-force numerical computations. One clear ex-
ample of this is the high-precision computation of the
Schwarzschild QN frequencies by Leaver. Leaver's ap-
proach is to seek a solution of the RW equation in the
form of a power series entirely in terms of the r variable.
After certain simplifications [in particular, after the be-
havior at infinity is factored out; see Eq. (19) below],
the equation leads to a three-term recursion relation for
the coeFicients in the power-series solution. Three-term
recursion relations can be treated by continued-fraction
methods. With such a method, Leaver shows that the
QN frequencies are those complex values of u for which
the continued fractions converge. He then uses the con-
vergence of the continued fraction as the basis for a pre-
cise and stable computation scheme for the QN frequen-
cies.

Clearly this method could be applied only to the RW
equation. Since the numerator in the Zerilli potential
contains four diA'erent powers of r, a power-series solu-
tion for Eq. (1) would entail at least a four-term recursion
relation of coeKcients. Had only the Zerilli equation been
available, therefore, eKcient semianalytic methods could
not have been brought to bear. This is practical motiva-
tion for understanding the special features of the Zerilli
equation which allow it to be transformed to a simpler
equation, If we had had a physical derivation only for the
Zerilli equation, should we have been able to transform
it to the much simpler RW? We might very well ask how

much further such simplification can be pushed. That is,
how can we be sure that the RW equation is the simplest
representation of perturbation dynamics? Perhaps it can
be shown to be equivalent to a yet simpler equation, one
which yields to the familiar techniques of two-term re-
cursion relations, and for which the computation of QN
frequencies and other aspects of perturbation dynamics
would be rather straightforward.

An understanding of the simplifiability of equivalent
potential equations is, finally, quite relevant to a very re-
cent problem. Leaveri7 has recently approached, in the
same spirit as his previous work, the computation of the
QN frequencies of the Reissner-Nordstrom black holes.
This has required taming four-term recursion relations
for the coeKcients occurring in the power-series repre-
sentations.

The diFiculties of dealing with the 3-term and 4-ter111
recursion relations provides ample motivation for search-
ing for an equivalent problem with a simpler poten-
tial. As a general question about equations with po-
tentials, this is a crucial question, but for perturba-
tions of spherically symmetric holes, physical intuition
suggests that such a search is futile. Both the RW
equation for Schwarzschild and the odd-parity Reissner-
Nordstrom equation used by Leaver have as their only
singular points, points with physical significance. In the
case of RW, these points are r = 0, 1, and oo (the cur-
vature singularity, the horizon, and spatial infinity). In
the case of the odd-parity Reissner-Nordstrom equation,
the points are at r = 0, r, r+, and oo, where ry are
the inner and outer horizon locations.

As will be seen in the details that follow, simplification
is possible only by removing singularities. Removal of any
of the physically meaningful singularities seems unlikely.
Nevertheless, as a reinforcement of this intuition, it would
be comforting to have a proof that no simplification is
possible. If no simplification is possible (and this indeed
does turn out to be the case), it is still of interest as a
matter of principle, if not computational pragmatism, to
understand what the conditions are that allow us, e.g. ,

to make the RW equation worse, i.e., to introduce the
equivalent Zerilli equation.

The outline of the remaining sections of this paper is
as follows. In Sec. IIA the "intertwining operator" is
introduced and is related to Chandrasekhar's formalism
for equivalent potentials. A criterion for analytic sim-
plicity is introduced in Sec. II B, and it is shown in Secs.
II C and II D that there is a straightforward algorithm for
testing whether a potential-form problem is simplifiable.
In Sec. III this algorithm is applied to the Schwarzschild
and the Reissner-Nordstrom cases, and the inapplicabil-
ity of the method, in its present form, to the Kerr case
is explained. Conclusions are presented in Sec. IV.

II. MATHEMATICAL APPROACH

A. Intertwining of potentials

The intertwining operator D of Anderson is an op-
erator which changes a differential operator I to another



43 INTERTWINING OF THE EQUATIONS OF BLACK-HOLE. . . 3149

operator I according to

DI = ID.

Clearly, any eigenfunction @of L corresponds to an eigen-
function @ of L according to @ = D@. (By "eigenfunc-
tion, " here we mean a formal solution of Lg = Ag with-
out regard to boundary conditions or other auxiliary con-
ditions. ) The two operators L and L will therefore be
isospectral (aside from issues of boundary conditions).

The converse question, i.e., to what extent isospectral
operators are related by an intertwining operator, is more
subtle. We will be interested in particular in "first-order"
intertwinings in which D involves only first derivatives.
Limitation to first-order operators is based on two con-
siderations: (i) a higher-order differential operator can
be decomposed into a product of first-order operators;
(ii) the relationship of the RW and Zerilli equations,
and those for different parity equations for the Reissner-
Nordstrom problem, turn out to be given by first-order
intertwinings.

In the context of potential-form equations, the search
for an intertwining amounts to the following question:
Given an original potential V„;s(r),can an intertwining
operator d/dz —g(r) be found which relates the potential
to a new potential U„, (r) via the transformation

?'d' ') Kd
( d, +~' —V ~ (~) I I

d
—g(~) I

where z and r are related by

d= h().)—,
dz dp' (10)

(12)

where @ is a solution of the original potential-farm equa-
tion, for any specific eigenvalue u .

These results are equivalent to Chandrasekhar's suffi-

cient conditions Eq. (7) for equivalent potentials. To see
this we note that if g satisfies [d~/dz2+(cu2 —V „s)]Q= 0,
then g, by Eq. (12), must satisfy the Riccati equation

Bg
VQrjg + g + 4)

dz

a generalization of Eq. (2)'? It is straightforward to verify
that V„ew and VQrjg are related by

dg
Vnew Vorig =

dx

and that the condition for an intertwining to exist is

where P is any constant, and find that f must satisfy

d
Voris= p +p f ++f&

dz

where )(: = 2icu—P. In terms of f, Eq. (11) becomes

Vnew: Voris + 2P
dz

VVith the change in notation V„g= U& & and U„,
V(+l, the intertwining results Eqs. (15) and (16), in
terms of f, become precisely Chandrasekhar's condition
Eq. (7).

The above results, whether in terms of f or g, show
that it is possible to use any solution to the original
eigenvalue equation as the basis for introducing a new
potential. Most new potentials, however, will be highly
complicated transcendental functions and of little inter-
est in the present context, where we are concerned only
with relating simple potentials. To proceed in this direc-
tion we must first specify what is meant by a "simple"
potential.

B. Classification of singularities

In general, potential-form equations will allow analytic
approaches only if the coefficients of the differential equa-
tion are rational functions. We focus, therefore, on the
case that V„;s,V„, , and h(r) are rational functions of

The "simpler" these rational functions are, the sim-
pler will be the application of analytic methods. A direct
measure of this simplicity might be the number of terms
in the recursion relation for coefficients of a power-series
expansion. A closely related, but more useful, criterion
for simplicity is provided by the number of singular points
of the differential equation, and their type, i.e. , whether
they are regular singular or irregular singular points. (A
categorization of irregular singular points is possible by
considering them to result from the conAuence of "ele-
mentary" regular singular points, but such a classifi-
cation scheme will not be needed here. ) We note, for
example, that the RW equation has two regular singular
points, at r = 0 and r = 1, and an irregular singular
point at r = oo. The Zerilli equation has these same sin-
gular points with the addition of a regular singular point
at ~ = —3/2n.

Whether a potential-form equation can be simplified
will be tantamount, to asking whether intertwining can
decrease the number or intensity of singularities. This
question turns out to be tractable; the requirement that
the potentials be rational functions immediately greatly
constrains the intertwining function g. It will be shown
below that with this constraint the problem can be re-
duced to that of finding a polynomial solution of the dif-
ferential equation in a standard form.

C. Standard form
We can then define f by

g = —pf+l4), (14)
For definiteness, and simplicity of description, we nar-

row our consideration to potential-form equations which
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are—in the sense to be defined similar to the RW, Zer-
illi, and RN equations. It will be clear that the underly-
ing ideas —and the scheme for finding whether equivalent
potentials exist —are rather more generally. applicable.

We consider potential-form equations

d2$ 2 d d

dz dS G7'
+ (~ —V)@ = 0, :—h(r) —, (17)

with the following constraints.
(i) We require that h(r) is a rational function of the

form

h(r) = (»)
pH

where p~ and p~ are polynomials. For perturbation type
equations, z and 7 should agree as 7. ~ oo, so we require
that p~, p~ are polynomials of the same order.

(ii) We require that V(r) be a rational function, asymp-
totically of order 7

(iii) We require that the resulting difFerential equation
has no irregular singular points in the finite 7 plane. This
means that V has, at worst, second-order poles, and this
constrains the form of p~, p~.

Our approach now involves reducing all such equations
to a standard form. The first step in this procedure is
the simple transformation

g = e' (19)
to put the equation into the form

d 4' . d4
2 + 2icu —V4 = 0. (20)

2(n + 1)rs y 3r2 + 9r /2n + 9/4n'
r'(r —1)(r + 3/2n)2

4 = 0. (22)

The nature of differential equations, and their solu-
tions, near regular singular points may be characterized
by the indices at the regular singular points. If near the
point r = ro a solution can behave as (r —r 0)', then s
is an index at 70. In general, there are two indices at
each regular singular point. [It is possible that the two
indices are identical or differ by an integer; in this case
the solution can have the behavior (r —re)' log(r —ro)
or (r —ro)'.] It is straightforward to show that for the
RW and Zerilli equations, the indices are as follows.

As examples, the RW equation, in terms of the 7 variable
[see Eq. (2)], is

d2@ 2i(ur+ 1/r dpi 2(n+ 1)r —3
dr2 r —1 dr r~(p —1)

and the Zerilli equation is

d 4 2iur + 1/r d4
d7.2 +

7. —1 d7.

To facilitate a systematic study of intertwinings we put
Eq. (17) into a standard form in which one of the indices
is zero at each regular singular point. If the regular sin-
gular points are r = 7 ~ ) 7 2). . . ) 7 ~, with indices sq„sip
at 7 ~, and s2„s2t,at 72, and so forth, then the transfor-
mation

4 = (r —r )'"(r —r2)'" (r —r~)' C (23)

d 4 f . Ai A2 Aiv l dc+ 22Ld + + + ~ ~ ~ +dr' ( r —r, r —r2 p —r~j dp

Bi B2 B~+i + + +r —r2

(24)

D. Intertwining solutions

For Eq. (24), every point in the finite r plane is regular
except 7 = 7 ~ ) r 2). . . ) r ~, and the allowed form of the
solution at these regular singular points is proscribed,
e.g. , near r~ the solution must behave as C —+ const, or
@ ~ (p pi) xo — ia or 4 —+ (r pi) i xb lo—g(p —ri). By
the appropriate choice of which indices are set to zero,
we can always arrange to have the solution of interest
be that for which C) ~ const near 7 = 7 & ) 7 2) ) 7

For this choice C) must be an entire function, that is, a
function regular everywhere in the finite 7 plane.

We now recall that any original and new potentials are
related by

dg p~ Gg
Vnew Vorig =

dS pgy d7

From Eqs. (12), (18), (19), and (23), we find

(25)

1

@ dz

+PA
~

la + 2a + + Plas s s 1 dc
pR I, p —pl p —pg p —plv a dp )

(26)

leads to a differential equation with the same regular sin-
gular points —and with the same sort of irregular singu-
larity at oo—but with indices s& ——0, sip —s~, at 7 = 7~,
with indices s2 ——0 and s2y —s2 at r = 7 2, and so forth.
Note that this transformation to an equation having a
zero index at each regular singular point can be made
in 2 ways, depending on which index at each regular
singular point is shifted to zero. The general equation of
this type has the appearance

For RW at r = 0,
at r = 1,

$=3) —1)
$ =0, —2icu;

The condition that V„ew Vorjg is a rational function,
asymptotically of order 7. , requires that, for 7 —+ oo

for Zerilli atr=0,
atr=l,
at r = —3/2n,

s = 1)
$=0,
s = 2)

1
—2l&)
—1

d ( I d@i 1
~

= rational function ~ —.
dr $4drp T2' (27)
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The general form of 4 that satisfies this requirement is,
at r —+oo,

('a P
C =lie" r exp~ + + ) (28)

where M must be an integer, since r = oo cannot be
a branch point. It follows that the function in square
brackets does not have an essential singularity and there-
fore must be a polynomial (the only entire function with-
out, an essential singularity at oo). If the solution form
in Eq. (28) is tried in Eq. (24), it is immediately clear
from the dominant terms at large r that either k = 0
or k = —2'. It is straightforward to show that the
latter case corresponds to replacing e' by e ' in
Eq. (19). We shall consider u to be an adjustable pa-
rameter. Thus a solution for 4 with the asymptotic form
e '~" xpolynomial exists if and only if a polynomial so-
lution exists. We need therefore only consider the poly-
nomial case.

We conclude that a solution which accomplishes an in-
tertwining of two rational potentials will be a solution of
one of the 2~ equations of the form Eq. (24) in which 4
is a polynomial. The question of whether an intertwining
is possible is then simply the question of whether a poly-
nomial solution of Eq. (24) exists. It is easy to see that,
in general, such a solution does not exist. If we multiply
Eq. (24) by (r —r i) . . (i —i g) and try as a solution 4
an rnth-order polynomial, the structure of the equation
becomes

r —11d@
g =$4)+ 4 dr

= 24J—
p —1

r2(1+ ~~nr)
(33)

This value of g gives us, by Eq. (25),

r —1 2gV„,~ = UR~ —2
r dp

2(r —1) ( 3i 2
= VRw+

p4(p ~ —)2 ( n

9(2n —I)i.+ +4n2» )

If we take 4 to be a polynomial of order I, then in
Eq. (30) the dominant term at large r is 2iu(m —1)i.
Unless cu = 0 it follows that the only possible polynomial
form for C is a linear solution. Since this is a case of
N = 2 a single numerical coincidence" is required for
the linear solution to satisfy the equation. That "numer-
ical coincidence" in fact occurs (it can be viewed as the
cancellation of the terms proportional to r in the linear
solution) and the choice ice = —sn(n + 1) leads to the
only polynomial solution of

2
4 = 1+ —nr.

3

This form of 4 corresponds, by Eq. (23), to

1 2n
p 3

and, according to Eq. (26), to

pm+a 2+ (»~p~—+w —i + p~+w 2) + pn. +—w i = 0, — = Vz. (34)

(29)

where pI, denotes a polynomial of order ( k. This poly-
nomial equation of order rn+ N —1 requires that each
of the rn + N powers of r in the equation vanish. To
make these terms vanish we can choose the value of the
free parameters ~ and make rn choices for the coefficients
(modulo an overall scaling factor) of the mth-order poly-
nomial C.

Thus, we have rn + 1 choices and rn + N conditions.
Aside from the trivial case, N = 1, the existence of an
intertwining between two rational potent;ials depends on
coincidences in the coeKcients. In the standard form,
checking whether such a coincidence occurs is straight-
forward.

III. EXAMPLES

A. Schwarzschild perturbations

With the indices s = —1, 3 at r = 0 shifted to s = 0, 4,
the RW equation takes the standard form

8+2
C =) ni~",

&=4
(35)

where E is the multipole index. [These solutions, with
behavior 4 = r C r, near r = 0, correspond to the
s = 3 index of Eq. (21).j The simplest of the solutions is
that for the quadrupole

C =r, g=3/

Thus we see that the polynomial in Eq. (31) is precisely
the solution that gives the intertwining from the RW po-
tential to the Zerilli potential. (This transformation, and
the reverse —from the Zerilli to the RW equations —are
given in Ref. 6 and Ref. 7, Sec. 26.) It is the vanishing of
C at r = —3/2n that induces the regular singular point
at r = —3j2n in the Zerilli equation.

If we choose u = 0 it turns out that there is an infinite
number of polynomial solutions of the form

d'4 ( . 2i~+1 3l de
, +1»~+dt' r —1 i 9 dr

V„, = 3', '(4r —5).
p

(36)

+ —
i

C =0. (30)

The new potential has the same form as the RW potential
in Eq. (6) and is neither better nor worse for numerical
or semianalytical studies. The 1 = 3 solution is
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r —15 —Sr
C =5r —Qr, g=3 r — r

V„, = VRw —
4 ~ ( 48—r + 156r6(r —1)

(37}
(39)

Here r and z are related by

equations [see Refs. 8 and 9, and Ref. 7, Sec. 42, Eqs.
(150), (151)j

(—)
V( —) @(

—) ()d. +

—155r + 50).

This new potential has an added ("unphysical" ) singu-
larity at r = 6 and has the same analytic structure as
the Zerilli potential. (Note, however, that the new po-
tential does not agree with VR~ to order r, whereas
Vz does. ) For higher values of / the ur = 0 polynomials
add further poles to the potential. (In general there are
k —2 unphysical singular points added. ) We can thus
conclude that the RW potential can be interwined with
other rational potentials, but not with any potent, ial that
is simpler than VB~ itself.

The examples above illustrate how a polynomial for
C tends to add regular singular points to the potential.
Only in the case of a single-term polynomial cari the ad-
dition of singularities be avoided. Cancellations can then
lead to the elimination of singularities and simplification
of the potential. The Zerilli equation, put into standard
form, shows how this can come about:

d24 . 1 2 2i~+1 dC+ 22& + —— +dr~ r r + 3/2n r —1 dr

+-2n(n+ 1}—3i~ 1 1 4'=0. 38n+ 3/2 r+ 3/2n r —1

With the choice 3iw = 2n(n + 1), clearly 4 = const is a
solution, and indeed the solution intertwines the Zerilli
potential and the RW potential.

dr 2 —1 2 .2= —= (r —r )(r —r+)/r = 1 —r + Q /r
dz r

(4o)

where 7, r+ are the radii for the inner and outer hori-

zons, and Q is the electric charge of the hole. As in the
Schwarzschild case we use units in which 2M = 1. The
potentials are

V( ) =a 2( +1) ~ —q, +4Q']/ (41)

where

qi
——(3+ +9+ 32nQ~)/2,

qg ——(3 —g9 + 32nQ~)/2 . (42)

+
dr (r —r+)(r —r )

1 r r+ d'0,+ +r 7-r- r-r+ dr

2(n+ l)r~ —q, r+4Q~ ( )
r'(r —r-)(r —r+)

In Eq. (41) we follow the notation of Ref. 7, Secs. 43 and
44, in using i, j = 1, 2 with i g j so that, for example, qq

appears in the equation above defining Vi

With the transformation gI ) = e' 4I ), we find

B. H.eissner-Nordstrom perturbations The indices for this equation are

Perturbations of the Reissner-Nordstrom black-hole
spacetime have both gravitational and electromagnetic
degrees of freedom, and their description therefore re-
quires two wave functions. For the odd-parity case two

functions gi and gz can be found —each describing
a different mixture of gravitational and electromagnetic
perturbations —which satisfy decoupled potential form

atr=r+, 8=0,
at r=r, s=0,
atr=0, s= —1,

2i~r+/(r+ ——r ),
2iwr /(r —r+), —

Finally, the transformation 4,. = r 4,. ) brings the
equations into standard form

d C 2iur 4 1 1
'2 + ——+ +

dr ~ (r —r+)(r —r ) r (r —r+) (r —r )

dc, (-)
dr

2iwr 2nr + 3 —
qz

(i —r+)(r —i -) r(r —r+)(r —r-)

If 4,. ) is a polynomial of order m the dominant term
as r ~ oo gives 2iu(m —1)r i = 0. It follows that
(unless ~ = 0) m must be unity, and the only possible

polynomial solution must have the form C, = 1+ k;7.

I

To see whether such a solution exists we multiply Eq. (44)
by r(r —r+)(r —r ), substitute 1+k, r for C';, and set
all powers of r to zero. The terms of order r, 7', and 7

give, respectively,



43 INTERTWINING OF THE EQUATIONS OF BLACK-HOLE. . . 3153

i~+ (n+ 1)k, = 0, (45) C. Kerr perturbations

q~k; —2n = 0, (46)

q, —3 —4kQ =0. (47)

The first two of these are satisfied if we take

k; = 2n/q, , (48)

i~ = (n—+ 1)k, = —2n(n+ I)/q, . (49)

The third equation is compatible with the first two if and
only if

tI —3q~ —8nQ = 0, (50)

which is, in fact, satisfied by both qi and q2 in Eq. (42).
With the solution 4',- = 1+ k;r we can generate an

intertwining operator, of the required type, in which

g, g'p~@()g'p@(—1

1 l 'd (I= i~+ —
~

—+k;
~

—
~

—+ k)j dr

2n(n + 1) Aqi
r s(k, r + 1) q, rs(2nr + qi)

This form of g; can be used to find the new potentials

V.(+~ = V.( ~ —2—
p dp

The resulting potentials V& and V2 turn out to be
the potentials that arise in the description of even-parity
perturbations. (The even-parity formalism is described
in Refs. 8, 10, and Ref. 7, Sec. 42. Transformations
between U& and V2+ are given in Ref. 11 and in Ref. 7,
Sec. 43.) These even-parity potentials V,.

+ each contain
an extra, unphysical, singularity at r = —qi/2n and are
therefore less convenient for analytic approaches than are
the equivalent odd-parity potentials V;

As was the case in the RW analysis, choosing ~ = 0
leads to polynomial solutions. Equation (44), with ~ = 0,
has solutions which are polynomials of order 8+ 2. Un-
like the RW case, these polynomials contain all terms of
lower order. The simplest polynomial, that for 8 = 2,
will be a quartic with four distinct (unphysical) roots.
This polynomial intertwines Eq. (44) with an equation
having these roots as additional regular singular points.
Similarly the 8 = 3 polynomial would lead to an equation
with five unphysical regular singular points, and so forth.
As in the RW case these solutions are of interest for their
existence, but are unlikely to simplify the analysis of per-
turbation dynamics. As physical intuition would suggest,
there are no potentials for the Reissner-Nordstrom prob-
lem simpler than the pot, entials V;, which contain only
singularities with a physical origin.

Chandrasekhar and Detweiler have shown 9 that there
are four potential-form equations analogous to the
equations for even- and odd parity perturbations of
Schwarzschild or Reissner-Nordstrom. One might, hope
to show that these four equations are related by the anal-
ysis presented above. There are two distinct reasons that
this is not possible.

First, the potentials fall outside of the class considered
in Sec. II C. The explicit forms of the potentials are ra-
tional (and quite complicated) but contain fourth-order
poles at r + a = 0, where a is the specific angular
momentum of the black hole. These represent irregular
singular points of the potential form equation. The anal-
ysis presented above, which assumed that the equation
had no irregular singular points in the finite r plane, is
therefore inapplicable.

The second difIiculty with the Kerr equations is that
the potentials are frequency (eigenvalue) dependent. In
the Kerr equations the constant analogous to n, of the
Schwarzschild and Reissner-Nordstrom potentials, is

v=E —2a o (53)

where o is the eigenvalue and E is a frequency-
dependent separation constant. The consequence of
this is that there cannot be a frequency-independent in-
tertwining operator which transforms the spectrum in
one Kerr potential to that in another. An operator is
needed which transforms between particular solutions
for each value of o . Such an operator is exhibited
by Chandrasekhar and Detweiler, but constitutes an
approach different from the intertwining formalism dis-
cussed above.

IV. OBSERVATIONS AND CONCLUSIONS

In the metric perturbation formalism for black holes,
very different effective potentials appear for even-parity
perturbations and for odd-parity perturbations. This was
initially puzzling since the two potentials gave the same
spectrum of quasinormal modes. Chandrasekhar, in par-
ticular, has emphasized that the equivalence of the two
potentials is required by the existence of a different de-
scription of black-hole perturbations —that based on the
Newman-Penrose formalism —in which there is no dis-
tinction between even and odd parity. (See Ref. 7, espe-
cially Sec. 33.) Chandrasekhar pointed out, furthermore,
that the potentials appear to be special, having the form
of Eq. (7) which is a suflicient condition for them to be
physically equivalent.

One result of the present paper is to suggest a slightly
different viewpoint on the relations of these equations.
We show that any potential can be "intertwined" with a
multitude of other potentials. More specifically: For any
potential there exists an infinite number of other poten-
tials which are physically equivalent [and which satisfy
Eq. (7) above]. Furthermore, these alternative potentials
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are easily found; they are generated by solutions to the
original potential equation.

This all suggests that the appearance of two differ-
ent but equivalent potentials for black-hole perturbations
was not particularly exotic and did not require a unique
set of circumstances. With the clarity of hindsight we

might even say that the mathematical generation of two
different potentials was to be expected. The relation-
ship of the metric perturbations to the Weyl tensor, and
(in the Reissner-Nordstrom case) the relationship of per-
turbations of the electromagnetic field tensor and of the
stress-energy tensor, lead to different patterns of radial
differentiation in the even and the odd parity cases. This
is all that is required to produce different appearing, but
intertwined, differential equations.

The analysis of the present paper has been concerned
almost exclusively with relating potentials which are ra-
tional functions. That rational potentials arose in the
Schwarzschild and the Reissner-Nordstrom case is easily
understood; it follows from the fact that the background
metric coefFicients and electromagnetic field components
are rational functions. The major concern of the paper
has been to find whether there could be other rational
potentials, especially rational functions "simpler" than
those occurring in the odd parity equations. The dis-

covery of such a simplification would be of great benefit
in numerical work. New, equivalent, rational potentials
were found, but not simpler potentials. To a large extent
the search for a simpler potential was doomed from the
start. The only singular points in the odd parity equa-
tions are those corresponding to physical radii [the radii
for the central singularity, the horizon(s), spatial infin-
ity]. To eliminate the special status of these points from
the mathematical description seems unlikely. But one
can imagine, in some different physical context, equations
in which the physical significance of the singular points is
not so transparent. The search in such a case for a sim-
c]'.i description would not be a priori futile, and (in view
,sf the potential benefits) might well be worth the effort.
The techniques presented in this paper, which served to
verify that there is no simpler description than the odd-
parity one, are easily modified to a much broader class
of problems.
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