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Charged black holes in string theory
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A family of solutions to low-energy string theory representing static, spherically symmetric
charged black holes is described. They are labeled by their mass, charge, and asymptotic value of
the scalar dilaton. The presence of the dilaton is found to have important consequences. In particu-
lar, the extremal charged "black holes" are found to be geodesically complete spacetimes with no
event horizons and no singularities. Implications of these new solutions for black-hole thermo-
dynamics and open questions in general relativity are also discussed.

Static uncharged black holes in general relativity are
described by the well-known Schwarzschild solution. If
the mass parameter is large compared to the Planck
mass, then this spacetime also describes (to a good ap-
proximation) uncharged black holes in string theory, ex-
cept in the region near the singularity. This is because
the classical equation of motion for string theory takes
the form of Einstein's equation plus Planck-scale correc-
tion terms. As long as the curvature is small compared
to the Planck scale, all vacuum solutions of general rela-
tivity are approximate solutions of string theory. Near a
black-hole singularity, the curvature becomes large and
the full string equation is not well approximated by
Einstein's equation. However, for a large black hole, the
curvature is small in a neighborhood of the horizon and
everywhere outside. So this region is indeed an approxi-
mate solution.

This is not the case for Einstein-Maxwell solutions.
The dilaton in heterotic string theory has a linear cou-
pling to F so every solution with nonzero F„must have
a nonconstant dilaton. Thus the Reissner-Nordstrom
solution which describes charged black holes in general
relativity is not even an approximate solution of string
theory. The purpose of this paper is to present the solu-
tion for static charged black holes in string theory, valid
for curvature below the Planck scale. We will see that
the addition of the dilaton dramatically changes certain
properties of the black hole. We will also discuss the im-
plications for black-hole thermodynamics and the stabili-
ty of inner horizons. Previous work on black holes in
string theory can be found in Refs. 1 —5 and black holes
in general relativity with scalar fields are discussed in
Refs. 6 and 7.

The four-dimensional low-energy Lagrangian obtained
from string theory is

S = f d x& —g [
—R +2(VQ) +e ~F ],

where F is the Maxwell field associated with a U(1) sub-
group of E~XE~ or Spin(32)/Z2 and we have set the
remaining gauge fields and antisymmetric tensor field

H„ to zero. Extremizing with respect to the U(1) po-
tential A„, tb and g yield the field equations

V„(e ~F" ) =0

V2y+ &e
—24F2=0

R„,= 2V„QV P+ 2e ~F„F ~ ,' g&,e —~—F

(2)

(3)

We wish to find static, spherically symmetric solutions
to these equations that are asymptotically Aat and have a
regular horizon. The most general such metric can be
written in the form

ds = —
A, dt+ +R dndr

i2

where A, and R are functions of r only. This is diA'erent
from the usuaL ansatz for a spherically symmetric metric,
but turns out to simplify the equations. We first consider
a purely magnetic Maxwell field F = Q sin9 d 8 h d y,
where Q is the magnetic charge. [Of course a U(1) mag-
netic charge Q must be an integer multiple of —,

' due to the
Dirac quantization condition. As described in Refs. 8
and 9, if the gauge field F is embedded in a larger unbro-
ken non-Abelian group G, the topological charge takes
values in vri(G) [rather than the sri(U(1)) =Z], so not all
allowed values of Q correspond to a topologically stable
charge. For example, the center of Spin(32)/Z2 is Z2, so
the topological charge is defined mod 1. Thus black holes
with Spin(32)/Z2 magnetic charge greater than —,

' are not
prevented topologically from decaying into black holes
with smaller magnetic charge, and indeed can decrease
their mass by emission of non-Abelian radiation. Since
tr, (Es) is trivial, there are no topologically stable black
holes for G=E8 ~ Of course, since the area of the event
horizon is always nondecreasing, ' the black hole cannot
disappear by this classical radiation, but it can lose its
non-Abelian charge. ] Then F =2Q /R . Since P is also
a function of r only, Eq. (2) is automatically satisfied. By
symmetry there are only three independent nonzero com-
ponents of the Ricci tensor. In an orthonormal basis,
these are the timelike Rpp radial R», and spherical R22
components. From (4) we see that Ro~=Rzz. This yields
an equation for I, and R which is just (A, R )"=2 where a
prime denotes derivative with respect to r. From (3) and
(4) we obtain Roo= —V P. This yields an equation for
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Z:—A, e ~ which is (A, R Z'/Z)'=0. Solving these two
equations together with (4) and imposing our boundary
conditions, we obtain a remarkably simple expression for
the charged-black-hole solution:

ds = — 1—2= 2M 2 2M
dt +

r

+r r— &o

dQ,

D = jd X"V„P,

where the integral is over a two-sphere at spatial infinity.
For the charged black holes one finds

2,—2y, —
&&a Q

Mr

E=Q sin8dOAdy,

where $0 is the asymptotic constant value of the dilaton.
Note that the metric is almost identical to the
Schwarzschild metric. The only difference is that the
areas of the spheres of constant r and r now depend on Q
and are decreased from their Schwarzschild values. In

&oparticular, the area goes to zero when r =Q e '/M
causing this surface to be singular. Since the metric, for
fixed 0 and cp, is the same as Schwarzschild, r =2M is a
regular event horizon.

In addition to their mass M and magnetic charge Q,
static asymptotically flat solutions of (2) —(4) are also
characterized by a dilaton charge

conditions on the electromagnetic charge. "
We now compare these solutions to the Reissner-

Nordstrom solutions of the Einstein-Maxwell theory:

2M Q 2 2M Q
r r2 p p 2

+r dQ. (12)

Both metrics (6) and (12) describe black holes of mass M
and charge Q only when Q/M is sufficiently small. For
large Q, they both describe naked singularities.

Despite this similarity, there are several significant
differences. When the dilaton is present, there is no ana-
log of the inner horizon present in the Reissner-
Nordstrom metric. This is reminiscent of arguments that
the inner horizon is unstable, and we will return to this
point shortly. Also, the transition between black holes—2P
and naked singularities occurs at Q =2e M in (6)
rather than Q =M as in the Reissner-Nordstrom case.
(We shall see that this is related to the existence of the di-
laton charge. ) More importantly, the horizon in (6) be-
comes singular for the extremal value of Q/M, unlike the
case of (12).

For string theory, the statement that the horizon is
2

—2po 2singular when Q =2e 'M is actually irrelevant. This
is because strings do not couple to the metric g„but
rather to e ~g„. This is the metric which appears in the
string o. model. In terms of the string metric, the La-
grangian (1) becomes

S = f d x&—g e ~[ —R 4(VQ) +F—], (13)

2 &oe
2M

(10)

and the charged black-hole metric is

This contrasts with the case where the coupling between

P and F in (1) is absent, for which it is known that the
scalar charge must vanish. However, D is not a new free
parameter in these solutions: once the asymptotic value
of P is fixed, it is determined by M and Q, and is always
negative. The dilaton charge is also responsible for a
long-range, attractive force between black holes.

So far only magnetically charged solutions have been
discussed. Electrically charged solutions may be ob-
tained by a duality rotation. Define

—2P A,p+pv= 2~ &pv +Xp .

It is easy to verify that the equations of motion (3) and (4)
are invariant under F~F and P~ —P. Furthermore,
Eq. (2) ensures that F is curl-free. Electrically charged
solutions may therefore be obtained by simply changing
the sign of P while keeping the metric fixed. This implies
that the dilaton charge is positiue for electrically charged
black holes.

It is an interesting open problem to find solutions with
both electric and magnetic charge. In that case, EAF
will be nonzero. Since F A F is a source for the axion field
strength H in string theory, such solutions will have a
nontrivial axion field and carry axion charge. The E h F
term in the Lagrangian will also affect the quantization

(1 —Q e '/Mp)

+ 8p

(1 —2Me '/p)(1 —Q e '/Mp)

+p dQ. (14)
—2po 2For Q (2e 'M, this again describes a black hole with

an event horizon at p=2Me '. We have simply rescaled&o

the metric by a conformal factor which is finite every-
where outside (and on) the horizon. However at the ex-
tremal value, the metric becomes

ds„„;„=—dr +(I 2Me '/p) dp —+p dO . (15)

The geometry of a a=const surface in this spacetime is
identical to that of a static slice in the extreme Reissner-
Nordstrom metric. But the horizon, along with the
singularity inside it, have completely disappeared. In its
place is a bottomless hole. This metric, with p) 2Me ',
is globally static and geodesically complete. Further-
more, since there is no longer any singularity, the curva-
ture is weak everywhere in this spacetime (for large M),
and it is therefore expected to be a good approximation
to an exact solution of string theory.

Note that even when go=0 there is a factor of &2



3142 GARFINKLE, HOROWITZ, AND STROMINGER 43

difference in the extremal value of Q/M for string theory
and for the Einstein-Maxwell theory. This can be under-
stood as follows. For the Reissner-Nordstrom metric, the
extremal value corresponds to the case where the gravita-
tional attraction exactly balances the electromagnetic
repulsion. In fact one can find exact multi-black-hole
solutions in this case. ' In string theory, the dilaton con-
tributes an extra attractive force, so for a given M, one
needs a larger Q to balance the forces between two black
holes. Since the electromagnetic force depends on $0, if
$0%0, the forces are balanced at the extremal value—2gp
Q =2e 'M, and one can find multi-black-hole solu-
tions in string theory as well. These are most easily de-
scribed in isotropic coordinates. The dilaton is given by

and the metric takes the form of (5) with

r+A2= 1—
{1 —a )/(1+a )

(20)

and

a /(1+a )r
(21)

r+ 1 a2 r
+

1+a
(22}

where r+, r label the two free parameters. They are re-
lated to the physical mass and charge by

2M;e
4'p

e'&=e '+ y ix —x, /

(16) r+r-
1+a

1/2

(23)

where x are Cartesian coordinates on R, M;(x;) is the
mass (location) of the ith extremal black hole, and the
charges must all be of the same sign. The charge distri-
bution then uniquely determines the magnetic field. The
metric is then simply

dg string (17)

This metric is also free of horizons and singularities.
The metric (17}bears a marked similarity to the multi-

five-brane configurations of ten-dimensional string theory
described in Ref. 13. This was in fact a motivation for
the present work, and lends plausibility to the idea that
the five-brane solitons of Ref. 13 are simply higher-
dimensional extended black holes which can be produced
classically via gravitational collapse.

In addition to their importance in string theory, the
black-hole solutions (6) are of some interest in general re-
lativity. We remarked earlier that the Reissner-
Nordstrom solution has an inner horizon. Several calcu-
lations have shown that nonspherically symmetric pertur-
bations tend to blow up on this horizon indicating that it
is unstable. (The outer horizon, i.e., event horizon, is
known to be stable. ) We consider here a slightly different
question: Is the inner horizon stable against small
changes in the matter fields in the theory? To investigate
this, we consider the action

S=f d x&—g [ —R+2(VQ) +e '~F j, (18)

—2P (19)

where a is an arbitrary parameter governing the strength
of the coupling between the dilaton and the Maxwell
field. Such Lagrangians arise in string theory with a tak-
ing values other than unity if I' is a Maxwell field arising
in the compactification process, or in the type IIa string.
We know that for a=O, the static black-hole solutions
have an inner horizon, and for a = 1 (the case considered
above) they do not. What do static black holes look like
for small a? Following the method outlined above, one
can find exact solutions for all a. Fixing $0=0, there is
again a two-parameter family of solutions. As before, the
Maxwell field is given by (8). The scalar field is

2a/(1+a )

When a=O or a=1 one can verify that these expressions
reduce to Eqs. (12) and (6) (with $0=0), respectively.
These solutions all have a regular event horizon at
r =r+. But the most important feature for our purposes
is that for any nonzero value of a, the inner horizon at
r =r is singular. Moreover, one can show that this
singularity is spacelike; i.e., most timelike curves which
approach it cannot stay in causal contact. Thus it ap-
pears that the inner horizon is not generic, even among
static black-hole solutions in general relativity.

We conclude with a puzzle. The Hawking temperature
of a Reissner-Nordstrom black hole is given by'

&M' —Q'
TH

2m(M++M —Q )
(24)

1
TH

8~Me
(25)

independent of Q, for &2 e 'M )Q. When
V2e M =Q, the Euclidean section is smooth without
identifications, so TH vanishes. Although the Hawking
temperature seems to change discontinuously, prelimi-
nary calculations indicate that the flux of radiation at
infinity smoothly goes to zero as M approaches its critical

This expression smoothly goes to zero as the black hole
evaporates and M~Q. This is fortunate because, in the
Einstein-Maxwell theory, were the black hole to lose any
more mass after reaching Q =M a naked singularity
would appear. Thus the extreme Reissner-Nordstrom
solutions are stable end points of Hawking evaporation.
These observations are in harmony with the fact that the
extreme Reissner-Nordstrom solutions are, in the context
of N=2 supergravity, supersymmetric. ' (Supersym-
metry further implies' the existence of a Bogolmony
bound bounding the mass by the charge, and explains the
existence of static multi-black-hole solutions. ) Generical-
ly one expects a supersymmetric configuration to be (per-
turbatively) quantum-mechanically stable.

In contrast, the Hawking temperature of our solutions
(14), as inferred from the periodicity of the Euclidean sec-
tions, is simply
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value. (This is a result of a large effective barrier near the
horizon. ) This is fortunate since further evaporation
would again seem to lead to a naked singularity. Howev-
er, it is easily seen (from the photino transformation law)
that these solutions are not supersymmetric
configurations of heterotic string theory, and we do not
know in general if our extremal solutions minimize the
mass for fixed Q and $0. We are left with something of a
mystery: If the extremal solutions are quantum-
mechanically stable, what is the underlying reason? If
not, what do they decay into?

1Vote added. After this paper was submitted for publi-

cation we were informed that many of our results, includ-
ing the general solution (14), were previously obtained by
G. W. Gibbons [Nucl. Phys. B207, 337 (1982)] and G. W.
Gibbons and K. Maeda [Nucl. Phys. B298, 741 (1988)].
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