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We consider a new mechanism for dynamical symmetry breaking of the electroweak symmetries
involving condensates of fourth-generation quarks and leptons. A dynamical generalization of the
seesaw mechanism is proposed based upon the BCS theory in which a neutrino condensate gives rise
to right-handed-neutrino Majorana masses and all associated spin-zero bosons are composite. The
fourth-generation neutrino is naturally heavier than Mz/2 and the scale of new physics is bounded
above. The renormalization-group equations for the effective Lagrangian of this model are derived
and used to solve the model. Implications for neutrino masses are discussed.

I. INTRODUCTION

A. Electroweak symmetry breaking
by quark and lepton condensates

Recently there has been considerable interest in the
possibility that a vacuum condensate involving the top
quark, ( tt ), is generated dynamically by new physics at a
scale A, leading to the symmetry breaking of the standard
model. ' This can be treated in a fashion similar to
the BCS theory of superconductivity, or of the
Nambu —Jona-Lasinio (NJL) model of chiral-symmetry
breaking. However, at scales p&(A the effective La-
grangian becomes exactly that of the standard model, and
the renormalization group (RG) is an effective, if not
essential, tool in obtaining reliable predictions in the
scheme. The minimal model with a single tt condensate
leads to a prediction for the top-quark mass of m, -230
GeV for A —10' GeV corresponding to the infrared
quasifixed point, and a Higgs boson appears as a bound
state of tt with a mass of order 260 GeV. '

This minimal model suffers from several potential de-
fects. First, the predicted m, is large compared to in-
direct experimental limits when the radiative corrections
of the standard model (p parameter constraints) are con-
sidered. Indeed, in global fits to all experimental data
available at present, one finds m, 200 GeV. If m, & 200
GeV, then the top quark should be found within the next
few years at the Fermilab Tevatron, and the minimal
model would be ruled out. The minimal predictions seem
to be fairly resilient to new interactions in the desert, at
least in some particular models. ' While it is conceivable
that m, &200 GeV and a tt condensate still drives elec-
troweak symmetry breaking, this would involve unknown
dynamics for which more experimental input of physics
beyond the electroweak scale would be needed. It has
been emphasized, however, that in realistic technicolor

schemes a substantial tt condensate seems to occur owing
to the large mass of the top quark. Hence, while
m, &200 GeV would rule out the minimal scenario, it
would not rule out the relevance of top-quark conden-
sates in general.

A second, more theoretical, objection to the minimal
scheme is the inherently large degree of fine-tuning. The
scale A enters quadratically into the gap equation, in
analogy to the radiative corrections to the Higgs-boson
mass in the standard model. m, &(A requires a delicate
fine-tuning of the coupling constants of the effective
theory at the scale A. In order to have a large hierarchy,
one must demand that the theory lie very close to the
critical point. When A is taken su%ciently small to al-
leviate the fine-tuning, the predicted value of m, becomes
unacceptably large, so that fine-tuning is inherent to the
minimal model.

Of course, the issue of fine-tuning may be a red her-
ring. Perhaps some unknown dynamical mechanism will
allow one to explain why the theory can naturally lie near
the critical point, and the fine-tuning mechanism may
"commute" with the successful predictions internal to
the theory. In a sense this is what must happen for our
most successful theory, QED. In the absence of fine-
tuning, QED predicts a cosmological constant that is in
gross conAict with observation, and whatever mechanism
fine-tunes the cosmological constant to zero does not
upset the other successful predictions of the theory.
("Wormhole calculus" gives us a sketch as to how this
might go for both the cosmological constant and scalar-
boson masses. ) Nonetheless, the great virtue of theories
such as technicolor is that they embody a natural solu-
tion to the electroweak hierarchy problem, in which
Mw~Mplanck is small and in principle calculable. This is
lacking in the minimal model with a tt condensate.

Thus, in the present paper we wish to turn to a scheme
in which electroweak symmetry breaking is driven by a
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condensate of conventional quarks and leptons, but the
scale A of new dynamics is not far beyond the elec-
troweak scale. For such a scheme we must invoke a
fourth generation. This is apparent already in the
analysis of Ref. 3 in which one sees that as A ~ 10 TeV
then m, ~500 GeV, clearly incompatible with the in-
direct limits. For a degenerate fourth-generation quark
doublet, the p-parameter limits are not very stringent,
and the mass of the fourth-generation doublet can be —1

TeV. Here we are abandoning the large mass of the top
quark as a raison d etre for quark and lepton condensates
breaking the electroweak symmetry. Nonetheless, the
heaviness of the top quark may arise because of its mix-
ing to the fourth generation. In this sense the top quark
is still a harbinger of this kind of symmetry-breaking
scheme.

In a fourth-generation scheme the issue of the non-
observation of a fourth neutrino species at CERN LEP
and the SLAC Linear Collider (SLC) must be faced. This
is an issue of the origin of neutrino masses, which we turn
to next.

B. Neutrino masses

Despite the fact that all quarks and charged leptons
have both left- and right-handed components, there is
currently no evidence for the existence of right-handed
neutrinos. Even if a nonzero neutrino mass were found it
would not necessarily imply the existence of a right-
handed neutrino, since left-handed neutrinos may have
Majorana masses. Moreover, right-handed neutrinos are
all but impossible to detect, since they are decoupled
from all known interactions except gravity. Such
"sterile" neutrinos would thermally decouple in the very
early Universe and would not contribute sufhcient entro-
py to inhuence cosmological processes such as big-bang
nucleosynthesis.

Nevertheless, there are good reasons for invoking the
existence of right-handed neutrinos. For example, in
some extensions of the standard model such as left-right-
symmetric models or grand unified theories such as
SO(10), right-handed neutrinos must exist to complete
the matter multiplets. If right-handed neutrinos exist,
then the most natural explanation for the smallness of the
observed left-handed neutrino masses is the seesaw mech-
anism Small left-handed neutrino masses are naturally
explained by assuming (1) conventional Dirac mass terms
for the neutrinos linking left- and right-handed neutrinos
and (2) a large Majorana mass term for the right-handed
neutrinos. No known gauge interaction is broken by the
presence of the large Majorana mass for the right-handed
neutrinos. The sterility of the right-handed neutrinos
then ensures that the large mass hierarchy between the
left- and right-handed masses can be maintained without
fine-tuning. After transforming to mass eigenstates, the
induced Majorana mass for the left-handed neutrino is of
order mD/M~, where mD is the Dirac mass and MM is
the Majorana mass.

Of course, one can invoke the existence of a fourth
generation without the seesaw mechanism by simply tun-

ing the Dirac mass of v4 to be su%ciently large, i.e.,
m & )Mz /2. This is logically acceptable, but not
aesthetically pleasing. Three somewhat arbitrary alterna-
tives come to mind: (1) Nature may choose an exact
SU(3)z chiral symmetry for the triplet of (e,p, r) right-
handed neutrinos, while v4 is a singlet„ thus enforcing
masslessness for all but v4,

' (2) all right-handed neutrinos
may have conventional Dirac masses, but only the
(e,p, r) right-handed neutrinos have a very large
[perhaps SO(3)-invariant] Majorana mass, so the seesaw
mechanism applies only to them, v4 being left with a
large physical Majorana mass; (3) v4L alone gets a large
Majorana mass, though this possibility will be severely
constrained by the standard-model p-parameter limits.
However, all of these possibilities clearly beg the question
of why the fourth-generation neutrino should be different
from the others. Obviously these schemes can be imple-
mented by fiat, but we prefer at present to consider the
possibility that the fourth generation is fundamentally no
different than the others. Hence apart from the details of
the ordinary family hierarchy and its dynamical conse-
quences, we propose a principle of "neutrino democra-
cy," and insist that the v4 is not special. Then how do we
evade the LEP and SLC limits on neutrino counting?

Here we And an intriguing, perhaps unique, possibility
which we will incorporate at present. " %e will assume
the existence of a fourth generation, and assume that (1)
all neutrinos have Dirac masses of order their charged-
lepton counterpart and (2) all neutrinos have a large
right-handed Majorana mass M of order the electvoweak
scale. In this scenario, the seesaw mechanism assures
that the (e,p, r) neutrinos are light while v4 is naturally
heavy. " The fact that M can be taken close to the elec-
troweak scale has been emphasized by Glashow in the
context of three generations. ' Thus, the LEP-SLC limits
do not imply that there are only three generations of
quarks and leptons, even if "neutrino democracy" is in-
voked. These assumptions also imply that the light neu-
trinos have masses not far from their cur. ent experimen-
tal upper limits, opening up the possibility that neutrino
masses could be discovered experimentally in the near fu-
ture. In the simplest version which we present here there
will be a massive Majorana-Higgs boson and a massless
"Majoron" associated with the spontaneously broken g1o-
bal right-handed neutrino number. ' The scenario ap-
pears to be nicely compatible with all laboratory con-
straints, and astrophysical considerations may make the
existence of Majorons rather attractive. "' Much of the
present paper will focus upon a dynamical mechanism for
generating the neutrino Majorana and Dirac masses at
the electroweak scale, while neatly accommodating the
LEP-SLC results.

C. Renormalixation-group approach

In Appendix A a toy model exhibiting a dynamical
seesaw mechanism is solved in the large-X limit using
conventional Schwinger-Dyson techniques. However,
this is simply for illustrative purposes, and we will show
in the next section that equivalent results follow by using
the RG equations when the compositeness conditions are
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properly implemented. The compositeness conditions are
boundary conditions on the full RG equation that may be
derived from the effective Lagrangian at the scale A. The
renormalization group can be used as a dynamical tool to
include aII of the effects of the full theory and generate
reliable and precise predictions of its consequences. This
goes beyond the limited approaches of large-N fermion
bubble sums, or planar QCD calculations. Moreover, the
results of these "brute force" analyses can be easily repro-
duced by including only those terms in the
renormalization-group equations that correspond to
effects included in the "brute force" calculations. The
important element which makes the renormalization
group applicable is the fact that the compositeness of cer
tain dynamically generated multiplets, e.g., the Higgs
multiplet and the majoran, implies UV boundary condi-
tions on the renovmalization group -equations of the
eQecti Ue fieLd theory

Of course, the power of the RG lies ultimately in the
existence of a long running in scales, i.e., a "desert, "
which occurs when we fine-tune the model. The compos-
iteness conditions depend upon the details of the physics
at A, and only if there is a desert will the low-energy pre-
dictions be insensitive to the presence of irrelevant opera-
tors in the effective Lagrangian at scale A. Since we are
ultimately interested here in A-1 TeV, we really can
only use the RG as an approximate tool in obtaining re-
sults which we cannot trust in detail. In any case, we
know of no better way to obtain these results.

We will thus analyze the full dynamical model of elec-
troweak symmetry, and right-handed neutrino number
breaking in detail by the RG methods of Ref. 3. Here the
renormalization-group equations are solved implement-
ing the boundary conditions that follow from composite-
ness.

II. BCS THEORY OF THE SEESAW MECHANISM
AND THE MA JORON

We begin by considering a simple model which illus-
trates the dynamical generation of a Majorana mass for
right-handed neutrinos. The model contains N genera-
tions of right-handed neutrinos vz. , where j is the gen-
eration index. The Lagrangian is

certain critical value, there is a vacuum condensate

(vR vR +H.c. )WO, (2.2)

which breaks U(1), while preserving SO(N) symmetry,
and gives all of the neutrinos a Majorana mass. We see
that, in a sense, the model (2.1) is more like the BCS
theory than the NJL model: the condensate (2.2) breaks
a (ungauged) U(1) symmetry which acts just like the U(l)
of electromagnetism broken in the BCS theory [the NJL
model, on the other hand, contains a condensate of the
form ( ttjg), which breaks a chiral U(1)].

In addition to giving rise to a Majorana mass, the fact
that the U(l)-fiavor symmetry is spontaneously broken
implies that there is a massless Nambu-Goldstone mode
(the "Majoron") in the spectrum. ' Also, there is a mas-
sive collective mode analogous to the "o. mode" in the
NJL mode1 which we will refer to as the Majorana-Higgs
boson. In the large-N limit it has a mass exactly twice
the neutrino Majorana mass, but there are significant
corrections to this result at small N or in the presence of
additional interactions.

We now discuss the solution to the theory defined in
Eq. (2.1) in an effective Lagrangian framework using the
block-spin renormalization group. The effective La-
grangian of Eq. (2.1) is equivalent to

voRj t~voRj +(@OvoRj voRj +H'c' ) MO@0@0 &

provided we identify

Go=1~~o . (2.4)

since integrating out 4o yields the four-fermion interac-
tion. Note that this technical trick contains some phys-
ics: it only works for an attractive interaction, and only
such an interaction can form low-energy bound states.

As we consider scales p « A we may obtain the
effective Lagrangian from Eq. (2.3) by block-spin
renormalization-group methods; i.e., we compute the
coeScients of the lowest dimension terms in the effective
Lagrangian for the theory defined by Eq. (2.3) by in-
tegrating out field modes with momenta p with

p &p &A . The effective Lagrangian at the scale p be-
comes

VRj tfvRj + 0(v Rj VRj )(VRkvRk ) (2.1) =Zq)e~eOc} 40 M eOeO
——(4040})M

2

where repeated indices are summed from 1 to N. Here P'
denotes charge conjugation, and our spinor conventions
are described in Appendix B. This nonrenormalizable
Lagrangian should be viewed as an effective field theory
in the presence of a momentum cutoff A. A and Go are,
strictly speaking, independent, since we would have in
general a dimensionless coupling constant g and
Go-g /A . On scales above A the four-fermion interac-2 2

tion softens and is viewed to be generated by some new
interactions, such as a new gauge interaction.

The theory has a global SO(N)R XU(1)-fiavor symme-
try. This theory can be solved exactly in the large-% limit
where only fermion loops are important, and we will ar-
gue that the qualitative features of the large-N limit are
retained for small N. The full Schwinger-Dyson equation
solution is presented in Appendix A. When Go exceeds a

N AZ = ln
Sm p

2 M2 (A2 2)
4m.

A

7T P
Z.=1
@=1 .

(2.6)

(2.7)

(2.g)

(2.9)

(2.10)

+Z voRj tlvoRj+K(40voRjvoRJ+H c' )+
(2.5)

Note the induced kinetic and quartic interaction terms
which follow from fermion loops as in Fig. 1.

In the large-N limit we obtain
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We assume (as a consequence of our choice of fine-tuning
of Mo) that the symmetry is spontaneously broken and
rewrite, for N,

lg/Vq
U++ — e

2
(2.21)

FIG. 1. Diagrams leading to the induced kinetic and quartic
interaction terms for the scalar fields.

where (4) =U@. Here, y is a massless Nambu-
Goldstone model, the Majoron, ' and p is the Majorana-
Higgs boson with mass

m
y

=2AU@ (2.22)

We may now exercise our freedom of renormalizing
the fields to write

Also, we see from the Majorana-Yukawa coupling to the
neutrinos,

Z =a~c'a e—M'C'e ——(e'C)'
P P

vs, i8v~ +Ir(&vz~v~, +H. c.), (2.23)

+v~ i8vIt +~(4vi, v~ +H. c.)+, (2.11)

where we have defined rescaled fields

4=Z' 4, v =Z' v0& +R v Vo

and

X=XyZ' ~=~yZ Z'" M'=M'/Z

(2.12)

(2.13)

The resulting renormalized coupling constants ~ and I,
take the form

—1/2
A

ln
8a p

(2.14)

X A
ln

64vr p
(2.15)

Zc, (p) ~0~„
X(p)~0~„

(2.16)

(2.17)

or equivalently, for the physically normalized coupling
constants,

(2.18)

k(p)~ co ~„ (2.19)

These may be taken as the boundary conditions on the
solution to the RG equations.

The predictions of the model are obtained as fo11ows.
The low-energy effective potential for the field N with the
physical normalization takes the form, as p~0,

V(e) =M' e'a + —(e"e)' . (2.20)

The fine-tuning of the gap equation is equivalent to
demanding an approximate cancellation between the
quadratic divergence in Eq. (2.7) against Mo. Thus, when

p ~0 we demand that M ~M+, the desired low-energy
value of the 4 mass. The interesting physics predictions
are then contained in the quantities A, and Z~, or
equivalently, in I, and ~.

The compositeness conditions are just those implied by
the bare Lagrangian of Eq. (2.3),

that we have a Majorana mass for the right-handed neu-
trinos:

fPl M
—2KU q& (2.24)

OlM

' 1/2

—2.
2K'

(2.25)

This is the conventional Nambu —Jona-Lasinio result, but
we have derived it here in the BCS model. '

We can also derive this result from the usual one-loop
differential RG equations satisfied by the physical cou-
plings in Eqs. (2.14) and (2.15). These can be obtained
directly in the usual way (though we alert the reader that
the Majorana-Yukawa vertices lead to tricky factors of 2
when Wick contractions are performed). The results are

16~ p =(2%+4)1~
Bp

$6~ p = 8Ng g —32~/
Bp

(2.26)

(2.27)

Consider the solution to Eqs. (2.26) and (2.27) keeping
only the leading large-N terms. We find

1 2N A 1
ln

i~ (p) (4') p ~(p)
A

ln
4(4'�) p

(2.28)

where we have used the compositeness boundary condi-
tions (2.18) and (2.19). The second result follows upon as-
suming that k(p) ~ Ir (p) and demanding that Eqs. (2.26)
and (2.27) be consistent. These results are equivalent to
Eqs. (2.14) and (2.15) and thus we find again

m~ =2mM . (2.29)

This tells us that in the large-N limit, the low-energy
effective theory defined using the one-loop RG equations
is exactly equivalent to the four-Fermi theory of Eq. (2.1),
provided we impose the boundary conditions (2.18) and
(2.19). The point of this exercise is to show that the

(Note that mM is larger by a factor of 2 than what one
naively expects. This comes from deriving the equation
of motion for the neutrino field from the Lagrangian,
since variations with respect to vz and vz are not in-
dependent. ) By using the results for A, and ir from Eqs.
(2.14) and (2.15) we find
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effective Lagrangian defined by the one-loop RG equa-
tions (2.26) and (2.27), together with the compositeness
boundary conditions contains al/ of the essential physics
of the dynamical symmetry breaking. In the large-X lim-
it, the one-loop effective Lagrangian is equivalent to the
exact effective Lagrangian, and, for finite 1V, it contains
corrections to the large-N results.

III. A REALISTIC MODEL

Our present goal is to specify a realistic effective La-
grangian similar to Eq. (2.1) which drives the formation
of fourth-generation right-handed neutrino condensates

and the quark and lepton condensates which break the
electroweak symmetries. This theory must contain the
observed spectrum of quark and lepton masses and mix-
ing angles.

A. The model

Our model contains four standard generations of
quarks and leptons, together with four right-handed neu-
trinos. At the scale A we have a four-fermion effective
Lagrangian which may be represented by introducing
auxiliary fields H and N. The fermions are assumed to
have couplings to the auxilliary field H given by

Di g k LLJHeRk+g kLL H'vRk+g~~k QL Hick+'g k QL HdRk'+H c. MHpH H+ (3.1)

In addition, we assume that the right-handed neutrinos
couple to the auxiliary field N:

+Mgjopggg=K k (@vRj vRk +H. C. ) ™@pN4 +
(3.2}

Here we define QL, =(uLdL) fLL; =(VLeL) ] to be the
ith quark (lepton) electroweak doublet, and H =i o 2H'
Note that V~.vk=vkv~ implies Kjl, Kkj The above el-
lipses refer to the possible "irrelevant" operators of d & 4,
such as four-fermion terms that are suppressed by 1/A
with numerical coe%cients of order unity.

Ultimately H and 4 become dynamical fields at low en-
ergies and develop vacuum expectation values (VEV's).
Through these VEV's the quarks and leptons acquire
Dirac mass terms and the right-handed neutrinos acquire
Majorana mass terms. The matrices g; will determine
the mass spectrum and the pattern of mixing angles in
the hadronic and leptonic weak currents.

A, i =A.)/ZII

Ai/Z(p

X3 A i /ZHZ@

~a —~Ho ~ZH

M~ =M@o/Z@ .

(3.8)

(3.9)

(3.10)

(3.1 1)

(3.12)

malization. The masses also evolve as before, but now we
assume that the low-energy values are such as to trigger
the appropriate symmetry breaking as described below.
In the physical normalization, H =Z~ Ho and
N =Z+ No,' the Lagrangian becomes

Xs =D„H D "H+ B„@td"N MHtH ——M @tC&

(H H) — (@t4) —
A, H H@t@, (3.7)

k j

2 2 3

with the physical coupling constants defined by

B. The effective Lagrangian at low energies

(HpHp ) — (Np@p) —X3HpHp@p@p . (3.3)
2

The RG boundary conditions can be derived using the
same reasoning used for the toy model of the previous
section. As @~A, we demand

Z@—+0,

Z~ ~0,
A.,

—+0 .

(3.4)

(3.5)

(3.6)

with all other couplings finite (and nonzero) in this nor-

We now consider the descent in the full theory to low
energies in analogy to our treatment of the BCS-
Majorana theory in Sec. II. The most general induced
Lagrangian for both of the scalar fields is

=Z (D„HpD"H )+Z B„48"4

MHpHpHp M @pNpNp

The boundary conditions can therefore be rewritten as

g~ OO

g-~ OO )

de~ OO

(3.13}

(3.14)

(3.15)

(H ) =uH =175 GeV, (N) =u~—:PuH . (3.16)

where the parameter 13 is a priori arbitrary.
The Higgs-Yukawa coupling constants will have low-

energy values:

The masses M~ and M+ are tuned to have low-energy
values that are negative. This is equivalent to demanding
the symmetry-breaking solution to the gap equations and
thus trigger the formation of the vacuum expectation
values of H and N. Therefore, we simply parametrize
these VEV's at low energies:
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di i= diag(m„m„, m„mE4),
Ua

dieted. We will find

K=diag(K~, K~, Ki) Kk ) (3.20)

(+2/3) 1

Ua

d' ' '= diag(md, m„mb, mD4) .
UH

(3.18)

(3.19)

where ~l refers to the light neutrinos. Hence the light
three generations will have approximately degenerate
Majorana-Yukawa couplings. Kk&Ki arises because of
the renormalization effects due to the large Higgs-
Yukawa couplings of the fourth generation.

For the neutrinos we make the assumption d,. '=d;
for i =(1,2, 3), while d44' is determined by the RG equa-
tions. Here, mE4 is the mass of the fourth-generation lep-
ton, etc. All large coupling constants will be determined
in this model in terms of the scale A by using the RG
equations with the assumption of the compositeness
boundary conditions. Taking d' '=d' " for the light
neutrinos is our special assumption of "neutrino demo-
cracy;" we certainly do not predict the three light-mass
generation Higgs-Yukawa couplings, but it is reasonable
to expect the usual generational hierarchy to apply in the
real world for neutrinos. Of course, we allow for the
overall scale difference, i.e., d' '= ed' " with
0. 1~@~1.0 as in Ref. 11.

The low-energy Majorana-Yukawa coupling constants
are assumed all to be large and will therefore all be pre-

C. The strong broken horizontal gauge theory

One might ask what kind of underlying theory can give
rise to strong four-Fermi interactions at a scale A. We
can imagine that this theory arises from a strong broken
horizontal gauge theory (SBHGT), a broken gauge theory
which is sufficiently strongly coupled to drive the forma-
tion of chiral condensates. We will not say much here
about the form of the SBHGT; however, we do not have
to commit ourselves to any particular underlying theory,
since we will work solely with the effective Lagrangian.
Integrating out the scalar fields of Eqs. (3.1) and (3.2) will
generate the equivalent effective Lagrangian at A, which
is then viewed as the starting point. Hence, by working
backwards, we can specify a simple solution for the
desired effective Lagrangian for the SBHGT by integrat-
ing out H and 4

Rj Rk Ll+G jkl I Rj Rk Ll jkl I Rj R& Ll j'kl L' Rj Rk
( —1, —1) (0,0) (

—1,0) (0, —1)

+ijkl+ Ri +Rj +Rk +Rl +
(3.21)

(3.22)

We have not explicitly written the analogous terms for
the quark-quark four-fermion, and the quark-lepton
four-fermion interactions. The tensor coefticients must
then have the approximate factorization properties

G"~'=g (gP )*/M'

2
Kijki —

Kij Kki /M&0

(3.23)

(3.24)

The factorization properties select a particular low-
energy spectrum of composite Higgs and Majorana-Higgs
bosons. One can throw the theory into a different mode
by relaxing these conditions. For example, setting
G,',.&&~'=0 for a&P would lead to a four-Higgs-doublet
version of the scheme, allowing one doublet per charge
species of right-handed quark or lepton. This is a far
more complicated low-energy model than the single-
Higgs-doublet version which we will presently study, but
it is potentially interesting since it contains the largest set
of low-energy composite states, yet naturally avoids the
presence of off-diaognal neutral vertices. The two-
doublet version of the minimal dynamical-symmetry-
breaking scheme has been studied by Luty and by
Suzuki. ' We will presently make the simplifying as-
sumption that the factorization properties are such that
only one dynamical Higgs doublet is generated by the
SBHGT.

If the factorization holds the g,
' ' can be brought to a

positive diagonal form d, ' ' by performing SU(X) fiavor-

+ 63G0 UI UR CR CL +6460 UL UR QR QL

+O(E;E, )Go(~;L~;R)(~,R~L)'(3.25)

where q2=t, q3 =c, and q4= U. Unfortunately, here the
fermion mass hierarchy is unexplained, arising because of
the values of the e; which are relegated to the details of
the SBHGT symmetry-breaking pattern. The Lagrang-

I

transformations on the fermion fields. The statement
that we want the fourth generation to dominate the sym-
metry breaking is really the requirement that the g' ' ma-
trices have single large eigenvalues, which can be taken in
an appropriate basis as the fourth diagonal elements of
O' '. This can be understood as a consequence of a sym-
metry principle, as emphasized by Fritzsch, Meshkov,
and Kaus, ' but one which pertains to the details of the
SBHGT.

We emphasize that the factorization properties are ex-
pected to be only approximate to leading order in the
largest terms. For example, we have d,.', '=e;d44' with
e; ((I for i&4. We demand only that the factorization
conditions of Eq. (3.24) hold to order e. The O(E ) terms
then become O(1/A ) contact interactions in the low-
energy effective theory. The relevant structure of the
effective Lagrangian for Dirac masses then takes the fol-
lowing schematic form, e.g., written here only for the +

3

quark s:

J- =Go UL UR UR Ut. +E2Go UL UR tR tL
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ian is safe with respect to the generation of AS =2 transi-
tions. The contact terms are stronger for the heavier
quarks.

Alternatively, it is possible that the quark and lepton
hierarchy can be viewed as the consequence of a dynami-
cal symmetry breaking where the effective Lagrangian
contains only a single small parameter. The idea is that
the lighter fermions get their masses from "nearest neigh-
bor" couplings to heavier fermions. We have analyzed a
simple model which contains only a single sma11 parame-
ter e, but which gives only crudely realistic results:

X=GpUL Ug Ug Ul +eGpUL, Ugtgtl

+6'Gptg tL Cg CL + 6'GpCg CL Zlg QI

+O(E;e. )Gp(q;Lq;~ )(q ~q L) . . (3.26)

Here, the fourth-generation quarks are the leading large
condensate, and the third generation couples with
strength e; the second generation then couples to the
third with strength e, and so forth. The gap equations
are now coupled and may be solved to find "tumbling"
solutions, e.g. , m;+ i =em; with predictions such as
mb =m, Imd and m, =m, Im„(unrenormalized). These
are qualitatively reasonable estimates, yet it should be
emphasized that we are taking this only as an approxi-
mate form of the interaction.

D. The full RG equations for fermion masses

(+2/3) U (
—i /3) DlJ lJ & lJ

(3.27)

The full one-loop renormalization-group equations for
the coupling constant matrices as defined above are

2)K= [2 tl(K K)+4KK ]K+(N N ) K+KN N

&E = [ ,' EE ', NN +—tr( E —E—) + tr( N N )

+3 tr( UU +DD )
——",g, ——', g 2 ]E,

2 N=[ ,'NN ,'EE +tr(EtE—)+—tr—(NtN)

(3.28)

(3.29)

We begin by studying the RG equations that pertain to
the fermion Dirac and Majorana masses. In what follows
we will shift the notation for ease of writing the RG
equations. Let us define the matrices

-i) ~ (o]—»g, —K' . g
—hl,

m, =N&4(p)vH, mz =E44(p)vH, (3.35)

mU= U~4(p)uH, mD =D44(p)uH, p-100 GeV,

(3.36)

while the Majorana masses are given by

M~~=2iri (p)ve =21rh(p)~vH~ MMi =2 I(p)~ 0 ~

(3.37)

where again we choose p-100 GeV as an approximation
to the threshold condition that determines the masses,
i.e., m =g(m)u, but it is sufficient for our purposes.
Here, mz is the mass of the fourth-generation charged
lepton, and m 4 is the Dirac mass of the fourth-
generation neutrino. MM4 is the fourth-generation Ma-
jorana mass, and M~I is the Majorana mass of all other
neutrinos.

The RG evolution of the light quark and lepton masses
is irrelevant insofar as the coupling constants are small.
We therefore wi11 use the known values of the Dirac
masses for these. For the light neutrinos we will follow
Ref. 11 and assume that the neutrino Dirac masses are
given by m =emD (e.g. , for the muon we assume
m „=e„m„),where e is an arbitrary parameter.

The physically observable neutrino masses are then

Note that the RG coe%cients can be computed in the
massless limit. The Feynman rules for v& then reduce to
the familiar ones for two-component spinors. We have
given the equations for arbitrary complex coupling ma-
trices, even though we will assume that the matrices are
real and diagonal in what follows.

To simplify the RG equations, we assume that the Yu-
kawa coupling matrices are real and diagonal, and satisfy

E44))E, N44))N, D44))D for j=1,2, 3,
(3.34)

U44, U33)) Ujj for j=1,2 .

This is clearly a good approximation at low energies.
The diagonal entries of ~ are then split, or equivalently
the SO(4) symmetry is broken. It is sufficient to consider
only the fourth generation ~4=—~44 and the three light
generation ~I =—K, , independently.

The physical fermion Dirac masses are now deter-
mined as

+3 tr(UU +DD ) ,'g, —
—,'go+2~ —~]—N, (3.30)

2)U=[ ', UUt ', DD +tr—(EEt—)+—tr(NN )

m ~ =
—,
' (MM +QMM +4mD ),

m I =
—,'(MM —QMM+4mD),

(3.38)

+3tr(UUt+DD") —
—,"g

t
——'g~ —8g3]U, (3.31)

2)D = [ ', DD —
', UU +tr(EE )+t—r(N—N )

with analogous formulas holding for the first three gen-
erations. For the case of the light generations we may
use the approximate forms

+3tr(UUt+DD ) —,', gi ——9gz —8g3]—D . (3.32)
The parts that do not involve the Majorana couplings are
contained in Refs. 4 and 18. Here, g, , g2, and g3 are the
U(1)r, SU(2)ii, and SU(3) gauge couplings, respectively,
and we have used the abbreviation

m g ~1 m I g m/ /~/2 2

K. Scalar-boson interactions

(3.39)

2)=—16m p
Bp

(3.33)
The quartic interaction terms are found to satisfy the

RG equations:
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XQ., =12k, +2A3+4A, , [tr(E E)+tr(N N)+3 tr(U U)+3 tr(D D)]—3X,(g, +3g2)+ —,'g2+ —,'(g, +g2)
4—[tr(E EE E)+tr(N NN N)+3tr(UtUU U)+3tr(DtDDtD)], (3.40)

2Q2=10Az+4A3+8A2tr(a ~)—32 tr(K ICK K), (3.41)

gg3=6A)A3+412A3+2A3[tr(E E)+tr(N N)+3 tr(U U)+3 tr(D D)+4tr(K K)]—313(g &+3gz) —8 tr(N N~ a) .

(3.42)

We integrate these equations with the compositeness con-
ditions

2

(k)+/3 X2+S), (3.54)

~ 00 (3.43)

and we demand a symmetry-breaking solution at low en-
ergies such that

ao
H

L

(3.45)

oH =v&+ —+ (3.46)

4 =/3vH + —+
2 2

' (3.47)

where U~=175 GeV. The fields H+ and h' are the
Nambu-Goldstone bosons which give mass to the 8'and
Z bosons. The phase g is an exactly massless Majoron in
this model, and it exists as a physical state since we do
not gauge the right-handed neutrino number. The poten-
tial is minimized for P and vtI.

MH+ vH(A, , + —,'p A3) =0,
M +v (P k + —,'&)=0,

(3.48)

(3.49)

and we readily obtain the mass matrix for the Higgs bo-
son h and the Higgs-Majoron p. The states mix into
physical mass matrix eigenstates given by

X, =h cosa+Psina,

22=/cosa —h sina,

where the mixing angle o. is determined by

(3.50)

(3.51)

2/3 A, 3 I, ,
—

/3 A2
sln2cx=, cos2cx =

S ' S (3.52)

and where

S=+(A, (
—

/3 A.~) +4/3 g3 .

The masses of the physical states are

(3.53)

(where in practice we take A, ; =6 for p —+A), and we in-

tegrate down from A to p=100 GeV. The effective po-
tential at low energies takes the form

Vs=MH(H H)+M@(N 4)
X2+ (H H) + (4& 4&) +AH H44 (344)

2 2

(3.55)

The physical masses are real and hence the solution is
stable provided that

A.), k2 & 0, X )A, 2 ) A, 3 . (3.56)

F. NUMERICAL RESULTS

We now discuss the predictions of the model obtained
by numerically integrating the RG equations supplement-
ed with the composite boundary conditions. In Fig. 2 we
show the evolution of the Higgs-Yukawa and Majorana-
Yukawa coupling constants as a function of scale p evolv-
ing downwards from a compositeness scale of A=10
GeV. We have multiplied all Dirac couplings by UH, and
Majorana couplings by 2v =2vH corresponding to p= l.
The dashed lines represent the M&, M&, and m 4 as indi-
cated, while I ~ and I L are the physically observable
values as given in Eqs. (3.40) and (3.41). The purpose of
this figure is to show the attraction from the large initial
values down to the low-energy fixed points. In practice
we used ~; =d; =6 at p=A, but the resulting low-energy
values are very stable for a wide range of initial condi-
tions. In practice the fourth-generation U and D quarks
are degenerate to within a few GeV.

In Figs. 3—5 we show the fourth generation masses as a
function of the scale of new physics, A, for various values
of P= v~ /v~. We have indicated the lower limitI I ~Mz/2 and we thus see from the figures that all
schemes are ruled out for su+ciently large A, for example,
when /3=1. 0 we require A + 10 TeV. The schemes with
/3) 2.0 are essentially the limiting case; for larger P one
cannot escape the LEP-SLC neutrino-counting limit. In
this case we see from Fig. 5 that A (10 TeV is required.
Of course, in the small A limit our RG approximation is
much less reliable. As can be seen from Fig. 3, for small
values of /3 the upper bound on A becomes weaker.

In order to make definite predictions, we assume
throughout that m, =130 GeV. With the latter value of
I, it is unnecessary to consider the evolution of g„which
we then treat as a constant independent of scale. All re-
sults are computed at the low-energy scale of p=100
GeV for simplicity. The largest uncertainties in these re-
sults arise from the uncertainty in the nonperturbative
running of the Yukawa couplings at high energies. As
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FIG. 2. Evolution of Higgs-Yukawa and Majorana-Yukawa coupling constants with scale p from initial values g; =6 at p =A = 10
GeV to @=100GeV. The couplings are translated into masses by multiplying by uH as described in the text. The approach to the in-
frared fixed points is demonstrated. The larger Majorana masses apply to the light generations.
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FIG. 3. Physical masses (solid lines) as predicted in the model as a function of composite scale A, for /3= v~/vH =0.5. The dashed
lines indicate the heavy Majorana M& and neutrino-Dirac masses m 4 separately, before combining to form the physical combina-
tions m ~ and m L.
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FIG. 6. Physical light neutrino masses (solid) as predicted in the model as a function of composite scale A for P= vc, /vH = 1.0 and

we plot for the light masses the range 0. 1 ~ e ~ 1.0.

M~ =uQA,
1

(3.57)

verge on fairly universal fixed points over a large range of
initial conditions. Moreover, we see that in general the
coupling constant A, 3 is very small compared to X& and A.z.
This leads to the simplification for the masses,

Mz =/3u+kz, (3.58)

P A, 3

A, ,
—P A~

(3.59)

and the mixing between the two states is generally smaB,

10

I I I I I & 1 I I I I i i i I I I & I I I I I I I I I I I I I I I i I I I I I I I

8 8.5 3 3.5 4 4.5 5 5.5 6

"l.o &

FIG. '7. Evolution of scalar quartic coupling constants with scale p from initial values (solid lines) g; =6 and A.; = 12 at p. =A=10
GeV; (dashed lines) g; =2 and k; =6 at p=A= 10 GeV. The universality of the infrared fixed points is demonstrated. A, 3 is always

driven small.
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cannot be arbitrarily large. The essential idea is that no
coupling constant of the standard-model Lagrangian ean
be permitted to diverge on a scale p (A. Moreover, if a
vacuum expectation value giving rise to the Majorana
masses is chosen to be near the weak scale, then there will
be a triviality bound for the Majorana masses as well.
These triviality bounds follow from the RG equations,
and are related to RG fixed points and critical
renormalization-group trajectories.

Perhaps the most remarkable feature of this model is
that A is bounded from above by the neutrino-counting
limits. The A-1 —10 TeV scale is also encouraging for
the discovery of a rich new dynamics in the not-so-distant
(SSC?) future. This new dynamics must encompass the
generation of all quark and lepton mass scales, so a model
of this sort is most encouraging for eventually under-
standing the origin of quark and lepton mass within the
next 20 years. We expect a number of other signatures
that have not been discussed here, such as the occurrence
of composite-vector-meson states, the analogues of the p,
with masses of order A, etc. The model also suggests that
neutrino phenomenology will be a rich and rewarding en-
terprise in future fixed-target experiments since the mass
scales for the light neutrinos are tantalizingly close to
their experimental upper limits.

The theoretical challenge is to construct the SBGHT
model that most closely realizes the low-energy effective
Lagrangian we have explored here. It is not clear that
this is a simple task. For example, the issue of flavor-
changing neutral processes must be faced. On the other
hand, the phenomenological situation is likely to evolve
rapidly over the next few years. While the simpler top
condensate scheme is still potentially viable, we have pro-
posed this alternative in the hopes that by lowering A, a
more promising natural alternative may exist. The
fourth generation is definitely not ruled out, the neutrino
situation is perfectly natural and phenomenologically ac-
ceptable, and the fourth generation offers an obvious
dynamical possibility for breaking the electroweak sym-
metries.
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can explicitly integrate out 4 to recover the model of Eq.
(2.1), with

1Go=
Mo

(A2)

In terms ofX', the gap equation for the fermion propaga-
tor is obtained by minimizing the effectiv potential for
N. This is equivalent to shifting N,

2
(v g, vii, +H. C. ) (A4)

This shows that there is a condensate of the form (2.2).
To evaluate Feynman diagrams, we rewrite Eq. (A 1) in

terms of a Majorana field y, defined by

Then

C
+R '++8 ' (A5)

,'g~ii3y—, MON 4+(N—y Play +H. c.), (A6)

where I'ii =
—,'( I+@~). The field y satisfies the "Majorana

condition"

X'=&~+(vg )'=X . (A7)

The Feynman rules for Majorana fields have been given
recently in the literature.

The only two diagrams which contribute to the P tad-
pole in the large-N limit are shown in Fig. 1. The one-
loop diagram gives

f d4k

(2vr )

i——tr iI'~
k' —m

d k 1=Nm
(2 )4 k2 2

(AS)

Demanding that this contribution cancel the tree-level
contribution gives

iM 0m d4k
+mN =0

2 (2 )4 k2 z

For m WO, we can write this as

(A9)

4(x) =P(x)—
2

and determining m by demanding that the sum of the
tadpole diagrams with one external P line vanish. ' Note
that, for nonzero m, the neutrino field has a Majorana
mass term

APPENDIX A: SCHWINGER-DYSON ANAI. YSIS

1. Gap equation

1 . d k 1=2tN
Go (2' ) k —m

2
Az

Sm
(A10)

To treat the broken-symmetry phase of the model (2.1),
it is convenient to rewrite it in terms of an auxiliary static
scalar field N:

vgjl8vii
' ™04@+(@viijviif +H. c. ) . (Al)

This is the gap equation for the theory defined by Eq.
(2.1).

We see that in order to have m WO, we require

The coefficient of the Yukawa term is fixed by appropri-
ately scaling W. The field N has no kinetic term, so we

Sm
60 )Gcrit =

NA
(Al 1)
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If we want to maintain the hierarchy m «A, the gap
equation shows that Go must be adjusted to be very close
to G,„;,. (We note that in the large-N limit, there are no
corrections to the neutrino propagator in the shifted
theory, so that m is the physical mass of the right-handed
neutrino. ) In the formalism used here it is clear that this
fine-tuning problem is exactly the same as the fine-tuning
problem for scalar fields. We will see that all the quadra-
tic divergences which appear subsequently can be can-
celed by imposing the gap equation. Thus, once the gap
equation is fine-tuned, there is no further fine-tuning in
the theory. This is the same situation as in scalar field
theories in the broken-symmetry phase, where the qua-
dratic divergences can be isolated in the minimization of
the efFective potential.

2. Collective modes

The auxilliary field P was introduced above as a trick
to simplify the calculations, but we will see that, in fact, P
is a physical propagating field at low energies. The signal
for this is the appearance of poles in the two-point func-

In terms of real and imaginary components of P,

(A13)

we have, to first order in 0,

(A14)

X~X—2I ~ (A15)

We see that exciting the field y is equivalent to perform-
ing a local U(1) transformation, suggesting that y is the
Nambu-Goldstone mode associated with broken-U(1)
symmetry. We now show that this is indeed the case.

In the large-N limit, the self-energy of y is given by the
two diagrams of Fig. 2. Both diagrams give the same
contribution, and their sum is

tion of P. These poles are physically manifested in right-
handed neutrino scattering amplitudes, where they ap-
pear as resonances.

Note that under U(l)-fiavor symmetry,

(A12)

d4k
i X+—(p) =2J (2m )

——tr
2

1 l

k' —m

1 l

&2 k'+gf —m
—'Ys

d k k.(k+p) —m

(2n) (k —m )[(k+p) —m ]

Shifting the integration momentum to isolate the quadratically divergent part of this expression, we have

(A16)

d k 1 +N
d k 1 + 1

(2~) (k —m )[(k +p) —m ] (2') k —m (k +p) —m
(A17)

Assuming p «A, the last two terms can be rewritten
using the gap equation (A10), and we get

Z4e
iX (p)=2—J (2'�)

N——tr
2

X~(p) = —p A (p) —Mo,
where

d4k 1
A (p)= iN-

(2m. ) (k —m )[(k+p) —m ]

N A
dx ln

o ~~—x 1 —xp

(A18)
X

&2 k' —m &2 k+p —m

=i(p 4m )3 (p—)+iMO,

giving the P propagator

(A21)

Note that the quadratic divergence in the self-energy has
been completely canceled by imposing the gap equation.
The exact y propagator in the large-X limit is then

(A20)

From (A19), we see that A (p =0)WO, so A&(p) has a
pole at p =0. This shows that g is a massless excitation
and can be identified as the Nambu-Goldstone mode.

We can now repeat the same steps for P. We obtain

iA '(p)
&~(p) = (A22)

We see that the p mode has a mass 2m. One might think

that this is a loosely bound state of v~v„, since it ap-

parently has vanishing binding energy. However, we em-

phasize that this is not a nonrelativistic bound state, and
normal intuition does not apply.

The results derived in this section are exact in the
large-N limit, and are therefore completely equivalent to
the more conventional bubble-sum treatment. However,
we expect that there will be significant corrections to the
large-N results for small ¹
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APPENDIX B: SPINOR CONVENTIONS

We follow the conventions of Bjorken and Drell, ' with
all fields viewed as operators, so that

will use the notation

tT'—= (g') .

The chiral properties of charge-conjugate spinors are

(86)

4x= —xP
(4x)'=x 0 .

The charge-conjugation matrix is given by

C=iy y = —C '= —C

and satisfies the identity

(81)

(83)

(84)

(g')g = —,'(1+ys)g'=(QL )' .

We will use the notation

VL, —= (PL, )'

(87)

(88)

(89)

(810)

Charge-conjugated spinors are defined by etc. The following identities are useful for rewriting La-
grangians containing charge-conjugated spinors:

The phase of C has been chosen so that (tb')'=1b. Note
that the order of charge conjugation with respect to
Dirac conjugation is important, since (f')= —(1b)'. We

0'x'=A
0') ~'= —x) „4

(811)

(812)
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