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By using a QCD relativistic potential tnodel we compute several physical quantities for heavy-
light-quark gq mesons: current-particle matrix elements, leptonic decay constants in the limit

m&~ ~, and the Kobayashi-Maskawa matrix elements V&„and V&, from recent CLEO and
ARGUS data on semileptonic inclusive B decays. A comparison with other theoretical approaches
is also presented.

I. INTRODUCTION

In the last few years there has been increasing experi-
mental and theoretical interest for heavy-light-quark Qq
mesons. This interest arises from the discovery of new
phenomena, such as the large B -B mixing, ' from the
hope that CP-violating processes may be observed in
these systems and from the possibility that efFects of new
physics are disclosed by anomalous enhancements of the
rates of some rare decay channels.

In the standard model the analysis of Qt7 mesonic sys-
tems allows light to be shed on fundamental parameters
such as the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements. In this respect, an important experimental re-
sult has been recently achieved by the CLEO and
ARGUS Collaborations, which observed a signal of
direct b ~u transitions in B-meson semileptonic decays,
thus finding evidence for V~„WO. However, any deter-
mination of mesonic weak decay amplitudes (and conse-
quently any quantitative evaluation of weak parameters
from experimental data) involves the computation of ha-
dronic matrix elements. The evaluation of these matrix
elements is the main subject of this paper.

An approximation scheme has been recently put for-
ward, ' based on the observation that, if the heavy-quark
mass is su%ciently large, the heavy quark can be treated
as a static color source. In this case, the dependence of
hadronic amplitudes (e.g. , decay constants and form fac-
tors) on the mass m& can be obtained by scaling argu-
ments. The problematic aspect of this approach is that
there is some evidence that the onset of such a scaling
behavior is for masses larger than the charm mass; there-
fore, one cannot meaningfully extrapolate to b mesons
the results obtained for charmed mesons by nonperturba-
tive methods, e.g. , lattice QCD. We shall come back to
this point below. In any case, it is desirable to investigate
the region of moderate m& (up to the b quark) by
different methods, and to compare their predictions:
hopefully this should shed some light on the reliability of
the approximations involved in difFerent approaches.

The aim of this paper is to propose in greater detail a
model which reproduces some peculiar features of the
heavy-light meson systems. It is based on the following
main assumptions.

(1) The Qq system is described by a wave equation with
a potential following the prescriptions dictated by QCD,
i.e., a linearly confining behavior at large distances and a
Coulombic behavior at short distances. As described
below, a particular role in determining the complete form
of the potential is played by the duality (suggested in the
early 1970s by the authors in Ref. 10) between the free
quark behavior observed in o (e+e ~hadrons) at high
energies and the production of an infinite number of reso-
nances in the process e+e ~y*~ V, ~hadrons.

(2) Since the Qq system contains a relativistic light
quark, the meson is assumed to obey a wave equation
with relativistic kinematics, whose solution provides in-
formation on both the spectrum and the wave function of
heavy-light-quark mesons.

The plan of the paper is as follows. Section II contains
the description of the relativistic QCD potential model
with details about the computational technique adopted
to solve the mesonic wave equation. We evaluate a num-
ber of current-particle matrix elements and compare our
findings with the results obtained by different approaches.

In Sec. III the behavior of the pseudoscalar decay con-
stants for increasing heavy quark mass m& is studied. A
comparison is also carried out with the results of the stat-
ic quark effective theory proposed in Ref. 6.

In Sec. IV the B-meson wave function and the CLEO
results on the semileptonic B decay spectrum are em-
ployed in order to evaluate the CKM matrix element Vb,
and the ratio Vb„/Vb, . Finally in Sec. V we draw our
conclusions.

II. REVIEW OF THE MODEL

In this section we will describe the main aspects of our
potential model. To study relativistic effects in Qq sys-
tems we start by writing the pseudoscalar I'(J =0 ) and
vector mesons V(J = 1 ) in their rest frame:
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(2.1)

(2.2)

where the sums are over the indices a and P (color in-
dices), r and s (spin indices), i and j (flavor indices). b
and d are quark and antiquark creation operators and e
is the V-meson polarization. The momentum-space
s (l =0) wave function 40(k) is defined as

4 f ~d sl n( qr)~0' q

1 1

ln(1+q ) q
(2.9)

This potential behaves, at small distances, as expected
from perturbative QCD:

uo(k)
40(k) =rr&2 = f dr sin(kr)uo(r);

k k 0
(2.3) 8m 1V(r)~—

33 2n—
& r ln(1/Ar)

(2.10)

uo(k) is normalized according to

f dkIu, (k) I'=2M, (2.4)

where M is the meson mass.
As for the r-space wave function uo(r), we assume that

it is the s-wave solution of the eigenvalue equation

[Q fi V +m; —+Q fi2V +—m, + V(r)]%(r)=M+(r) .

(2.5)

For the central potential, V(r) = V(r) the angular
dependence in %(r) can be factorized:

u, (r)
%(r)=Yi (r)AI(r)=Yi ( (2.6)

[V(r) M]u&(r)+ ——f dr' f dk[(k +m; )'
7T 0 0

+(k +m )'~ ]k rrj'&(kr)j&(kr')u&(r')=0 (2.7)

where j&(x) are spherical Bessel functions; for
l =0[jo(x)=(sinx)/x] we thus obtain the s-wave equa-
tion satisfied by uo(r).

Equation (2.5) is the natural relativistic extension of
the Schrodinger equation employed in quarkonium phe-
nomenology;" it should be useful for systems containing
one or two light quarks, when the nonrelativistic approxi-
mation is doubtful; as such it has been considered by a
number of authors. ' It should be also stressed that Eq.
(2.S) arises from the Bethe-Salpeter equation in QCD re-
placing the full interaction by the instantaneous local po-
tential V(r) and considering a limited Fock space con-
taining qq states only.

Let us now discuss V(r). We shall approximate it by
the Richardson potential'

33—2n AIf
(2.8)

with A a parameter, nI is the number of flavors' and

By using the spectral representation of the square-root
operator appearing in Eq. (2.5) we obtain the equation
(R=1)

whereas, at large distances, it grows linearly, thus provid-
ing confinement. In the potential (2.8) and (2.9), already
applied to quarkonium phenomenology, spin-spin and
spin-orbit terms are not included. The reason is that in
heavy-light-quark systems the experimental mass split-
ting between di8'erent spin states is typically of the order
of 100 MeV, to be compared to meson masses larger than
1.8 GeV; therefore spin-dependent terms in the potential
can be considered as higher-order corrections.

%"hen one introduces the relativistic kinematics by Eq.
(2.S) an important difference arises with respect to the
usual approach based on the Schrodinger equation. The
Coulombic divergence for r ~0 in Eq. (2.10) is harmless
in the nonrelativistic case; on the other hand, when Eqs.
(2.S)—(2.7) are considered, it reflects in a logarithmic
divergence of the wave function $0(r) at the origin. '

Such a divergence is an unphysical artifact of the approx-
imation employed in the Bethe-Salpeter equation. A pos-
sible way to deal with this problem is to smooth the po-
tential for very small r (r ~ k/M) to a constant value:

kV(r)= V(r~) r ~rM & —M (2.11)

The value of the constant k can be fixed by QCD duality,
i.e., by assuming that summing over infinitely many reso-
nances, bounded by the potential (2.8)—(2.11), is
equivalent to the QCD O(a, ) calculation. In this way
one finds'

4m.

3
(2.12)

We assume Eq. (2.12) valid for the equal-mass case. For
m;Wmj we may expect deviations from Eq. (2.12) and
write

A,k
M (2.13)

with A, a parameter to be fitted.
Having fixed the potential we can now solve the eigen-

value equation (2.7) for the 1=0 case. This is done nu-
merically by the Multhopp method, ' which we shall now
briefly discuss.

Let us consider Eq. (2.7) for I =0. The term
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H =—f dr' f dk Qk +m sin(kr) sin(kr')uo(r')
o o j

(2.14)

that satisfies the recurrency condition

zK, (z) zK—,+, (z) = —2vK (z)

we get

(2. 19)

under the substitution

k =m, sinh(x)

can be rewritten as

2Pl jH = ' dr'uo(r')J (r')
2~ o

with

J.(r')= dx [1+cosh2x][cos(mjlr r'l»nhx)
J p

(2.15)

(2.16)

J = —2J
K, (m. ~r r'~)— K, (m, ~r+r'~)

m, /r —r'f m, [r+r'/

so that, by defining uo( r) = ——uo(r), we obtain

uo(r')8 = ——P dr'
vr —~ (r —r')~

m, + u, (r')
+

r —r' m r —r'

(2.20)

—cos(m. ~r +r'~sinhx)] .

(2.17)

—K, (m, ~r r'~ )—

Introducing the modified Bessel function

1 ooE dt cosh vt cos x sinht
cos( vm. /2 ) o

(2.18)

(2.21)

where P denotes the principal value. It follows that the
s-wave radial equation takes the form

m + uo(r')f dr', ,
—K, (m ~r r'~ ) +(m—~m;) + [ V(r) —M]uo(r) =0 .

r —r' m r —r'
J

j

(2.22)

The Multhopp method is particularly useful for dealing with singular integral equations of this type. One puts

r = —cot8 (2.23)

so that Eq. (2.22) assumes the form

f d8'K(8, 8')g(6') =M/(8)
0

with the conditions i'(0) =g(m ) =0. Let us consider the truncated Fourier series

N

p(6) = g c. sin( j8);

(2.24)

(2.25)

by choosing the (Multhopp) angles

(l =1, . . . , X),l
%+1

the coefBcients c are given by

N

c, = g sin(j8, )g(8, ) .N+1 I

By substituting Eq. (2.25) in Eq. (2.24) and using Eq. (2.27) we get
N

f d8' K(8&,8') sin( j8') sin( j8 )g(8 ) =M/(8&) .
i %+1, i . o

(2.26)

(2.27)

(2.28)

In other terms the problem of solving the original equa-
tion (2.22) has been recast in the problem of finding the
solution of the system

(2.29)

that, when solved, gives both M and the wave function g
in X points.

As discussed in Ref. 9, from a fit to Qq and QQ meson
spectra, we fix the values of the parameters as follows:
m„=m& =38 MeV; m, = 115 MeV; m, = 1452 MeV;
mb=4890 MeV; A=397 MeV; X=0.6. The results for
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the heavy-meson masses can be found in Ref. 9; here we
only quote the value for m (8, )=6279 MeV in relative
agreement with the values obtained from diA'erent poten-
tial models. ' We stress that, since we do not include
spin-dependent terms, we are not able to distinguish be-
tween pseudoscalar and vector states, and therefore our
results are for the center of mass of the 0 —1 system.
The agreement of our results for the meson spectrum
with the experimental data is within 100 MeV, the size of
the spin splittings. The light-quark masses are not very
well determined from the fit of heavy-meson spectrum, so
that we assume the quoted value for m„=md only as an
indication of the light-quark-mass value. For our pur-
poses such approximation is justified since the heavy-
meson wave functions are not sensitive to m within a
factor 2 or 3.

Using the Qq wave functions a number of current-
particle matrix elements can be evaluated. Let us define

t 01 ~,", I
p (p ) ) =ip i'Q,,v'2fp,

«I I'gl v(p, .) & ="Q,,f, ,

(Ol TI'l v(p, e) ) =(e"p" ep—")Q,

gati (2.30a)

(2.30b)

(2.30c)

In Eqs. (2.30) Q; is the meson ffavor matrix; the
definition of the currents is A,~'(x) =q,.(x )y"y q. (x ),
Vtj(x)=q;(x)y"q/(x), Tf, (x)=q;(x)o" q (x), with
o""=(i/2)[y", y']. As is well known, the pseudoscalar
constant ft„analogous to the pion constant f =93.2
MeV, can be measured in leptonic decays. For QQ sys-
tems fi, can be related to the electromagnetic decay con-
stant and can be measured, e.g. , in Y~e+e . The ten-
sor coupling t(8,') has been used by the authors in Ref.
22 in an analysis of the rare decay B~IC*y. By writing
the currents in terms of creation and annihilation opera-
tors, using canonical commutation relations and evaluat-
ing Eqs. (2.30) in the meson rest frame, we get

' 1/2
3

2 I dk uo(k)kN'" 1—
2~M o (E;+m;)(EJ+mj )

(2.31a)

kf~=&3 I dk uo(k)kN' 1+—
277 0 3 (E;+m;)(E +mi) (2.31b)

k
tv v'3 I ——dk uo(k)kN' 1 ——

2~M 0
(2.31c)

with

(E +m )(E, +m, )
(2.32)

The results of our model can be found in Tables I and
II. We estimate a theoretical uncertainty of +1S%. This
is obtained by varying the parameters of the model
(quark masses, potential parameters) around the quoted
values and from the numerical error in the Multhopp
method. Let us first discuss the pseudoscalar decay con-
stants. There is a substantial agreement (within 25 MeV)
on the value of fD and fD between our model, the lattice

S

QCD approach (with the exception of Ref. 27), QCD
sum rules and the nonrelativistic potential model in Ref.
37. All these results are compatible with the present ex-
perimental bound fD ~ 2.2f =205 MeV. A similar
agreement is found for the value of fthm (with the excep-

C

tion of Ref. 40); we point out that the 8, system should
be well described also by nonrelativistic models.

The situation is diff'erent for fit and fli . As a matter
S

of fact, QCD sum rules and nonrelativistic models pre-
dict fthm

~ fD ( fthm
~ fD ). This is at odds with the result of

5 S

our model, which predicts fit/fD ——1.25. We shall give
an analytic explanation of this behavior in the next sec-

tion. Let us only observe that a recent evaluation of fthm

in the lattice QCD approach using I/m& expansion gives
the rather large result fthm =219+18+35 MeV. Including
an estimate of I/m& corrections one finds the result f~
=164+14+26 MeV which is in agreement with our
findings.

Let us conclude this section with some considerations
on the vector meson decay constants. As shown by Table
II, there is a substantial agreement between our results
and the findings obtained by other methods. The only es-
timate of t(B,*) available up to now is substantially
lower than our estimate. Finally we have not included
the QQ leptonic decay constants whose calculated values
can be found in Ref. 9. As discussed in Ref. 9, the
present model gives results in good agreement with the
experiment for the leptonic decay constants of vector
mesons such as J/g, Y, Y', etc.

III. THE my —+ ~ LIMIT

In this section we study the leptonic decay constants
ft and fi, defined in Eqs. (2.31) in the limit m&~ &a. In
this limit an approximation scheme ' for Qq systems has
been proposed by considering the heavy quark as a static
color source; in this way one derives a logarithmic
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TABLE I. Pseudoscalar decay constants evaluated by different theoretical methods. Units are MeV. Here f =93.2 MeV. The
only experimental value is fD ~ 2.2f ." The results of the present model (first line) have a theoretical uncertainty of +15%.

129 141 163 173

fs,

306 222 405

Ref.

Present

137+11
123+18+33

134+23
210

158+19

122+11
120
156

117+11
141

& 136

152+12
165+33+39

157+11

196+9

154+14

141+11

& 164

165+13+27

286+117

102-149

129+13
92
99

81+11
120+ 14

& 170

140+ 14

& 204

265 246 414

8~, b

24'
25'
26'
27'
28'

29'
30c

3 lc

32
33
34c
35'
36c

106
202
83
171

170+14
159

148
252
91

237
205+14

88
162
53
123

110+11
138

124
196
61

148+14

301
303

403
290+14

37d

38
39
40'
41'
42

78-104 50-69 43'

'Lattice QCD.
This value is obtained by including their estimation of nonscaling contributions.

'QCD sum rules.
Potential models.

'Bag models.

correction to the I /+mt' behavior of f~ which is ex-
pected in a nonrelativistic approach. It seems
worthwhile to compare such a result with the behavior
predicted by the QCD relativistic potential model de-
scribed in the previous section.

To begin with, we show the presence of a (m~)
dependence in fp. In the limit m& ~ ac, m ~0, one can

put E(2=+m&+k =m& and E =k; then Eq. (2.31)

can be approximated by

f, = I dk ku, (k) = (t,(0)
u'3 +

2mM 0 2M
(3.1)

where Po(r) is defined in Eq. (2.6). In the same approxi-
mation the wave equation (2.7) becomes [uo(r) =redo(r)]

TABLE II. (a) Vector-meson constants. Units are GeV. The results of the present model (first line)
have a theoretical uncertainty of +15%. (b) Vector meson couplings tr [see Eq. (2.30c)]. Units are
MeV. The results of the present model (first line) have a theoretical uncertainty of +15%.

(a)

0.53
0.44

0.56
0.47

1.51

1.23

fse

1.58

1.76

fs»

3.03

Ref.

Present
44
35

222 237 257

(b)

271
161+38

C

458

Ref.

Present
22
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[ V(r) M—+mg]uo(r)—
2m@

r

kr . kr'
uo (r)+ f dk k f dr'sin sin uo(r')=0 .

~A o o 'A' (3.2)

I luo(r)=exp o(r) =ex—p —oo(r)+o. , (r) (3.3)

We wish to point out that Eq. (3.2) is considerably
simpler than Eq. (2.7) (with I =0) as far as the Multhopp
method is concerned. This is a consequence of the ab-
sence in the right-hand side (RHS) of Eq. (2.21) of the
mass terms; from a practical point of view we obtain the
same accuracy in the wave function with a gain of an or-
der of magnitude in CPU time.

Let us consider a potential V(r) consisting only of a
linear confining part (the Coulombic correction will be
discussed later on). In this case, one can prove that
$0(r)~c, where the constant c is determined by the nor-
malization condition Eq. (2.4). The value of e can be ob-
tained by the WKB approximation" of the solution of
Eq. (3.2). We search a solution in the form

ated by the saddle-point methods, we obtain

D =pm' (3.10)

where g is a constant independent of m&. Therefore

$0(r) =u'(0) =const X Qm& (3.11)

and
const

P
Qmq

(3.12)

This behavior has been checked for the numerical solu-
tion of Eq. (3.2) without the WKB approximation; it is
expected also in nonrelativistic potential models.

By including now in the potential V(r) the short-
distance Coulombic term, modified as described in the
previous section, one gets a logarithmic correction to Eq.
(3.12). Indeed Eq. (3.2) can be written as (A'= 1)

with the boundary condition uo(r) —const X r. The func-
tions cr(r) and o, (r) are determined by the saddle-point
equations

1
[ V(r) M+ mg jr go—(r) — (r Po(r) )

2m' dr

B2
P f dz Q—o, [zoo(rz)]=0 (3.13)

k=o'(r), (3.4)

with

V(r) —M +g (o.')+ g "(—cr'.)o "(r)=0
2l

where Q&(x) is the Legendre function of the second kind.
Let us search, for r small and r ) rM =4~/3M a solution
of Eq. (3.13) in the form

0-'2
g(o')=m + +cr' .

2m
Q

(3.5) $0(r) =const X /m& ln
1

Ar
(3.14)

Developing in fi we get [5=M —m&, V(r) =p2r ]
1/2

cro(r) =m& —1+ 1+ 2(5 —
p, r)

m&

whereas

(3.6)

o, (r) =ln 1

V'oo(r)+ m~
+const . (3.7)

D 1
uo(r) =

V mg 2(5 —p r)1+
mg

. , q4 sinX(r) (3.8)

with

0 77X(r) = f cr'(r)dr+ —,
Y 4

(3.9)

where we have now put fi= l. For r & ro, uo(r) falls
down exponentially, as it can be shown by general argu-
ments. From the normalization integral Eq. (2.4), evalu-

It follows that the WKB solution, for r pro=5/p (ro is
the classical turning point) is given by

By evaluating Eq. (3.13) for r =rM =4~/3m&, neglect-
ing terms such as In[In(m&/A)], the following value for
the exponent g is obtained:

16 1

33 2ng 3

4~

(3.15)

4~
(t(0) =go(rM )=go

3m@
(3.16)

which is justified since the potential V( r) is constant for
r H(0, rM ).

From Eqs. (3.1), (3.14)—(3.16) the behavior of the
axial-vector-current decay constant fI, for a gq pseudo-
scalar meson, in the limit m& ~~, is given by

const
P

Qmq
ln

(3.17)

We now approximate the value of the wave function in
the origin as
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in the leading-log approximation. The mass scale appear-
ing in Eq. (3.17) is

A'= A=1.7 GeV .4~
3

(3.18)

6
33 2nf

(3.20)

to be compared with Eq. (3.15). The second difference is
in the mass scales appearing in the logarithmic terms in
Eqs. (3.17) and (3.19). In Eq. (3.19) the mass scale is the
QCD parameter A&cD. On the other hand, in the relativ-
istic potential model one gets A'=1. 7 GeV. This rather
large value arises because of the interplay between the
short- and the long-distance dynamics expressed by the
duality between asymptotically free quarks and bound
states; ' in other terms, it is a phenornenological conse-
quence of the hypothesis that infinitely many resonances,
bounded by the potential Eqs. (2.8)—(2.11) can mimic the
short-distance QCD behavior.

Both differences, the exponent of the logarithmic
corrections and the mass scale, arise from the different
approximations used in the two approaches. We cannot
assess here the quality of these approximations; neverthe-
less it is useful to discuss their phenomenological implica-
tions. First of all we observe that Eq. (3.17) holds for
very large m&, since the relevant mass scale is A'. For in-
termediate regions we numerically obtain a small devia-
tion in the exponent g. The second observation is that
Eq. (3.17) predicts a maximum for f~ at

mg =A'exp(2$), (3.21)

i.e., for m& ——m&. This is at variance with the prediction
of the static quark effective theory, where the logarithmic
corrections play a minor role; on the other hand our re-
sult is in agreement with the outcome of Ref. 8 obtained
by an interpolating formula which shows that f~(m&)
has a maximum for m& ——3.6 GeV, with a decreasing be-
havior for larger masses.

We conclude this section by observing that a similar
analysis can be performed for the vector-meson leptonic
decay constant fz, for m& ~ ao one gets

1f~ =const X Qm& (3.22)
mg

1n

with g and A' given in Eqs. (3.15) and (3.18).

Equation (3.17) looks similar to the result that can be ob-
tained by taking the renormalization of the axial-vector
current into account:

t —d
const

~ ( )] d const 1

Qmq
'

Qmq mq
ln

AQCD

(3.19)

However, there are two important differences. First, the
exponent d is given by

IV. INCLUSIVE SEMILEPTONIC 8-MESON DECAYS
AND KOBAYASHI-MASKAWA MATRIX ELEMENTS

As an application of the model developed in the previ-
ous sections we wish to study the determination of the
Kobayashi-Maskawa matrix elements V„„and V&, by the
inclusive B—+Xev spectrum. Recent experimental data
from both CLEO and ARGUS Collaborations have
shown evidence for a nonvanishing signal for values of
the electron momentum such that, for kinematical
reasons, only the 8~X„ev decay is possible. This clear-
ly shows that V&„%0;however the actual value of Vb„de-
pends on the model used for the fragmentation of the b
quark; moreover bound-state effects should be taken into
account.

To describe fragmentation, we follow the approach
developed by Altarelli et a/. which does not suffer from
the large uncertainties in the form factors that are
present in the alternative approaches of Refs. 47 —49.

In the approach of Ref. 46 one attempts to compute
the differential width dl (B +Xev)/—dE (E is the electron
energy) by using mainly information from QCD. One
writes d I /dE as a sum of two pieces:

dI, dI „
(4.1)

where dI /dF. arises from the decay b~ qev( q=u, c).
The B-meson semileptonic decay is described in terms of
the /3 decay of the b quark, treated as a virtual particle of
mass mb with the condition

mb m~+m——,'„2M,+m,', + ~p—~', (4.2)

where M~ is the B meson mass and m, and p are the
mass and momentum of the spectator quark. dI /dE is
obtained by

d I p,„dI "'"'
dp Q0 p

0
(4.3)

where uo(p) is the p-space B wave function defined in Eq.
(2.3), dl ~"'/dE is the partonic spectrum for the decay
b ~qev and p, „ is obtained from (4.2) when the RHS of
this equation becomes equal to m . Whereas for
dl ~~'"'/dE we use the results of Ref. 46 [containing also
0 (a, ) corrections], we differ from these authors in the
use of quark momentum distribution u 0(p). We employ
for uo(p) our computed wave function, whereas in Ref.
46 a phenomenological Gaussian distribution is assumed.
It is worth stressing that the shapes of the two distribu-
tions are different, which implies that d I /dE
significantly depends on u 0(p) (see, e.g. , Ref. 50 where a
comparison between the present model and the results
based on the Gaussian distribution is performed).

To compare the results of this analysis with the experi-
mental data we have also included radiative corrections
in dI" /dE as follows: '
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TABLE III. Values of 10'~ Vb„/Vb, ~
in the momentum ranges 2.2—2.4 GeV/c, 2.4—2.6 GeV/c and

in average, for two values of the light spectator quark mass.

m, (MeV)

38

100

2.2 —2.4 GeV/c
Io'[ v„„/v„['

0.7+0.5
0.7+0.5

2.4—2.6 GeV/c
Io'[ v,„/v„f'

1.7+0.6
1.8+0.6

Average
Io'f v,„/v„f'

1.1+0.4
1.2+0.4

dI q'" dI
q 2O Mz1+ ln [ I+rra0. 46]

dE dE m M~
(2a/n ) [1n(xM& /me ) —1 j

3(1—x)
2x

(4 4)

value of Vb, by the formula

By Eqs. (4.5) and (4.8) we obtain the result

(4.8)

2
Vb„

Vb,

b.B "(a,b)
br„(a, b)

(4.5)

where

b dI „
b, I „(a,b)= J dE

dE

and

(4.6)

where 0.'is the fine-structure constant, Mz and m, are the
Z and the electron masses respectively and x =E/E, „
(with E,„=2.31 GeV for q =c and 2.64 GeV for q = u).
We have extracted the value of Vb„ from a comparison
with the CLEO data in the charged-lepton momentum
range 2.2 —2.6 GeV/c. We have also included the experi-
mental momentum resolution which for the CLEO ap-
paratus is given by [o (p)/p ] =(0.0023p) +(0.007)
where p is in GeV. Our results are displayed in Table III
where we consider the results for the regions [2.2,2.4]
GeV/c, [2.4,2.6] GeV/c and the average result, for two
different values of the spectator quark mass which, as dis-
cussed in Sec. II, is not very well determined by the fit of
the heavy-meson spectra. These results are based on the
formula

and

Vb, =0.047+0.004 (4.&)

Vb„

Vb,
=0.11+0.02 . (4.10)

These results are in general agreement with the predic-
tions of other models of semileptonic 8 decays.

V. CONCLUSIONS

We have discussed a model for Qq mesons based on a
relativistic wave equation and a QCD-inspired potential.
We have presented some calculations of current-particle
matrix elements, the limit m& —+ ~ and the determina-
tion of V» and Vb, Kobayashi-Maskawa matrix elements
from recent data obtained by the CLEO and ARGUS
Collaborations. The model is in agreement with the ex-
perimental data whenever they are available; we have
also compared our results with the predictions of other
theoretical approaches. We aim to test the present model
in other fields of heavy meson physics, e.g. , in the calcula-
tion of form factors; work is in progress and wi11 be
presented elsewhere.

dI,r, = f "dE „' . (4.7)

B""=(10.2+0.2+0.7)X10 (Ref. 4) is the total semi-
leptonic branching ratio and b,B""(a,b) is the semilepton-
ic branching ratio in the interval (a, b) We observe . that
the results on Table III do not depend strongly on I, ;
we have checked that the dependence on other fitted pa-
rameters of our model is also negligible.

Together with Vb„/Vb, we can also determine the
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