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Semileptonic baryon decays with a heavy quark
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The semileptonic decay of spin- z baryons is examined in the spectator-quark model, with special

attention given to Ab~A, ev and O,b~Q, ev. The polarization of the virtual W and of the
daughter baryon is also considered, along with the joint angular distribution between the charged
lepton and the daughter-baryon polarization vector. The Ab decays with about equal mixtures of
transverse to longitudinal 8' polarization while the Qb decays with predominately longitudinal W'

polarization. These reactions are representative of two qualitatively different classes: decays in-

volving baryons whose spectators are spin singlets and those whose spectators are spin triplets.

I. INTRODUCTION

There has been much effort lately in calculating semi-
leptonic decays of mesons. Eventually one hopes to ex-
tract the Kobayashi-Maskawa (KM) mixing angles and
probe the quark structure of hadrons. The quark model
has been reasonably successful in describing both in-
clusive' and exclusive processes. These calculations
agree quite well for decays such as D ~K e v, and+ 0 +

8 ~D*e+v, and they even predict the correct
longitudinal-to-transverse D * ratio. If these calculations
are in fact reliable, and give accurate values for the form
factors, then KM matrix elements may be extracted.

Recently, however, a serious discrepancy between the
quark model and experiment arose in the decay of
charmed mesons. Both the rate and the polarization ra-
tio in the D ~K e v, calculations are in conAict with
experiment. The calculation ' predicts comparable
D —+K*e+v, and D ~Ke+v, rates and about equal lon-
gitudinal and transverse production of K* final states.
The experiment shows, however, that the rate for
D ~K e+v, is about half that for D ~Ke+v„and that
K* final states are predominantly longitudinal.

This has inspired several attempts to reexamine the
quark model and the underlying assumptions involved in
the calculations. Although ad hoc adjustments of
form factors can be made to fit the data, ' there is no
compelling theoretica/ motivation for doing this. In
many of the models considered, a nonrelativistic ap-
proach was adopted. While this could be justified for
heavy quarks, it is dubious for the light spectators. It is
important to know whether the failure of the quark mod-
el might be due to relativistic effects that have not been
considered, or to soxnething more fundamental. It is a lit-
tle puzzling, however, if the failure is just due to relativis-
tic effects. The K system is less relativistic than the K
system, so naively one should expect even better agree-
ment with experiment for D —+K*e+v, than for
D ~Ke v. However, there is an important difference-
D ~K*e+v, involves a quark-spin Aip while D~Ke+v,
does not—and this might be enough to substantially

change the wave function from the naive quark-model
form.

It is important to study other hadronic systems and see
how the quark model fares. The strongly stable baryons
are ideal for this, and data should soon be available. In
this paper I give special attention to the semileptonic de-
cays of A& and 0& for Q =b, c For co. mpleteness I also
present results for X& and:"&. The angular distribution
of the charged lepton and the polarization of the virtual
8'is examined. I also give the joint angular distribution
between the charged-lepton and the daughter-baryon po-
larization vector. This should provide enough informa-
tion to determine the helicity form factors independently,
which may indicate where the quark model might be
breaking down, if in fact it does.

II. KINEMATICS

This paper examines exclusive semileptonic decays of
spin- —, baryons and in particular the angular distribution
of the charged lepton, which I take to be a massless elec-
tron. Much of this section is a standard exercise; it is
presented elsewhere' "" and is repeated here for com-
pleteness and to establish notation.

Figure 1 shows this process for a parent baryon with a
generic heavy quark Q that decays into a baryon with a
lighter, but still relatively heavy, quark q. For the pro-
cess M ~me V the decay rate is given by

d k
dlI =(2 ) 5' '(P —k —p —p')+, (2.2)

(2') 2Ef

G~
A (M, —&m, ,ev)= V& L"H„'',

Qe t
(2.3)

with V& being the Kobayashi-Maskawa matrix element
appropriate to the Q ~q transition and where the prod-

dI (M, ~m, ev)=
~

A (M, ~m, .ev)~ dII3, (2.1)
2%

where
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daughter k, the e and v have p and p', respectively. The
virtual 8 carries four-momentum q =p+p'. lt should
be kept in mind that the spin-quantization axes for the
parent and daughter baryons are not necessarily chosen
the same.

The leptonic and hadronic currents are given by

I,"=u,y"(1—y5)v, , (2.4)

FICx. 1. The semileptonic decay of a heavy quark Q into a
lighter quark q and a virtual 8; which becomes a charged lep-
ton and neutrino.

H" =&k, s'IJI,'„(O)IP,s & . (2.5)

uct is over all final-state momenta. I am using a some-
what redundant notation where M, (m, ) refers to the
parent (daughter) baryon of mass M(m) and spin com-
ponent s(s'). The parent has four-momentum P, the

If the final-state leptons are e+v instead, the order of the
spinors in the lepton current must be changed. The ha-
dronic current can be constructed from Lorentz-invariant
form factors and the four-vectors of the problem. Writ-
ing JI'„d = V"—A ", I define

(kl v"(0)P) =u [g(q )y"+g+(q )(P+k)"+g (q )(P —k)"]uM, (2.6)

&kl ~&(0)IP) =u [a(q )y~y5+a+(q )(P+k)"y, +a (q )(P —k)~y, ]uM, (2.7)

where q =(P —k) and uM(u ) is the spinor associated
with the parent (daughter) baryon and spin labels have
been suppressed. It is convenient to use dimensionless ki-
nematic variables y =q /M and x =P p/M, scaling to
the parent-baryon mass. Neglecting the mass of the elec-
tron, the kinematically allowed limits of y are from 0 to
(1—m/M) .

In the parent rest frame I denote quantities by a tilde,
and reserve the notation E„E,etc. , without the tilde,
for quantities in the ev center-of-mass frame (ev frame)
where the amplitude will turn out to have a simple angu-
lar dependence. Let —k define the direction of the posi-
tive z axis and let 0, be the angle of the electron relative
to this axis in the ev frame, with the y axis oriented per-
pendicular to the decay plane defined by the m, e, and v
momenta, as shown in Fig. 2(a) (note that k and k are an-
tiparallel). In the ev frame the natural variables are the
electron energy

and

M m

2&y M'

IPI = Ikl =&/&y

M

V

&x

t

(2.1 1)

(2.12)

E, =E = vy (2.8) P x*=-x

and cosO, . On the other hand, in the parent rest frame
the natural variables are

E, =Mx (2.9)

andy =q /M .
The mass-shell relation P =(q+k) =M may be used

to obtain expressions for the energy and momentum of
the parent and daughter baryons, respectively:

M

=v

M m
EM 1 ~+y

y M' (2.10)
FICx. 2. Coordinate system for semileptonic decay of a heavy

baryon: (a) the decaying virtual 8' and (b) the decaying
daughter baryon.
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in the e v frame; whereas in the parent rest frame,

M m 2

E = 1+ —yM
(2.13)

frame and dQ is the solid angle of the final baryon in
the parent rest frame. This gives the differential decay
rate

and dy dA, dQ 2 (4m)
(2.18)

II I
=le,

where
2 1/2

m m
1 — —y —4 y

(2.14)

(2.15)

where the baryon spin dependence is emphasized.
The amplitude in the ev frame becomes, after summing

over electron and neutrino spins,

f W. ..i'= /
~ (M, ~m, ,ew)/'

The connection between the natural variables in the two
frames is made complete by expressing the angular vari-
able in the ev frame, cosO, = —cost9, in terms of vari-
ables in the parent rest frame and evaluating P.p in the
two frames; one finds

K M m
Mx =E =—cosO + 1 — +y

4 M2
(2.16)

The Feynman amplitude is Lorentz invariant and it is
convenient to split the phase space into Lorentz-invariant
pieces so that it takes a particularly simple form:

G
~
V i

21 )svH(s's)H ( s's)t
aq )M V (2.19)

and for a massless electron the only nonzero components
of the lepton tensor are spatial:

I.'J=4M y [(5'J—e e 1)

iris''J"e

—"], (2.20)

where g=+1 for eV and g= —1 for e+v final lepton
states and e is a unit vector along the charged-lepton
direction in the ev frame.

It is useful to expand the spatial components of the ha-
dronic current in terms of an helicity basis (effectively
that of the virtual W):

dH3= K dy dQ, dQ
M

(2.17)
H"'=H""e +H"'e +H"'e+ + 0 e0 (2.21)

where dQ, is the solid angle of the electron in the ev
where e+=(I/&2)(+I —iy) and eo=z. Putting Eqs.
(2.20) and (2.21) into Eq. (2.19) gives

G2'
I I'qq I'4M'y —(I —n cos~, )'IH+ I'+ —(I+g cos~, )'IH I'+»n'(9, IHO I'+ —»n'~, (H+ H* +H+H

—sin9, (1 qcos8, )(H+—Ho +H+Ho )
— —sin9, (1+g cos8, )(H Ho +H* Ho )

2 2

(2.22)

The angular dependence in this equation is entirely a
reflection of the V —3 character of the W —+ev ampli-
tude. The baryon spin sums have not yet been performed
and the spin dependence of the helicity amplitudes, H+ 0',

has been suppressed. When spin is to be emphasized,
daughter and then parent spins are listed. I will average
over the parent spins, which will be taken along the z
axis; however, I will at first consider the daughter polar-
ization along an arbitrary direction e. Since the parent
and daughter are back to back in the e v frame, a
positive-helicity daughter corresponds to spin up along
—z. It is then better to express e in terms of polar and
azimuthal angles, 8* and P*, in the helicity frame shown
in Fig. 2(b). '

It remains to relate the helicity amplitudes H+ 0' to
the form factors defined in Eqs. (2.6) and (2.7). I normal-
ize the spinors so that uu =1 and use the y-matrix con-
ventions of Ref. 14. Letting P, and y, be two component

Pauli spinors along z and e, respectively, a short calcula-
tion gives the spatial components of the current in the ev
frame as

V' '=y, , [
—(2kg+ F0+gF+ )eo igF cr X—eo] P, , (2.23)

where

(F. +m)(E))r+M)
4Mm

k k
E +m E~+M

(2.25)

A''=y, . jaFo& +[2a(1 Fo) —2ka+F ](—& eo)eoIP, ,

(2.24)
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1/2(E +m)(EM+M)
4Mm

where

H+—:+(aEO +gE ), (2.29)
k

(E +m)(EM+M)

with k= —keo, and k given by Eq. (2.12). Explicitly,
H' '=V' '—A' ' gives'

&+ =+
& [2a {1 ,'E—, )—2ka—+F +(2kg+E, +&E+ )].

1

v'2

(2.30)

H' ——'= —&2h+e '~ ~ sin(8*/2)eo

+V2H+e '& ~ —cos(8*/2)e+,

H' — '= —/2H+ e '~ sin(8*/2)e+

++2Q+e —'~ ~ cos(8*/2)eo,

(2.27)

(2.28)

Comparison with Eq. (2.21) gives H'+g. When e= —eo
the spin and helicity of the daughter particle are the
same. Notice that (s's)=(++) produces purely trans-
verse W's while (s's) =(++ ) produces purely longitudi-
nal 8''s. Using Eq. (2.18) and averaging over the initial
spin gives the rate

dr, ,

dy dA, dQ
1+, „,8*—(1 —q cosO, )

(4~) 2 2
~H+ ~

+—{1+gcosO, )
2

1 s cos8
2

1+5 cosO
+ 2

sin 0,

I

+ [sinO, {1 —g cosO, )(cosP* sinO*)]H+hV2

+ —[sinO, (1+gcosO, )(cosg* sinO*)]H h+v'2 (2.31)

The H+h+ terms are from transverse-longitudinal 8'-polarization interference. Notice that there is no transverse-
transverse interference. This means the signs of 0+ can be determined relative to h+, but the overall sign is arbitrary.
This equation simplifies somewhat if the daughter helicity frame is chosen:

d r, G,'~ V I'&M'y
[,'(1 —qcosO ) (H' '~ + —,'(1+gcosO, ) ~H" ') +sin O, ~H~' '( ],

dy dQ, dA (4~) (2.32)

where

(2.33)

(2.34)

Note that for daughter polarizations of s'=+ 1 ( —1), the
virtual 8' is either longitudinally polarized or has trans-
verse helicity components of + 1 ( —1). The
longitudinal-to-transverse ratios are very process specific.
Generally speaking, for decays in which the spectators

are spin singlets and the heavy quark carries the baryon
spin, as in Ab —+A, ev, the positive daughter helicity gives
the dominant transverse polarization of the virtual 8''s
while the negative daughter helicity gives the dominant
longitudinal 8' polarization. The situation is quite
different for decays in which the spectators are spin trip-
lets, as in Xb ~X,ev, where longitudinal polarization al-
ways dominates. This will be made clear in the next sec-
tion.

The spin-independent rate is formed by summing over
the final-state helicity:

Gg~V& ~ KMy
[—,'(1 —gcosO, ) lH I

+ —,'(I+gcosO, ) IH I +sin O, IH I ],dy dO, dQ (4~)' {2.35)
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where

H+ ——+(aFO +gF-),
Ho =—

[ [2a (1—
—,'Fo ) —2ka+F

+ (2kg+ Fo+gF+ )2] '~

(2.36)

(2.37)

III. FORM FACTORS

The basic idea is to use the nonrelativistic quark model
to mock up the baryon states. The hadronic current is
then calculated assuming the two light quarks are just
spectators, so the weak hadronic current acts only on the
heavy quarks with the usual V —A form. The quark-

The above helicity amplitudes should not be confused
with the H+ 0 in Eq. (2.22), in which the spin dependence
(s's) was suppressed for notational simplicity. Note espe-
cially that, when aFo and gF have the same relative
sign, ~H

~
) H+ ~. This is a reflection of the V —A

character at the quark level.
In addition to examining just the angular distribution

of the electron, it will be useful to integrate over a11 an-
gles and consider only the momentum-transfer distribu-
tion:

dl G'~ Vg ~'&M'
( IH+ I'+ IH I'+ IHo I') . (2.3&)

dy 96

It will be useful to define longitudinal and transverse
rates, 1 L and I 7, that involve only ~H+ ~

+ ~H
~

and

~HO~, respectively. The labels "longitudinal" and "trans-
verse" refer to the polarization of the virtual O'. I L is
characterized by baryon spins (s's) =(++ ) with a sin 0,
electron distribution, while I T is characterized by spins
(s's)=(++) and a (I+gcos0, ) electron distribution.
Now all that remains is to calculate the Lorentz-invariant
form factors in some model. This is addressed in the next
section.

model current is then compared with the parametrized
current given by Eqs. (2.6) and (2.7) to obtain the form
factors at maximum q (in which the daughter is at rest
frame in the parent rest frame). A pole-dominance model
is then used to extend the q behavior. This approach is
taken in Ref. 4 and I adopt it here.

The vector and axial-vector currents (2.6) and (2.7) are
now evaluated in the parent rest frame. Since compar-
ison with the quark-model currents will be made near
maximum q, the nonrelativistic form of the spinors is
used and only leading order in the daughter momentum
is kept. A short calculation gives

V, , =yt, [g+(M+m)g++(M —m)g ]P, , (3.1)

V...=y~ g k+ioXk
2

g+ (3.2)

3, , =gt [a —(M +m)a+ —(M —m)a ]

(3.3)

A...=y, .(ao )P, . (3.4)

Again, the tilde signifies the parent rest frame, P, and y,
'

are two-component Pauli spinors for the parent and
daughter baryon with spin along z and e, respectively,
and the bar over form factors means evaluation at max-
&mum q .

The current is now evaluated at the quark level. The
parent baryon contains a heavy quark Q and two light
quarks, which I simply refer to as u quarks. Isospin and
other flavor labels for the light diquark system will usual-

ly be suppressed. The heavy quark has momentum p&
and the two lighter quarks have momentum p& and p2.
While technically incorrect, a nonrelativistic approxima-
tion for the light diquarks is reasonable since they are
only spectators. The normalized parent baryon state vec-
tor is

~M(P, s)) =v'2M J d p, ~d 1 /M(p, 2, 1) gy', , , ~u (p„s, );u (p~s2);Q(pg, sg)), (3.5)

where p, 2 is the relative momentum of the two light
quarks and l is the relative momentum of Q and the
light-quark center of mass, as shown in Fig. 3. The quark
momenta in Eq. (3.5) are related to the integration vari-
ables and the baryon momentum by

m&
pg= P —l,

M
(3.6)

Pi
rn& I,I)

— P —Pi2+
m]2

(3.7)

m2 I,m2
P2 — +P12

M I j2
(3.8)

FIG. 3. Relative momenta of a three-quark system.
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P=pr+pz+pg ~ (3.9)

where m& is the heavy-quark mass, m, 2=m, +m2 is the
sum of diquark masses, and M=m&+m &2. It should be
kept in mind that the baryon mass M and this "weak
binding mass" M are not equal, although they are rela-
tively close. It is also useful to invert the above equa-
tions:

l&g ~ &
= lud(s=o]'Q &x(()

l&g s &
—Iud[&, ],g )y(3)

IQg, s &
= Iss;Q )g, )

I:-~,s &
= lus;g 4(,),

g&$ ) Ius &g )g(3)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
m) m2

P&2= P2 P»
m)2 m)2

mg mg m )p
— P&+ — P2

— — Pg .

(3.10)

(3.11)

where the singlet spin state is

1—(I+ —+)—
I

—++)), s=+—'
V2 7

There are corresponding relations for the daughter
baryon with the appropriate changes of mass and
momentum. Also, the spin sum in (3.5) has implicit
flavor summation, which has been suppressed for nota-
tional simplicity. Since isospin symmetry is almost exact,
Fermi statistics requires the flavor-spin wave function to
be symmetric in the u and d quarks (assuming relative S-
wave spatial distributions and that only overall color
singlets are allowed). For the —,

'+ octet, I will assume
slight SU(3)-Aavor breaking. The two octets of mixed
symmetry in the Clebsch-Gor dan decomposition of
3 X 3 X 3 = 10+8& + 8 z + 1, are combined with the corre-
sponding spin doublets of mixed symmetry in

to form the baryon Aavor-spin wave function (the sub-
scripts S and 3 refer to the symmetry of the two specta-
tor quarks)

IB & =cos(9~ I8, —,
' &s+sin6)~ IS, —,

' )„. (3.12)

For exact SU(3)-Aavor symmetry, the octet mixing angle
Oz =~/4. I will be interested only in B =A, X, and:-.
For bottom and charmed baryons (Q =b or c), the wave
functions are a little simpler. For isospin zero (A&), the
spectators are spin singlets, and for isospin one (X&),
they are spin triplets. For baryons with Aavor ssg, the s-
quark spectators are spin triplets. However, because of
SU(3)-Aavor breaking, the spectators in sug may be spin
singlet (:-&) or spin triplets (:-&). Of course, the physical
mass eigenstates are linear combinations of:"& and:"&,
but since they are in different spectator-quark spin repre-
sentations, the mixing is small. ' I have omitted the
charge labels, since in the spectator model all members of
a given isomultiplet have the same amplitude. The bot-
tom and charmed baryon states are, using an obvious
short-hand mnemonic,

X(]) I+——
&
—

I

—+ —&j, ~ = ——,v'2 7

(3.18)

and the triplet spin state is

(~IJk.d(0)lg & =Wp, $, )1 "(I—) 5)g(p~ $~) (3.20)

The relative momentum variables of the daughter baryon
will be denoted with primes, and momentum conserva-
tion of the spectator quarks in the parent rest frame gives

P &z=P&2 ~ (3.21)

and

m)2
l '=l — k,

m
(3.22)

pg= —I,
p =k —1 .

(3.23)

(3.24)

The hadronic matrix element becomes (I have dropped
the tilde from the integration variables),

—
I I+ —+ &+ I

—++ &
—21++—&],

1

v'6

s =+—,',
+(3) (3.19)

+ ' I-I+ ——&+I —+ —
&
—2I ——+&i,v'6

s =
2

with the ordering I$,$2$&). Note that y()) and y(3) are
symmetric and antisymmetric under spectator-quark in-
terchanges, respectively.

To find the hadronic quark-model current, the current
operator Jg,d(0) is sandwiched between the parent state
Eq. (3.5) and the corresponding daughter state. In the
spectator model,

a"'~= (m, 'I Jg„(0)IM, s & =(4Mm)'"
3

jd'p)2d'IP* (p)2, 1')PM(p)2, I)~s IJ"ls ) (3.25)

(s'I&"ls&—= &x,''. .., x,'... e(P s )'Y (1 1' )g(pg sg). (3.26)
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TABLE I. Spin and Aavor factors.

Process
4

I
~

I
~

I

A& —+A ev
X&~X ev

Ag —+O,qev
:"&~=qev
~l ~lg~ qev

A&~Aev
X&~Xev
:-&—+=ev

q~ ev

1

3
1

3

1
1

3

1
1

3

I

3

1

1

Q 3 sinHA

'1/ 3 COSOg

(1/&2) sinOz
(1/&6)cosO=

3

I i I & I i I

-5.0 -2.5 0 2.5
a+

5.0 7.5

In the derivation of Eqs. (3.25) and (3.26), the diquark
spectators give 5 functions of quark momenta, and the
(mz/m ) factor is simply the Jacobian that converts an
integration over the relative momenta p&z and l' to an in-
tegration over diquark momenta for the daughter baryon.
In the approximations below I drop the (m &2/m )k term
in Eq. (3.22), and this induces an ambiguity in this Jaco-
bian factor. If the relative momenta of the daughter were
integrated over in Eq. (3.25), rather than the parent, there
would be a factor of (m&/M) instead. In the spectator
model the diquark masses should not aff'ect the rate, so I
take them light enough to neglect these factors. This can
be better justified by considering an elastic vector interac-
tion, such as electromagnetism. The Ward identity gives
the correct normalization of the vector form factor at
zero recoil. Considering a baryon with only one electri-
cally charged heavy quark and using the state normaliza-
tion given in Eq. (3.5), the form-factor normalization
must be g (y,„)= (4Mm )', and the (m /m ) factor
should in fact be dropped, and I adopt the same prescrip-
tion for weak transition currents below.

To find the quark-model currents, I use the nonrela-
tivistic form of the spinors in Eq. (3.26), keeping terms
linear in momentum, and then substitute this into Eq.
(3.25). I drop terms proportional to m, 2/m in the argu-
ment of P*, and assume flavor independence,

By parity, the terms linear in I integrate to
zero, giving

FIG. 5. Longitudinal-to-transverse 8'ratio for Ab ~A, ev.

V, , =(4Mm)' (yt, y, ),
r

V...=(4m )'"( '.
mq

(3.27)

(3.28)

2m
q

A. ..=(4Mm)'"(~,',&y, ),
where I have used the shorthand notation

I(~s's)=Res s s&s s s ~(ss )
1 2 q 1 2 g q Q

(3.29)

(3.30)

(3.31)

25

The only thing left to do now is choose particular
baryons, evaluate Eqs. (3.27)—(3.30), and then make com-
parisons with Eqs. (3.1)—(3.4) for various spin choices.

Ignoring flavor for the moment and using Eqs. (3.18)
and (3.19), one can show (y, ,o cr, ) =y, (g& )P„where
g=1 when the spectators are spin singlets and /= —

—,
'

when they are spin triplets. When flavor is considered, a
factor N M given in Table I, comes from Eq. (3.12) and

15 20)
U

15

~ 10
Q)

C)

C)

5

10—
~U4

5

~
P

0

~ M
~ M

~ W
~ W

~
W

I

-5.0 -2.5
I i I

2.5 5.0 7.5

0 0.1 0.2 0.3

FIG. 4. Rate for A&~A, ev.

FIG. 6. Total exclusive rate along with longitudinal- and
transverse- W rates for Ab ~A, ev. The T+ signify + W helicity,
and the second-order prediction of a+ = —0.17 was used.
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20 25

) 15
(3

CD

—10

8 g—

a 0

20—
O
Q)

15—

10—
5

0
0 0.1 0.2 0.3

0
0.1 0.2 0.3

FIG. 7. Longitudinal rate sensitivity upon a+ for Ab ~A, ev.

the explicit octet-flavor states of mixed symmetry. For
the baryons considered in this paper. Eqs. (3.27)—(3.30)
take the form

FIG. 8. Total exclusive rate along with longitudinal- and
transverse-8 rates for Ab —+A, e v with a + polarized daughter.
The T~ signify + W helicity, and the second-order prediction of
a+ = —0.17 was used. In this and the following figure, T+ is
given by a dash-dotted line and T by a dash-double-dotted
line.

V...=(4Mm)'~ N ~yt, P, , (3.32)
a =(4Mm)'~ gN M . (3.40)

V, ., =(4Mm)'~ N
mq

(3.33)

J,',, =(4Mm)'"N
2plq

A, , =(4Mm)' N My, (go )P, ,

(3.34)

(3.35)

where (= 1 if the parent and/or daughter diquarks are
spin singlets and g= —

—,
' if they are spin triplets (there are

no singlet-to-triplet transitions in the spectator model).
Comparing Eqs. (3.32)—(3.35) with Eqs. (3.1)—(3.4) gives

the following set of equations for the form factors at max-
imum g

For the axial-vector form factors, there are two equations
in three unknowns, so unfortunately they are not com-
pletely determined; I will take a+ as a free parameter.
Note from Eq. (2.36) that H+ are independent of a+, so
the transverse rate, characterized by baryon spins
(s's)=(++) and a (1+icos&, ) electron distribution,
can be predicted with no fitting to data. Solving the
above equations for the vector form factors g+ gives

' I/2
—1

m

g+(M+m)g++(M —m)g =(4Mm)'~ N M,

g (Mm)'
+a+ —a- =

2P7l Plq

(3.36)

(3.37)

+ (1—g)
2P71

q

while (3.39) and (3.40) give the constraint equation

(M + m)a ~ +(M —m)a

(3.41)

g =(4Mm)'
foal

q

(3.38) = —(4Mm)'"
Plq

—1 gN I . (3.42)

1/2a —(M+m)a+ —(M —m)a =(4Mm)' gN M,
mq

(3.39)

Reference 16 derives form-factor constraints in the
infinite-quark-mass limit. In this limit a new heavy-quark
flavor symmetry emerges since the long-wavelength prop-

TABLE II. Kinematic parameters. The asterisk above a mass indicates large experimental uncer-
tainty.

Process

Ah~A, ev
Xb ~X,ev
Qb~Q, ev

b + ceV
A, ~Aev
X,~Xv
=,~=ev

m (GeV)

s.s'
5.8*

5.8
2.28
2.45
2.46

~ (GeV)

2.28
2.45
2.7
2.46
1.12
1.19
1.31

m, (GeV)

1.8
1.8
1.8
1.8
0.51
0.51
0.51

6.o'

4g

6.o*
2.5*

8g
8g

0.046
0.046
0.046
0.046
0.975
0.975
0.975
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TABLE III. Form factors and rates. The value of a+ is the second-order k prediction.

Process (GeV)
a

(CxeV)

I
(10' sec ')

I~
(10' sec ')

Ah~A, ev
Xb —+X,ev
Qb~Q, ev

=cev
A, ~Aev
X,~kiev
=,~=ev

—0.17
0.079
0.11

—0.24
—0.48

0.18
—0.58

9.0
—3.4
—4.1

10.3
4.0

—1.5
4.6

7.1
—2.5
—2.7

7.6
1.8

—0.66
1.8

—0.17
1.8
1.8

—0.24
—0.48

1.38
—0.58

5.9
4.3
5.4
7.2
9.8

10.2
8.5

2.7
0.37
0.44
3.3
3.8
0.65
3.1

1.2
10.7
11.2
1.2
1.6

14.8
1.7

erties of the light quarks become independent of the
heavy-quark mass. For decays in which (= 1, as in
Ab —+A, ev, Ref. 16 shows the amplitude is determined by
one universal form factor —in the notation of this paper,
g =a, g+ =0, and a+ =0. In the infinite-quark-mass lim-
it, in which m /m ~1,Eqs. (3.38) and (3.40) give the first
of these relations (g =a) and Eq. (3.41) gives the second
(g+ =0). Actually, the results of Ref. 16 are reproduced
only at the end point, and a pole-dominance assumption
gives an extrapolation to arbitrary q . While Eq. (3.42)
does not alone imply a+ =0 in the infinite-quark-mass
limit, it is consistent with this, which suggests that small-
er values of a+ should be preferred for decays in which

g = 1. Reference 16 derives somewhat weaker constraints
for decays in which g= —

—,', as in Qb —+Q, ev. In the no-
tation of this paper, the relations (45) and (48) of Ref. 16
becomes (M+m)a++(M —m)a =0 and (M —m)g+
+(M —m)g =0, ' and in the infinite-quark-mass limit
Eqs. (3.42) and (3.36) reduce to these constraints. Unlike
the g= 1 case, the vector form factors g+ are no longer
small; however, small values of the axial form factors a+
are allowed since the right-hand side of Eq. (3.42) van-
ishes in the infinite-quark-mass limit. Unfortunately,
Ref. 16 gives no indication of the preferred a+ values as
it did for A& and:-& decays. However, another con-
straint equation for a+ may be found by extending the
calculation that leads up to Eq. (3.42) to second order in

k. ' Including the next-to-leading-order terms in k, the
axial-three-vector current (3.4) becomes

A. ..=y, . 1+ a& —(a+ —a ) k
k o'k

Sm 2m

(3.43)

The form factor a, above, is not yet evaluated at max-
imurn q . The current must now be calculated at the
quark level. As in deriving Eq. (3.35), the terms of order
m&2/m and 1 will be dropped. The terms linear in /

again integrate to zero and the quark-model calculation,
in next-to-leading order, gives

2

A, , =(4Mm)' X My, g 1+ o. P, . (3.44)
Sm

Comparing Eqs. (3.43) and (3.44) for s's =++ (longitudi-
nal virtual W's) gives

2 101+ a =(4Mm)'~ N M(1+ '. (3.45)
Sm Sm

This just gives a negligible k&0 correction to a. Next,
making the comparison for s's =++ (transverse virtual
W's) and using Eq. (3.45), a new constraint equation is
found:
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FIG. 9. Same as Fig. 8, but for a daughter of polarization
FICz. 10. Rate for Qb~Q, ev.
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FIG. 11. Longitudinal-to-transverse-8'ratio for Ab ~Q, ev. FIG. 13. Longitudinal rate sensitivity upon a+ for
Qb -+Q, ev.

a+ —a =0 . (3.46)
' I/2

It should be emphasized that Eq. (3.46) only represents a
best guess, since in going to second order in the daughter
momentum there are relativistic corrections I have ig-
nored. Finally, using Eqs. (3.42) and (3.46),

' 1/2

&M
mq

1/2

—1 + M(1 —g)
2m'

(3.50)

mq
(3.47) 1 V'M. (3.51)

Note that in the infinite-quark-mass limit, this second-
order calculation gives a+ =0. This is in agreement with
Ref. 16 for decays in which /=1. Furthermore, this re-
sult suggests that a+ remain sma11 even for decays in
which /%1, although g+ may become large for such de-
cays.

In summary, the form factors at the maximum q end
point are

Again it should be emphasized that Eq. (3.51) represents
only a best guess, and I will at times continue to keep a+
a free parameter. Also, reca11 that none of these caveats
apply for transverse-8' rates, which are independent of
Q+.

Now, to extend the q behavior beyond the end point,
a pole-dominance model is assumed. The g form factor,
for example, scales as

g=(4Mm)'~ gX M,

a =(4Mm)'~ gN M,

(3.48)

(3.49)

)max 3 resg3' g
&res

(3.52)
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FIG. 12. Total exclusive rate along with longitudinal- and
transverse-8'rates for Qb —+O, ,ev. The T+ signify + 8'helicity,
and the second-order prediction of a+ = —0.08 was used.

FIG. 14. Total exclusive rate along with longitudinal- and
transverse-8'rates for Ob —+A, ev with a + polarized daughter.
The T+ signify + 8'helicity, and the second-order prediction of
a+ = —0.08, was used. In this and the following figure, T+ is
given by a dash-dotted line and T by a dash-double-dotted
line.
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FIG. 15. Same as Fig. 14 but for a daughter of polarization

where y,„=(1—m/M) and y„,=(m*&/M), with m*&
being the mass of the first excited Qq-vector-meson reso-
nance above the parent-baryon mass. For simplicity, I
assume all the form factors scale using the same reso-
nance mass This is a practical assumption, since the
masses of such resonances are not measured well enough
to distinguish their parity and charge conjugation.

IV. MODEL RESULTS

This section gives numerical results for various ex-
clusive decay modes. For the process Ab~A,+e v„ I
take the mass of A, to be m=2. 28 GeV, the appropriate
KM matrix element Vb, =0.046, and the charmed-quark
mass m, =1.8 GeV. The masses of Ab and the bc-vector
resonance used for the pole-dominance model are uncer-
tain. I take M= 5.5 GeV and a pole mass m *=6.0 GeV
as a ballpark figure. The rates are rather insensitive to
the exact pole mass, and a variation in m * of about 5%
gives a variation in the rates of typically 5%—10%. Of
course the absolute rates are very sensitive to the value of
the parent-baryon mass since (2.38) is proportional to
M m. When M is better known, one can simply rescale
the rates found below by (Mb,«„/M, ~d), to an accuracy
of about 10%. The form factors at maximum q are
g =9.00 GeV, a =7.09 GeV, and g+ = —0.174. For
a+ =0, the exclusive rate and the longitudinal-to-

transverse W' ratio is I (A& —+A, ev)=5. 7X10'" sec
and I I /I T= 1.1. Figures 4 and 5 show the rate and the
longitudinal-to-transverse ratio as a function of a+ .
Note that for values of a+ close to zero, there are ap-
proximately equal mixtures of transverse- and
longitudinal-8' polarization. The total exclusive rate,
along with the longitudinal and transverse rates, across
the Dalitz plot are shown in Fig. 6 for a+ = —0.17 (the
second-order prediction). The transverse rate is indepen-
dent of a+, and Fig. 7 illustrates the sensitivity of the
longitudinal width across the Dalitz plot for a range of
a+. Note that the sensitivity is greatest for lower values
of y =q /M . This is because the kinematic factor K in
Eq. (2.15) vanishes at maximum q, which washes out all
dependence on a+.

Tables II and III contain a summary of other process-
es. The rates presented there use the order-k calcula-
tion for a+. There are two qualitatively different cases:
when the spectators are spin singlets (/= 1) and when
they are spin triplets (g = —

—,
' ). Figures 4—15 summarize

the exclusive rates, longitudinal-to-transverse ratios and
Dalitz-plot behavior for two representative decays,
Ab~A, ev and Qb —+Q, ev. Other decays are qualitative-
ly similar to one of the previous two, depending on the
spin of the spectators.

Note that for baryons whose spin is carried by the
heavy quark (g= 1), the longitudinal polarization is from
one to two times greater than the transverse
polarization —with bottom baryons tending to equal lon-
gitudinal and transverse mixtures and charmed baryons
tending to predominately longitudinal mixtures. When
the spectators are in a spin triplet, as in 0&, the longitu-
dinal polarization dominates by at least a factor of 10.

Figures 8 and 9 examine the Dalitz-plot behavior of
Ab ~A, ev, for positively and negatively polarized
daughters, respectively. For s' = +, the W polarization is
mainly transverse; and for s'= —,there is about an equal
longitudinal and transverse mixture. The situation for
Qb~Q, ev is shown in Figs. 14 and 15. In this case, the
virtual 6' is predominately longitudinal, but much more
so for positive-helicity daughters. In both cases,
s'=+(s'= —) polarized daughters are never seen with
negative- (positive-) helicity 8"s. Table IV gives a sum-
mary of other processes for polarized daughter states.
The two processes represented in the figures are the most
experimentally relevant. For example, the splitting be-

TABLE IV. Exclusive rates and longitudinal-to-transverse ratio for polarized daughter baryons.

Process

Daughter helicity s'=+
r IT

(10' sec ') (10' sec ') r, yr,
I

(10' sec ')

Daughter helicity s'=—
IT

(10' sec ') r, jr,
Ah~A, ev
Xb~X,ev
Qb~A, ev

b~ &ev

A, ~Aev
X,~Xev

ev

0.85
2.7
3.4
0.99
0.85
6.5
0.67

0.55
0.07
0.08
0.63
0.45
0.07
0.34

0.56
36.8
41.2
0.57
0.87

97.2
0.93

5.0
1.6
2.0
6.2
9.0
3.7
7.8

2.2
0.30
0.36
2.7
3.4
0.58
2.8

1.3
4.5
4.6
1.4
1.7
5.4
1.8



2950 ROBERT SINGLETON, Jr. 43

tween Xb and Ab is probably greater than a pion mass, so
semileptonic Xb decay has much too small a branching
ratio to be measured. The Qb and O„on the other hand, .

are stable to strong decays, and there is a good chance of
observing their semileptonic modes and comparing to
theory.
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