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Order-a, corrections to observables from pp = W+X = e+vX
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A calculation for pp ~ W+X~e+vX in the next-to-leading-logarithm approximation is present-
ed, utilizing a combination of analytic and Monte Carlo integration techniques. The flexibility of
the Monte Carlo technique allows us to present predictions for a variety of observables, while incor-
porating the eAects of experimental cuts. In particular, we present O(a, ) predictions for the pT(e),
transverse-mass, and lepton asymmetry distributions for W~e v events, including the eAect of ex-
perimental cuts. We also show that the E factor for W-boson production is dependent upon the
precise experimental cuts one uses to obtain an event sample.

I. INTRODUCTION

The discovery' of the W —bosons at the CERN Spp S
collider provided a triumphant verification of the stan-
dard model of strong and electroweak interactions. At
present, the study of the masses and widths of the W and
Z bosons provides an opportunity for precision tests of
the standard model. These experimental measurements,
along with the calculation of their radiative corrections,
can yield valuable information on as yet undiscovered
particles such as the top quark and the Higgs boson. Ex-
periments at the CERN e +e collider LEP and the
SLAC Linear Collider have already determined Mz and

to 0.03% and 0.6%, respectively. The mass and
width of the W are more difficult to determine, since W is
only produced at present at hadron colliders, where the
subprocess energy is ill defined. Furthermore, the neutri-
no from W~ev or pv is undetected, and its transverse
energy is only inferred from momentum conservation.

The best value of the width I ~ comes from the mea-
sured ratio R =( 8'—+ev)/(Z ~ee ) observed at proton-
antiproton colliders, and has been found to be
I ~=2.19+0.20 GeV. This R ratio is relatively insensi-
tive to O(a, ) corrections, since they largely cancel out in
the ratio. The best value of the W mass comes from
charge lepton plus neutrino transverse-mass measure-
ments, which rise to a Jacobian peak in the vicinity of
M~. The shape of this transverse-mass distribution is
relatively insensitive to details of the O(a, ) corrections.
This technique has yielded a mass measurement by the
Collider Detector at Fermilab (CDF) of M~ =80.0
+0.6+0.2 GeV.

For most other measurements of observables associat-
ed with 8' production, for example, the total cross sec-
tion, lepton pT spectrum, and lepton rapidity distribu-
tion, a good understanding of QCD corrections is essen-
tial. There have appeared several calculations of QCD
corrections to W production, which give the O(a, )

enhancement to the lowest-order total cross sections.

Furthermore, theoretical corrections to the W
transverse-momentum distribution have been calculated
both perturbatively and with a resummed Sudakov-like
factor, ' by integrating over all of phase space. In a
similar vein, an analytic computation to O(a, ) including
the decay of the W+ into the positron and neutrino has
been performed, " which yields distributions in charged-
lepton pT and pseudorapidity g.

Each of the above higher-order calculations has only a
limited range of applicability. The problem arises when
an analysis requires the radiative corrections specific to
the experimental cuts. Matrix elements squared includ-
ing radiative corrections have ill-behaved regions due to
soft and collinear singularities. These, together with the
virtual contributions, are summed and factorized in ana-
lytic computations. They all suffer from the practical
problem that experimental cuts cannot be incorporated
because complete regions of phase space have been in-
tegrated analytically, including the region that one would
"cut" in an experiment. Furthermore, one frequently
wants predictions for observables other than those for
which the differential cross section has been calculated.
The shower Monte Carlo approach addresses the prob-
lem of cuts but the absolute normalization is specified
only at the leading-log level. A third, hybrid technique
which has been applied to other processes' ' is present-
ed here. It incorporates aspects of both analytic and
Monte Carlo approaches.

Our method here is to divide phase space into singular
and nonsingular regions. The singular regions are evalu-
ated analytically in n dimensions, with explicit soft and
virtual pole cancellation, and factorization. The
remainder is evaluated using Monte Carlo techniques, so
experimental cuts can be implemented. The advantage of
this method is that one may retain the absolute normali-
zation of the analytic approach, but experimental cuts
may also be incorporated. Furthermore, predictions for a
variety of observables may be obtained just by binning
the relevant quantities. A potential disadvantage is that

2892 1991 The American Physical Society



43 ORDER-a, CORRECTIONS TO OBSERVABLES FROM pp ~8'+X~e+vX 2893

II. CALCULATION

We begin with the lowest-order 2~2 subprocess
q(p, )+q '(pz)~e(k, )+v(kz). The subprocess cross
section is given by

X~M ~',.dU
qq 16ws

(2.1)

where

e ~Dw(k )~

Born . 4 316sin 0~
(2.2)

is the spin and color summed and averaged squared matix
element, and

Dw(k )= 1

(k Mw)+iMwt w
(2.3)

is the 8'propagator. We take

e M~
I ~=9

48& Sln 0~
(2.4)

The constants 3& and 8& are combinations of vector
and axial-vector couplings,

AI= A =( —,') +( —
—,')

B(=B,=2( —,
' )( —

—,
' ),

and the Mandelstam invariants are

(2.5)

t )
= —2p 1

.k )

t2 ——2p2. k ),
s =2p& p2

and U =1+t, /s.

(2.6)

two parameters are introduced as a consequence of the
division of phase space, but we shall show below that the
final results are insensitive to the specific choice of pa-
rameters.

The calculation itself is presented in Sec. II, including
analytic formulas. In Sec. III, we present results for cross
sections and various observables from pp ~ 8' X
~e+v, X, including the positron transverse-momentum
distribution and the positron angular asymmetry. We
show these to lowest order, and through order n, both
with and without cuts. We also comment upon the gen-
eral behavior of the "K factor" for 8' production. A
brief summary and conclusions are presented in Sec. IV,
and various cross-section formulas are contained in an
Appendix.

The total cross section in leading-log (LL) approxima-
tion is obtained by convoluting with scale-violating par-
ton distributions G z„( x, M ):

d ~ =y f dx
~ «2 Ga/A(X1 'M )Gb/B(x2, M )d8.b .

a, b

(2.7)

In leading-log approximation, an infinite sum of diagrams
is calculated, but only the leading-logarithic terms are re-
tained. The eAects of these diagrams are embedded in the
strong running coupling and scale-dependent parton dis-
tributions. Since the latter are calculated using collinear
kinematics, the event structure is similar to that given by
the lowest-order 2~2 subprocess, and in particular, the
8 has no transverse momentum q„.

To gain greater theoretical precision, one must include
the O(a, ) corrections to the lowest-order hard-scattering
subprocess using exact kinematics. The O(a, ) contribu-
tion include the 2~3 annihilation (qq ~evg ) and Comp-
ton (qg ~e vq and qg ~e vq ) along with interference
terms between loop corrections to qq ~e v and the
lowest-order diagram. The 2~3 diagrams contain both
collinear and soft singularities. The 2~3 subprocesses
have been calculated using dimensional regularization to
isolate the infinities. " The collinear poles can then be
factorized and absorbed into the structure functions. The
soft singularities, which occur when the final-state gluon
energy E approaches zero, cancel against infrared singu-
larities from the loop-Born diagram interference. The
corrected 2~2 and 2~3 matrix elements squared should
be convoluted with next-leading order parton distribution
functions to yield the next-to-leading-log (NLL) result.

Our approach is to divide the 2~3 phase space into
two regions via the introduction of two cutofFs 5, and 5, .
If the gluon energy E~ &5, ')/ s /2, then we evaluate the
2~3 diagrams using the soft-gluon approximation,
where the gluon energy is set to zero in the numerator.
After integration over the soft region, the resulting poles
can be explicitly canceled with those from the loop-Born
interference. The remainder is then evaluated via Monte
Carlo integration as part of the 2~2 contribution.
When E )5,+s /2 in the qq center-of-mass frame, the
2~3 diagrams are evaluated using 3-body phase-space
Monte Carlo techniques. Collinear singularities occur
when initial- and final-state partons are collinear, so that
denominators of propagators such as t = —2pz-p3 go to
zero (here, p3 is the final state parton four-momentum. )

In this case, if t
~ &5,s, then the diagrams are evaluated

in the leading-pole approximation. After n-dimensional
integration over the final state parton, the explicit singu-
larity can be factorized and absorbed into the structure
functions, or canceled against corresponding terms from
the loop-Born intereference. The remainder is evaluated
as part of the 2 —+2 contribution. If ~t~ )5,s, then the
2~3 diagrams are again evaluated by 3-body Monte Car-
lo methods. The equation for the differential 2 —+3 an-
nihilation or Compton-type parton-level cross section is
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dk2 dp3do' '= ~iMi 5( + — —k —k )A, c (2 )s ~ A, c pl p2 3 I 2 (2.8)

with the restrictions on the range of integration indicated
above.

The end result of the calculation consists of two sets of
weighted events corresponding to two-particle and three-
particle final states. Each set of events depends on the
cutoffs 5, and 5, . In Eqs. (A7) in the Appendix, the 2~2
matrix element squared including virtual and soft correc-
tions is written explicitly. This replaces the Born matrix
element squared in Eq. (2.1). Collinear remnants after
factorization appear in Eqs. (A8) and (A9). The 2—+3
matrix elements squared appear in Eqs. (A5) and (A6),
and are inserted into the differential cross section in Eq.
(2.8). As the cutoffs 5, and 5, approach zero, the sum of
the weights of the three-body events approaches infinity.
Likewise, the sum of the two-body event weights ap-
proaches negative infinity. The sum of two- and three-
body contributions yields a finite cross section indepen-
dent of the cutoffs as long as 6, and 5, are taken small
enough so that the soft-gluon and leading-pole approxi-
mations are valid. If the cutoffs are taken to be too small,
then practical convergence problems appear because one
is canceling very large positive and negative contributions
to the cross section. We show in Figs. 1 and 2 the sensi-
tivity of the total cross section cr(pp ~W+X~e+vX) to
5, and 5, at &s =1.8 TeV. In Fig. 1, 5, is fixed at 0.001,
and 5, varies over the range from 10 —10 ' While the
separate two- and three-body contributions vary with 5„
the total cross section is a constant function of 6, . Figure
2 shows the same cross section, now with 5, fixed at 0.01
and 5, varying over two orders of magnitude from 10
to 10 . Again, the summed cross section is essentially
constant.

III. RESULTS

We show in Fig. 3 the total cross sections for
pp ~8'+X~e+v+X at (a) &s =0.63 TeV and (b)
&s = 1.8 TeV. We assume Mll =80.0 GeV, and
I ~=2.04 GeV. The plots show both the leading-log pre-
diction and the next-to-leading-log prediction. In princi-
ple, we should use the NLL distribution functions, how-
ever, in practice we use the LL distributions. Dashed
curves were obtained using the Duke-Owens set-1 parton
distributions, ' while the solid curves were obtained with
Eichten-Hinchliffe-Lane-Quigg (EHLQ) set 1.' Both dis-
tributions assume A4=0.2 GeV, and we have used the 2-

loop expression for o., throughout. The cross sections are
plotted versus a variation in the factorization scale M
and the renormalization point p . We have set these two
scales equal to each other, such that p =M =gM~, and
plotted versus n. In leading-log approximation, one only
has an order-of-magnitude estimate of the factorization
and renormalization scale for a particular observable.
Variation of the scale parameters thus provides some sort
of estimate of the theoretical precision of the calculation.
From Fig. 3(a), we see that the O(a, ) cross section gains
only about 5% in theoretical precision over the lowest-
order prediction. The main effect is the enhancement in
the cross-section prediction, or K factor. The K factor
varies depending on n from 1.25 to 1.31 at CERN collid-
er energies. The cross sections of Fig. 3(a) are seen to be
diminishing with an increase in the factorization scale
and renormalization point. This is because 8' s are typi-
cally produced at parton x values of -0.13 for v's =0.63
TeV. In this region, the valence-quark densities are di-

pp ~W X~e+vX: u s=1.8 TeV
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FIQ. &. Total cross section for pp~8'+X~e+vX and &s =1.8 TeV, as a function of the cutoff 6, . The cutoff 6, is held constant
at 5, =0.001. We have used the EHLQ set-1 distributions, and have taken p =M'=Ml'l . Shown is (a) the two-body, (b) three-body,
and (c) the total contribution to the cross section.
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FIG. 2. Total cross section for pp ~ O'+X~e+vX at &s = 1.8 TeV, as a function of the cutoff'6, . The cutoff 6, is held constant at
5, =0.01. We have used the EHLQ set-1 distributions, and have taken p~=M~=M~. Shown is {a) the two-body, (b) three-body, and
(c) the total contribution to the cross-section.

minishing with increasing scale, while sea-quark densities
at lower x are increasing. At Fermilab Tevatron collider
energies, the typical parton x is -0.04, where the sea
quarks play a greater role. Hence, the 8 ~ev cross sec-
tion actually increases with increasing scale factor in Fig.
3(b). In Fig. 3(b), the variation in lowest-order prediction
is about 9%, while the variation in the O(a, ) cross sec-
tion is only 2.5%. The K factor varies depending on n

from 1.22 to 1.15 at Tevatron collider energies. Hence,
we see that the K factor is not really a factor, and is scale
dependent, although the scale dependence for QCD
corrections to electroweak processes is far less than that
for processes such as dihadron production' or direct
photon production. '

In Fig. 4, we show predictions for the positron trans-
verse momentum from 8'+~e+v, events, at &s =1.8
TeV, using the EHLQ set-1 distributions. We have in-
voked the following cuts used by the Collider Detector at
Fermilab (CDF) Collaboration: (i) pT(e+ ) ) 20 GeV,
(ii) PT) 20 GeV, (iii) ~rj, ~

&1.0, (iv) 50 GeV&MT(e, gr)
& 100 GeV, (v) no jet with Ez) 7 GeV anywhere in the
event, and (vi) no jet with ET ) 5 GeV within 30' of back
to back with the electromagnetic cluster, where we iden-
tify the parton energy with jet calorimeter deposition.
We show for comparison the predictions at leading-log
level, and predictions at next-to-leading-log level. We
also show the NLL curve using the formulas of Ref. 11
with no cuts applied except that g ~

& 1. The first feature
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V s=1.8TeV
CDF cuts

30—
-NLL(no cuts)

20—

so1id =EHLQ 1100— 800 10

: V s=.63TeV V s= 1.8 TeV

0
0. 1

I I I I II I I I I I I I I ry00
5 10 0

I I I I I III
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FIG. 3. Total cross section at leading log (LL) and next-to-

leading-log (NLL) for pp~8'+~e+vX at (a) &s =0.63 TeV,
and (b) &s = 1.8 TeV, as a function of n, where p =M =nM~.
We show cross sections for DO set-1 (dashed) and EHLQ set-1
(solid) distributions.

FIG. 4. Predicted transverse momentum spectrum of the
positron from 8 + events at the Fermilab Tevatron. We show
the NLL prediction with no cuts, and the LL and NLL predic-
tions after imposing CDF cuts described in the text. After cuts,
the ratio o.NLL/o. LL=0.88.
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o+(g) —o (g)
A(g)= o+(g)+o. (g)

(3.1)

20 I I I I I I I I I I I I
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Ws= 1.8TeV
CDF cuts

10—

o
50 60 70 80 90

M (e, p ) (GeV)

FIG. 5. Predicted transverse-mass spectrum of the positron
from 8'events at the Fermilab Tevatron. We show the LL and
NLL predictions after imposing CDF cuts described in the text.

worth noting is that the Jacobian peak at -M~/2 be-
comes much more smeared out in going to higher order
in o, In particular, the high-pT tail in NLL curve is
quite a bit broader due to the 8' transverse momentum,
which does not exist in LL calculations. The NLL curve
after cuts suffers some slight shape change: more events
are cut out in the low-pT region than in the peak and
high-pT region. Also, it is interesting to note that the to-
tal cut cross section actually diminishes in going from LL
to NLL, the ratio being about 0.9.

In shower-model calculations of 8' production, ' the
total cross section is normalized by multiplying the LL
cross section by the K factor. Showering off of the in-
coming partons then sums an infinite subset of digrams,
but only at leading-log level, where the radiated gluons
are assumed to be collinear; i.e., the validity of the
shower becomes worse as the opening angle at which the
showering occurs increases. Hence, our calculation
should be more trustworthy for high-pT 8 's and overall
normalization, while the shower approach should provide
a better description for multijet production with low-pT
8' 's.

In Fig. 5, we show the LL and NLL predictions for the
transverse mass MT(e, v), after applying the above CDF
cuts. In going to higher order, the high-MT tail is dimin-
ished by only —11%. The peak and low-MT tail are di-
minished by -20% and —50%, respectively. The Jaco-
bian peak at M~ maintains its position and sharpness in
NLL, as expected. '

The CDF Collaboration has shown' that the lepton
asymmetry can be a powerful test of structure function
reliability. The asymmetry is defined as the normalized
difference between the positron and electron pseudorapi-
dity distributions from 8'+ and 8 decays, respectively:

I I I I I I I I I I I I I I I I

EHLQ Set 1

—CDF cut, s

K
0. 1

0

QQ0
0 dashes =LL

solid=NLL
I I I I I I

0 0.2 0.4 0.6 0.8

FIG. 6. Predicted distribution of positron asymmetry as a
function of pseudorapidity at LL and NLL, using EHLQ set-1
parton distributions, and CDF cuts described in the text. Also
shown for comparison is CDF data from Ref. 19.

Assuming CP conservation, this can also be written as

tT+(g) —tT+( —g)A(g)=
cr+(g)+a+( —g)

(3.2)

IV. CONCLUDING REMARKS AND SUMMARY

One potential criticism of our calculational program is
that by introducing the "no-jet" cut (E)r" &7 GeV), the
large logarithms associated with small qTR s reappear.
The standard approach for 8 production has been to
sum over polarizations and resum the large loga-
rithms. ' In the inclusive positron transverse-
momentum spectrum, qT is integrated, so one expects
that the perturbative qT spectrum is adequate. In the cut
positron spectrum, the qT scale is effectively reintro-
duced. We note, however, that at Tevatron energies the
bulk of the discrepancy between the resummed and per-
turbative W qT spectra (summed over polarizations) is
below qT=7 GeV. ' Furthermore, the resummed and
perturbative qT spectra integrate to the same value for
the total cross section. Consequently, we expect that the

The CDF data favor structure functions yielding the
greatest asymmetry, since the asymmetry of the data is
larger than theory curves using any set of structure func-
tions. One of the best-fitting structure functions is EHLQ
set 1. The cuts used are (i) pT(e+)) 20 GeV, (ii) pT) 20
GeV, (iii) ~Iq, ~

& 1.0, (iv) 50 GeV &MT(e,pT), and (v) no
jet with ET ) 10 GeV anywhere in the event, which are
slightly different than cuts used in Figs. 4 and 5. Figure 6
shows our predictions for the positron asymmetry in
lowest order (dashes) and to O(a, ) (solid). Also shown
for comparison is the data from Ref. 19. We find that the
higher-order QCD corrections actually decrease some-
what the predicted asymmetry, and thus cannot account
for the slight discrepancy with the data.
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perturbative approach is a reasonable one for the posi-
tron pz- distribution. As a check of the sensitivity of
A(g) to the jet cut, we recomputed A(g) with a change
of only the jet cut. The maximum jet Ez- was changed
from 7 to 20 GeV. We also computed A (g) with no cuts.
In both cases, there is little variation in A(g) with
respect to the curves in Fig. 6.

To summarize, we have used a hybrid analytic/Monte
Carlo technique to compute distributions for the process
pp~8'+X~e vX, using CDF cuts for Tevatron ener-
gies, through next-to-leading order in QCD. With the
NLL result, the sensitivity of the cross section to the fac-
torization and renormalization scales is reduced. As a
consequence in particular of the "no-jet" cut, we find that
the positron pz. and Mz(e, v) distributions are close in

shape to the LL result, but with a lower normalization.
These are specific examples of the phase-space depen-
dence of the K factor. We have also presented the posi-
tron pz- spectrum integrated over rapidity between —1

and 1 with no cuts. The theoretical LL prediction for
A(g) with the EHLQ set-1 distributions is modified very
little by the inclusion of the NLL result, so the discrepan-
cy between the measured and LL asymmetries does not
appear to be due to radiative corrections.
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APPENDIX

q(p& )+q '(pz)~e(k& )+v(kz) .

In higher order, the annihilation 2~3 subprocess is

q(p&)+q '(pz) e(k&)+v(kz)+g(p3)

and the Compton-like subprocess is

q(p, )+g(pz)~e(k, )+v(k~)+q'(p3)

(Al)

(A2)

and a similar process with q replaced by q. It is con-
venient to define the following invariants:

s =2p, .p2, k =s+ t+ u

t, = —2p -k, t= —Zp .p

t2 = —2p2 k&, u = —2p, -p3

(A4)

where k is the four-momentum squared of the 8'.
If Es ) 5,+s /2, and ~t

~
and ~G

~

)5,s, then the three-
body processes are evaluated. For completeness, we
reproduce the e-independent squared matrix elements for
the 2 —+3 subprocesses: for annihilation

Our notation for the momenta follows that of
Aurenche and Lindfors, " where the subprocesses in
lowest order is

4 2k 2

2+
Sln l9~

s —2t —k s —2t —k
1 + 2

u

t ', +t ', +s(t, +t, +k')—2
tu

+BIB
s+2t, +k') s+2t, +k' k'(t, t,)—+2

u tu
(A5)

and, for the Compton-like subprocess,

4 2k 2

/a (k')/' ~, W,
sin'~w

t —2(t&+k ) s+2(t&+t&)
+ + I (t, +t, +k')'+t ', —t,k'j

s i .t
+B(B

s

2(t, +k') —"t s+2("t, + t, )

i

2k'(2t, +"t,+k')
st

with AI, A, BI, and B as defined in Sec. II and g, the strong coupling constant. An antiquark instead of quark in the
initial state with momentum p& changes the sign of 8 in Eq. (A6).

The 2~2 contribution consists of the Born term, plus higher-order terms left over after the singularity cancellations.
The two-body matrix element summed and averaged over color and spin is given by

2 2

g~M~z z=+~M~B,„.1+ — —8+m +41n 5, +3 ln +41n5, 1n +A,Fc 9+ +3ln5, —21n 5,
M M

(A7)

where M is the squared factorization scale and A,zc depends on the factorization convention. We adopt the physical
(deep-inelastic scattering) convention, and set XFC= l.

Lastly, one must include in the 2—+2 contribution the remnants of the collinear singularity absorption into the struc-
ture functions. These contributions are given by the remnant of q ~qg:
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X2 s 1 —z
,M G q„(x, , M )do, Pqq(z, O)ln 5,'M' z

—
Pqq (z, 0)—AFcf (z)

and from g ~qq, with the antiquark from the gluon annihilating the quark:

(A8)

2

x2 z
P' —(z, O) kF+—G(z)

(A9)

There are additional related terms: from q splitting into a gluon in Eq. (A8), and where the g contributes a quark rather
than antiquark in Eq. (A9). As usual, there is also the swap of x& and xz. The Altarelli-Parisi splitting functions for
z (1 are

P (z, O) = 4. 1+z
1 —z

P (z, O)= —,'[z +(1—z) ], (A10)

and

P' (z, O)= —( —', )(1—z), P' (z, O)= —
—,
' (A 1 1)

The factorization dependent terms for z & 1 are

3 1 1 z
2 1 —z

+2z+ 3, f (z) =—' [z'+ (1—z )'ln +6z(1 —z )

We have used a convention that the gluon has two spin degrees of freedom.

(A12)
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