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Dilepton production from a nonequilibrium quark-gluon plasma produced in ultrarelativistic
nucleus-nucleus collisions is studied, based on the Aux-tube model which has been formulated in
terms of a model relativistic Boltzmann-Vlasov equation with a boost-invariant particle source
term. This model kinetic equation is solved with the collision term in the relaxation-time approxi-
mation. In the collisionless limit, the solution of the kinetic equation becomes oscillatory, indicat-
ing the spontaneous excitation of the plasma oscillation. We study how such a nonequilibrium evo-
lution of the system is reAected in the dilepton spectrum. It is shown that the dileptons emitted dur-
ing such a nonequilibrium stage of matter evolution does not necessarily lead to a spectrum which
interpolates smoothly the spectrum from thermal emission and that from the Drell-Yan mechanism.
Our results show, on the contrary, that the dilepton spectrum is softened significantly in the absence
of thermalization. MT scaling, which is expected in scaling one-dimensional hydrodynamic evolu-
tion, is also broken due to the anisotropy in the phase-space distribution of quarks.

I. INTRODUCTION

Dilepton emission from the quark-gluon plasma pro-
duced in ultrarelativistic nucleus-nucleus collisions has
been studied by numerous authors. ' One of the most
appealing points of dileptons as a probe of quark-gluon
plasma is that leptons do not suft'er strong final-state in-
teractions; therefore, once created in the interior of the
plasma, they will almost freely escape from the system
carrying the information on the interior condition of pro-
duced matter. In contrast, hadrons are created only at
the surface of the plasma, and their subsequent motion
would be disturbed strongly by their mutual interactions
until the matter is su%ciently diluted. Dileptons can also
be used to study the production of various neutral vector
mesons which are seen as resonance peaks in the dilepton
invariant-mass spectrum. The change of the production
rate of large-mass resonances, such as J/g, may also pro-
vide valuable information about the inhuence of the
deconfining plasma medium on the production process.

The standard procedure to estimate the expected yield
of dileptons from the quark-gluon plasma is to assume lo-
cal thermodynamic equilibrium for the phase-space dis-
tribution of the plasma consistuents, namely, quarks and
gluons. This gives a simple formula for the differential
emission rate of a dilepton with four-momentum q" per
unit volume due to quark-antiquark annihilation: In the
limit of vanishing quark and lepton masses,

d T Rcx q. ~yT (1.1)
d4q 12+4

where a is the QED fine-structure constant, R =ref is
the color and flavor sum of the square of fractional quark
charges, and u" and T are local Bow vector and tempera-
ture, respectively. The total yield of dileptons can be ob-
tained by integrating (1.1) over the space-time region oc-
cupied by the thermalized plasma, taking into account
the variation of local temperature and Aow as determined
by solving hydrodynamic equations.

It is known, however, that the result of such calcula-
tions depends strongly on the initial conditions of the hy-
drodynamic evolution of the plasma. For example, the
thermal dileptons in the large-mass region ()2 GeV) are
dominated by those produced at the hottest stage of plas-
ma: The falloff of the yield at large masses is essentially

M /To
determined by the "Boltzmann factor" e ', where To
is the "initial" temperature of the plasma, and the prefac-
tor is determined by the "initial" volume occupied by the
plasma, which is given, according to Bjorken's boost-
invariant hydrodynamic expansion, by Vo o- mR ~o,
where ~o is the proper time when the boost-invariant hy-
drodynamic expansion starts. It is important to em-
phasize here that the term "initial" only loosely refers to
the time when thermalization of plasma is achieved; it
does not mean that the plasma is created instantaneously
at this time or that there is no source of dilepton before
this time. On the contrary, it is commonly expected that
the high-mass dileptons are dominated by the Drell-Yan
process, namely, the annihilation of quark and antiquark
contained in the colliding nuclei, which operates at the
very beginning of the collision, loosely speaking, when
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two Lorentz-contracted nuclei overlap. Thermalization
of the plasma is expected to take place sometime after
this, and the transient period between these two distinct
space-time regions, which may be referred to as the pree-
quilibrium regime, may also give a source of dileptons.
The result of the thermal dilepton emission calculation
quoted above therefore clearly indicates the importance
of the preequilibrium stage of the plasma evolution for
dilepton emission. One would naively expect that the in-
clusion of such a nonequilibrium plasma process would
interpolate the spectrum from the Drell-Yan process and
that from the thermalized plasma.

Despite its obvious importance, so far there have been
only very few attempts to calculate the dilepton emission
from a nonequilibrium plasma. This is largely due to the
difFiculty in describing the nonequilibrium evolution of
matter produced in the collision: For such a description
it is essential to incorporate the mechanism of matter for-
mation. BiaJas and Blaizot' calculated dilepton emission
using the model of an oscillating quark-antiquark plasma
which had been studied earlier by BiaJas and Czyz. "
This model describes the collisionless evolution of a sys-
tem of quarks and antiquarks interacting with a classical
color field in terms of a relativistic Boltzmann-Vlasov
equation which conserves the particle number. The
boost-invariant initial conditions for the particle distribu-
tion in phase space were set at certain early proper time,
as was done in the hydrodynamic model of Bjorken.
Therefore, this model still lacks the description of the for-
mation stage of such plasma.

In this paper we study dilepton emission from a,

quark-gluon plasma, based on the flux-tube model for ul-
trarelativistic nucleus-nucleus collisions. ' ' This model
assumes that two Lorentz-contracted nuclei get color
charged when they pass through each other by multiple
soft gluon exchange. The strong color field which spans
between the two receding color charged nuclei will decay
by pair creation (Schwinger mechanism' ' ), creating a
quark-gluon plasma in the flux tube. This picture is a
natural extension of the Low-Nussinov model for the ha-
dronic interactions. ' ' The expansion of the plasma
created in this way has been described by using the model
Boltzmann equation with a boost-invariant source term, '

which was later extended to include the Vlasov term in
an Abelian approximation for the color charge and
solved by taking the hydrodynamic limit for the cylindri-
cal expansion. In this work we construct the solution
for this model transport equation without taking the hy-
drodynamic limit, and the result is used to calculate the
dilepton emission spectrum.

An important new feature that arises in the evolution
of the plasma in the absence of collision is the excitation
of collective plasma oscillation. Usually, plasma oscilla-
tions are treated based on the linearized Boltzmann-
Vlasov equation for the small perturbation of the system
in thermodynamic equilibrium. BiaJas and Czyi'
showed, based on specific initial conditions, that such a
collective plasma oscillation can be excited in the boost-
invariant fashion. This result was confirmed later by
Biaras and co-workers, based on a model which is simi-
lar to ours, but also incorporates the non-Abelian nature

of the color charge, ' and by Banerjee, Bhalero, and
Ravishankar, based on a model similar to ours. We
shall show in this paper that collective plasma oscillation
is almost always excited spontaneously, irrespective of
the choice of specific initial conditions, in the collisionless
plasmas which undergo a boost-invariant longitudinal ex-
pansion. Our major concern in this paper is how such
nonequilibrium nontrivial evolution of the plasma is
reflected in the dilepton spectrum.

We will show that such nonequilibrium plasma evolu-
tion with a collective plasma oscillation will yield more
low-mass dileptons compared with the equilibrium plas-
ma evolution which results in a similar final state for the
global observables, such as the energy per unit rapidity;
at the high-mass region our model gives a Gaussian-
shape spectrum and therefore does not lead to the spec-
trum which interpolates the power-law behavior of the
Drell-Yan process and the exponential behavior of the
thermal pairs. MT scaling, which has been predicted ear-
lier based on the boost-invariant equilibrium evolution
model, " is violated in this model in a way opposite to the
violation due to the transverse expansion.

The rest of this paper is organized as follows: In the
next section we derive the basic formula for dilepton
emission from a nonequilibrium plasma based on the ki-
netic theory. This is just a straightforward generalization
of the calculation of the thermal dilepton emission from
quark-gluon plasma. The results of this section can be
applicable for any model for nonequilibrium evolution of
the plasma. In Sec. III, we describe a model kinetic
theory which describes a nonequilibrium space-time evo-
lution of the quark-gluon plasma based on the flux-tube
model. We examine the collisionless limit of our model
kinetic equation in Sec. IV in the linear approximation
and show how plasma oscillation will show up in the
boost-invariant nonequilibrium evolution of the system.
Our numerical results are presented and discussed in Sec.
V. A short summary and conclusions are given in Sec.
VI.

II. KINETIC THEORY
FOR DILEPTON PRODUCTION

In this section we discuss the basic method to compute
the dilepton emission from a quark-gluon plasma based
on the kinetic theory. The one-particle distribution func-
tion plays the central role in such calculation. The one-
body distribution function f, (x;p ) is defined so t.hat

pi

FIG. 1. Lowest-order diagram for qq~ll.
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f;(x,p)d xd p gives the number of particles of species i
(spin, color, liavor) in a small phase-space element
d x d p at time t. In the absence of many-body correla-
tion in the system„which is the condition usually as-

sumed to construct the Boltzmann collision term, the lo-
cal emission rate of a dilepton by the annihilation of a
pair of quark and antiquark is given in terms of the one-
particle distribution function as

d Xr(x) =
d4x

d p) d pp d p3 d p4=X
(2 )'2E, ~ (2 )'2E, I (2 )'2E, ~ (2 )'2E,

&&f;(x;p&)f;(x;p&)l~(q;q;~11)l'(2~)'&'(p&+p2 p3 p4),
(2.1)

where pt'=(E, , p, ) are the four-momentum of the quark and antiquark (i=1,2) and lepton pair (i=3,4), and
JM(q; q; ~ll ) is the invariant matrix element for the process under consideration. Here the summation is taken over the
initial quark spin, color, and liavor, and the final lepton spin as well. This formula generalizes the formula (1.1) for the
emission rate from thermalized plasma into situations where thermodynamic equilibrium is not established in plasma.

A. Emission rate in lowest order

We now compute the dilepton emission rate in the lowest-order O(a'a, ) with respect to the QED and QCD cou-
plings. The corresponding Feynman diagram for the process is shown in Fig. 1. As is well known, the sum over the ini-
tial quark and final lepton spins of the square of this matrix element is given by

4

g l~(q;q; ~ll )I'=, e,'h l"
spin q

where

I " =4((pi.p»2+I,')g" p ipl Ãp—~2 ~—

(2.2)

(2.3)

l" =4((p3 p4+ml')g" p3p4 p9 —
4 ~— (2.4)

where m and II are the mass of quarks and leptons, respectively, and e; is the fractional quark charge: e„=—', ,
ed= ——', . . . [Throughout this paper we use the metric tensor g" =diag(1, —1,—1,—1).j This formula allows us to
compute the phase-space integrals for quarks and leptons separately.

o, 1r(x)= Jd q 4
W" (x,q)L„(q), (2.5)

where

d p) d ppW„(x,q)= g e; f;(x;p, )f;(x;p2)h„.(2~)'&'(p&+P2 —q)
(2m') 2E, (2~) 2E2

d p3 d p4L„(q)= f f 3 l„(2~) 5 (p3+p~ —
q ) .

(2m. ) 2E3 (2m. ) 2E4

The phase-space integral of the leptonic tensor L„can be evaluated easily:

(2.6)

(2.7)

p v ~2
L Pv(q )

— g/lv 1—
q 6m

L

1/2
rn j

M

4~,'1+ 0 1—
M M

(2.8)

Inserting (2.8) into (2.5) and using q„W" =0, because of the current conservation, we find the following formula for the
di6'erential dilepton emission rate per unit volume:

d4r

d4q

cz 1
2 F(m~/M) W„"(x,q ),

6m M
(2.9)

where we have introduced the function F(x)=(1+2x )(1—4x~)'~~8(1 —4x ) to denote the kinematical factor due to
the finite lepton mass.
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The thermal emission rate (1.1) can be derived from this formula by inserting the equilibrium one-particle distribu-
tion function approximated by the Boltzmann form f,q(x, p ) =exp[ —p u(x)/T(x) j into (2.6):

M
W", (x,q)= g" — R e

q2

where R =N, g, „de; =3 X(—,'+ —', )=—,'. Inserting this into (2.9), we find

(2.10)

d4r

d "q
e " F(m(/M ),

12~4
(2.1 1)

which coincides with (1.1) when M ))m) since F(x)= 1 for x (& 1. The formula (2.9) with (2.6) is therefore the general-
ization of (1.1) for an arbitrary form of one-particle distribution function.

The total yield of dileptons emitted from a plasma produced by a single collision event can be calculated by integrat-
ing the local production rate (2.9) over the entire four-volume occupied by the plasma,

dN 1 4 dr
dMTdyd qT 2 d q

2

F(m)/M) f d x W(x, q),
12m M

where we have used d "q =
—,'dMT dy d qT and introduced a compact notation for the trace of W",

W(x, q )—:W„"(x,q )

M d pl d p2
e f 2E f 2~ f;(x p'))f «'p2+ (pl+p2

color, flavor

(2.12)

(2.13)

B. Formula for boost-invariant distributions

One can reduce the multidimensional integral in (2.12) to a simpler one by using the symmetry of the distribution
functions. Let us assume here, along with Bjorken, that at sufficiently high energies the evolution of the central rapidi-
ty region is approximately invariant under the Lorentz boost in the beam (longitudinal) direction. If we further assume
the transverse uniformity of the system, this implies ' that the one-body distribution function is a function only of
three independent variables r, pT, and /=i' —y, defined by

—(t2 2)1/2 1 t+zg= —ln
2 t —z

J

(2.14)
E+pL(~2 2 )1/2

2 E—pl

For example, in the case of equilibrium plasma which undergoes boost-invariant one-dimensional scahng hydro-
dynamic expansion, u" =(cosh21, 0,0, sinhil ), insertion of (2.11) with q u =MTcosh(iI —y ) into (2.12) gives

d N Ra ~
—M&cosh(g —y)/T(~)F m&/M d xe

dMTdy d qT 24~

Ra
(Fm)/M)f d r) drr2KO(MT/T(r)},

24m.
(2.15)

where Ko(x) is the modified Bessel function of order 0 and ri=(x, y) is the transverse coordinates. This formula pre-
dicts that for M ))m), where F(m) /M ) = 1, the thermal dilepton yield does not depend on two variables M and qT sep-
arately, but only on Mr =(M +qr )'/ . This MT scaling is a well-known consequence of the one-dimensional scaling
hydrodynamic expansion of plasma. It is also known, however, that this MT scaling is violated in the presence of the
transverse expansion. This scaling is also violated in the case of nonequilibrium plasma evolution, even in the absence
of transverse expansion, as we shall see below.

In more general cases of boost-invariant nonequilibrium distribution, the scalar function W(x, q) becomes a function
only of four independent variables: r, M, qT, and rj —y. Then, by inserting (2.13) into (2.12) and writing the space-time
integral in terms of the light-cone variables d x =d r~'7 d~ dq,

d"X
dMT dy d'qT , F(m, /M)SJ rdr f dil W( , rMq , Tel),

12m M (X)

(2.16)
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where S= f d rl is the transverse cross section of the plasma. We can immediately see that the final result should de-

pend only on two variables M and qT, but not on y. This is a direct consequence of the longitudinal boost invariance of
the system. We show in Appendix A that W(r, M, qT, g) is given by the following double integral of quark and anti-
quark distribution functions:

RM ~+ pT, f(r pT, .ki)f(r pT, 4)
W(r, M, qT, ()= 2 dg, dpT

2ir — &- ' IpT qT
—[pT MTcosh(g g,—) —M /2] I'

(2.17)

where the arguments of the antiquark distribution function are related to the integration variables by

pT =(MT 2MT—pT cosh(, +pT )' (2.18)

MTsinhg —pT sinhg,
Slllll~2 2 2 1/2(MT —2MTpT cosh/, +pT )

(2.19)

and the upper and lower bounds of the pT integral are given by

M /2p+=
MTcosh(g —g, ) + qT

(2.20)

The remaining four-dimensional integration needs to be performed by numerical computation for a given one-body dis-
tribution function.

III. FLUX-TUBE MODEL
FOR NONEQUILIBRIUM PLASMA EVOLUTION

As we have seen in the previous section, the quark (an-
tiquark) one-body distribution function is the key object
which we need to obtain in order to estimate the dilepton
emission rate. In this section we formulate and discuss a
model transport theory based on the Aux-tube model
which describes the nonequilibrium evolution of a
quark-gluon plasma in terms of the quark one-body dis-
tribution function.

A. Model kinetic theory

Let us first summarize brieAy our basic picture for the
plasma evolution in the Aux-tube model. We consider
central collision of two heavy nuclei at extreme high en-
ergies: The velocity of nuclei can therefore be taken as
that of light; the colliding nuclei are highly Lorentz con-
tracted so that they appear as infinitesimally thin plates.
In our semiclassical formulation we shall neglect the in-
trinsic longitudinal extension of the Lorentz-contracted
nuclear wave function due to the wee components.
Two plates collide at t =z =0 over some extended area in
the transverse (x,y) direction. At the moment of the col-
lision, two plates are color charged by random gluon ex-
change. Nuclei thus form color capacitor plates after the
collision. The region between them is filled with strong
color field. This strong color field will immediately begin
to polarize the vacuum, creating quark-antiquark pairs
and gluon pairs by quantum tunneling. This tunneling
rate has been computed by Schwinger' and others' '
using the proper time method for QED and by Casher,
Neuberger, and Nussinov and others by the WKB
method, and these results have been applied to the pair
creation in the color Aux tube.

The quarks, antiquarks, and gluons created by tunnel-

a
p~ag, gp~~„,

' =—c, +s, ,P (3.1)

Bf;p~ga+gp~F„. ' =c,+s, ,
~pv

where f; (f; ) is the distribution function of the quarks
(antiquarks) (i represents the spin, color, and fiavor
states), g is the effective coupling constant between the
quarks and the background color field, C, (C, ) is the col-
lision term, and S, (S; ) is the source term which
represents the qq pair creation by the external field. In
this paper we approximate the color field as an Abelian
one, although the non-Abelian nature of the color field
might cause some interesting effects. We shall also
neglect the gluon degrees of freedom entirely in the rest
of our calculation just for simplicity. The extension to in-
clude gluon excitations taking into account non-Abelian
nature of the color charge may be performed along the
line of Ref. 23.

We note that in the above covariant expression of the
Vlasov term the four components of the momentum p are
treated as if they were all independent variables, although
actually only three spatial momentum components are in-

(3.2)

ing from the coherent color field will suffer two types of
interaction: collisions among themselves and the interac-
tion with the remaining color field. Collisions among the
excitations will change the phase-space distribution of
them and drive it toward the form in (local) thermo-
dynamic equilibrium, while the interaction with the
remaining field will accelerate those charged particles
into two opposite directions parallel to the field, depend-
ing on the charge of each constituent. The latter process
will generate a conductive color current in the system
and cause color separation in the plasma.

All these effects in the plasma evolution may be studied
in terms of the following model Boltzmann-Vlasov equa-
tion 2 1 i 22
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p uR(f; f; )—C-=—
l

7c

where

(3.3)

eq

exp(p„u "/T)+ 1
(3.4)

is the equilibrium distribution function characterized by
local fiow vector u"=y(l, v) with @=1/(1 —v )' and
local temperature T(x). It should be understood here
that the temperature T(x) is only a parameter which
characterises the collision term: The actual state of the
system is described by the distribution function f;(x;p)
not by f,'q(x;p). We shall later discuss the condition

I

dependent because of the on-shell condition p =m . It is
understood that f(x;p)=f(x;p, &(p)).

The collision terms are usually written as the phase-
space integral of the distribution function similar to
(2.1). Here we take the following simplified relaxation-
time approximation for the collision term:

p"u (f, —f,")
P t l

which determines the time evolution of T(x). We have
neglected the possible i dependence of the relaxation time
~, in the above parametrization.

The source term has been constructed in Ref. 22 for
the case that the field tensor can be written as

F" = 6'(s"t s't—"), (3.5)

FO3 = —F3O = 6' and F„=O, (3.6)

for (p, v)%(0, 3) or (3,0). We note that this form of the
field tensor is invariant under the Lorentz boost in the
longitudinal direction, namely, z direction, and this sym-
metry should be reAected in the form of the source term.
Using the light-cone coordinate (2.14), we write the
source term as

where s" and t" are unit spacelike and timelike vectors,
respectively, which satisfy —s = t = 1 and s - t =0. In
this case one can find a local Lorentz frame where the
field tensor contains only an electric-field component
with the strength 8 and no magnetic field. In the follow-
ing calculation we assume the transverse uniformity of
the system and take the following simple form for the
field tensor:

KpT
2

gi«. )l

2
&pT

=g
l
6(r) lexp &(i)—y) .

P

S,(x,p ) =S, (x,p ) = —g l 6(r) lln 1 —exp 5(i) —y )

(3.7)

A few more comments on this form of the source term are in order. The pT dependence has been taken from the
well-known result of the di6'erential pair-creation rate obtained by the WKB method. The longitudinal momentum
dependence, which cannot be determined by the pair-creation calculation, has been taken so that the 1ongitudinal veloc-
ity of the particle satisfies the scaling relation U, =z/t at the time of the creation. This scaling relation is written as
g=y in our coordinate system. The normalization of the source term is determined so that the integrated particle pro-
duction rate coincides with Schwinger s formula for the pair-creation rate. In the above expression it is shown explicit-
ly that the electric-field strength depends on the proper time. This is because the field strength attenuates as a result of
the transfer of the field energy to the particle kinetic energy by the pair creation and also by particle acceleration. The
time evolution of the field strength can be determined by the conservation of the total energy in the system, as we sha11
see later. We have also explicitly indicated possible i dependence of the source term through that of the quark mass.
Hereafter we consider the simple case of two massless fiavors (up and down quarks) and therefore set m; =0.

As the initial condition for the distribution function, we impose

f;(x;p ) =0, f;(x;p ) =0, C(r) = 6'o at v=0, (3.8)

which implies that all particles are produced by the source term from the field. It is obvious that these initial conditions
are invariant under the Lorentz boost in the longitudinal direction and the translation in the transverse direction.
Therefore, it follows from the same symmetries in the source term (3.7) that the solution of the transport equation must
possess these symmetries and that the distribution functions are written as functions of only three variables ~, pT, and
/=i) —y. The distribution functions also do not depend on the quark fiavor for the same reason Therefo. re, we can
write

f;«;p')=f(~ pr k), f;(x;p)=f(r p»k)
With these symmetries in the solution, we can reduce the kinetic equations (3.1) and (3.2) to

df tanhg gg df f feq + S
81 7 pz-cosh( Bg 1~ pTcoshf

(3.9)

(3.10)

and
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tanhg gC Bf f feq S
PTcosh) Bg r, pz cosh/

(3.11)

f.,(r PT k)= 1

exp[PTcoshg/T(r) ]+1
(3.12)

and we have used the following scaling form for the Aow
velocity:

where the equilibrium distribution function is understood
also to possess the symmetries of the solution and is
therefore written as

dI = yd p 1'PTdPT dk

(2n) E (2m)
(3.18)

where y=2X3X2=12 is the spin, color, and flavor de-
grees of freedom for quarks. Equations (3.15) and (3.16)
express the energy-momentum conservation for quarks
and antiquarks, respectively. Since the energy and
mornenturn are conserved in each collision, the moment
of the sum of the collision term should vanish:

u"= (cosh'), 0,0, sinhi) ) . (3.13) fdI p C+ fdI p "C=O . (3.19)

Note that (3.11) for the antiquark distribution function
can be obtained from (3.10) by the "charge-conjugation"
operation g~ —g. Since the same initial conditions are
taken for f and f, this implies the following symmetry:

f(&,PT, $)=f(& PT, g) . (3.14)

d„Tg
'

g f d I p "p'—F = f dl p'C+ f d I p'S

(3.15)

and

B„T" +gfdI p"p F„„=fdIp"C+fdIp S,(3

Therefore, once we find the solution for the quark distri-
bution function f by solving (3.10), the antiquark distri-
bution function f can be immediately obtained from
(3.14). This symmetry relation will be used very often in
the following calculation.

We still have to show how to determine the time evolu-
tion of the temperature T(r) contained in the collision
term (3.3) and that of the field strength 6(r), which ap-
pears both in the source term (3.7) and the Vlasov term.
The relations which determine these quantities are ob-
tained from the energy-momentum conservation law as
follows. To show this we first take the moment of the ki-
netic equations (3.1) and (3.2),

8 T" +8 T" +8 T" =0
p q p q p f (3.21)

where TP"=diag(6' /2, 6' /2, 6 /2, —8 /2) is the
energy-momentum tensor of the field. Using (3.6), (3.7),
(3.15), and (3.16), we can reduce this relation to

d7.
= —2a sgn(6)~@ +g f dI PTsinhg(f —f ),

(3.22)

where a =yg /( 16m ). This equation determines the
time evolution of the color field strength.

Equations (3.10), (3.14), (3.20), and (3.22) form a closed
set of equations which determine the time evolution of f,
f, T, and @ with given initial conditions.

Inserting C= —(p„u")(f f'q)/r—, and C= (p~u"—)(f
f'q)/r—„ taking the contraction with u, and using

p„u"=PTcoshg, we find the following relation between
the proper energy density, e(r):u„u—(T"'+TL' ) and

q

the temperature:

7 2

e(r) =f d I (PTcoshg) (f+f ) = T(r) . (3.20)
120

This is the equation which determines the time depen-
dence of the temperature parameter in the collision term.

The equation which determines the time evolution of
the field strength can be found from the total energy-
momentum conservation,

(3.16)

where

and

d pT,"=&f, p"pf;
(2m) E

= fdrp"p f

T~ = fdrp~p f (3.17)

are the kinetic energy-momentum tensors of the quarks
and antiquarks, respectively. In the above expression we
have used a shorthand notation for the invariant phase-
space volume element:

B. Scaling of the solutions

In the collisionless limit our n1odel has only one dimen-
sional parameter, the initial field strength @o, which has
the dimension of (energy) or, equivalently, (time) in
natural units. Thus it is easy to see the dependence of di-
mensionful quantities on @0. It can be determined by di-
mensional analysis. ' For example, the time scale which
characterizes the time evolution of the system is inversely
proportional to Co~ and the average momentum of the
quarks must scale in proportion to 80 . Our equations
contain two more dimensionless parameters, the coupling
between the quarks and color field g and the effective
quark degrees of freedom y. We discuss in the rest of
this section how the solutions of our model kinetic equa-
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tion may depend on these parameters as well as 6'o.

For this purpose we write down once again the closed
set of equations which determine the time evolution of
the system:

dD 2

sgn( @}I
@I' ' —8m' J d f' sinhg(f" —f )

8m.

(3.31)
Bf tanhg g6' Bf
BT T pTcoshg Bg 7 2

120
T'= Id|(PTcoshg)'( f+f ), (3.32)

f f q g I
@

l exp( ~PT/g I
@

I
}&(g')

pT cosh/C

(3.23)
respectively, where we have rescaled the collision time by

7 2

120
T= dI p cosh + (3.25)

The last equation for the temperature is not a dynamical
equation, but is just a subsidiary condition to determine
T(T) in the equilibrium distribution (3.12), which appears
in the first kinetic equation.

To motivate ourselves to find a natural way to scale the
variables, let us first take a look at the kinetic equation.
We immediately notice that the electric-field strength 6
appears in the kinetic equation always in the specific
combination with the coupling constant as g 6, which is
just the strength of the Lorentz force acting on the
quarks. This suggests that the natural time scale which
characterizes the time evolution of the distribution func-
tion would be

&k=(g@o) '" (3.26)

and that the natural energy-momentum scale of quarks
would be the reciprocal of this time scale. In fact, if we
introduce the new dimensionless variables

)1/2 p ( g )
—i /2 (3.27)

and write

f(T"PT k)=f(T PT k),

f(TPT k)=f(TPT k»
f,q(t, PT g) =f q(T PT g)

T(T) =(gDo) ' T(r),
(3.28)

6 (T) = 6'(~) /8o,

g'"~~ sgn( 8 )
I
6

I

/ +g Id I PTsinhg( f f ), —
d~ 8~3

(3.24)

T, =T, /Tk . (3.33)

We have eliminated all parameters from the temperature
equation (3.32) by the scaling (3.27) and (3.28). This is a
rather trivial result since the temperature equation (3.32)
does not depend on y in any case and the momentum and
temperature are measured using the same scale. More
importantly, the scaled kinetic equation becomes parame-
ter free in the collisionless limit w, ~ ~ by this scaling.
The parameters g and y now appear only in the field
equation in the specific combination g y. We note that
the absence of the parameter g y in the kinetic equation
does not mean that the scaled distribution function is in-
dependent of this parameter. It still depends on g y be-
cause of the coupling to the field strength 6', which ap-
parently depends on this parameter.

There is yet another natural way to scale the variables.
We may have chosen

16~
5/2 @I /2

0

16m
k ~ (3.34)

8(T}=
(1+TITo}

(3.35)

We note that the leading behavior of 6(T) for small T/To,

instead of (3.26), for the time scale, keeping the energy
scale as before. If we adopted this scheme, then we
would be able to eliminate all parameters from the field
equation. In this case the parameter g y would appear in
the rescaled kinetic equation, and therefore the time evo-
lution of the rescaled field intensity would depend on the
value of g y through its coupling to the rescaled distribu-
tion function. This choice is particularly convenient in
the absence of the Vlasov term, since in this case the field
equation does not contain the term which involves the
distribution function and therefore can be immediately
integrated, yielding '

then, writing the phase-space integral explicitly with

PT dPT dg
dI ygAo =yg6od~(2')

we can reduce (3.10), (3.20), and (3.22) to

af
PTcosh/

f f,q I
&

I
e~p( ~P T /—

I
@1)~(4')

TC pTcoshN

tanhg

(3.29)

(3.30)

@(T)=Co 1 — +0{(T/To) )
To

(3.36)

Our model Boltzmann-Vlasov equation IEq. (3.10)] is
not suitable in its original differential form for the numer-

is unchanged even in the presence of the Vlasov term.
This is so because the Vlasov term does not play an im-
portant role in determining the field evolution at very
early times when the number of particles in the system is
still very small.

C. Integral form of the kinetic equation
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ical integration since it contains a singular function
[5(g) j in the source term. We rewrite it here in an in-
tegral form by using the method of characteristics.

The essence of the method is to read the left-hand side
of the partial differential equation (3.10) as a total deriva-
tive with respect to ~ along the characteristic lines on the
(r, g) plane, defined by

dg tanhg g6(r)
dr 1 pTcoshg

(3.37)

I

r'sinhg' =r sinhg — f d r" r"6'( r" ) .
pT

(3.38)

This equation determines the particle trajectories
(characteristic lines) in the (r, g) space in the presence of
the Lorentz force exerted by the time-dependent electric
field 6'(r). Two points (r, g) and (r', g') on the same
characteristic line are related by

phasize that we have not solved our problem yet. We still
need to know the r dependence of 8 and T to actually
carry out the r integral in (3.40) with the condition (3.38)
and to solve Eq. (3.41). As we have explained in the pre-
vious section, the values of T and 4 at a given instant of
time are determined by solving (3.20) and (3.22) simul-
taneously with the kinetic equation. We can use (3.40) to
eliminate the distribution functions from (3.20) and
(3.22). This yields two coupled integro-differential equa-
tions for T(r) and 8(r). These equations are solved nu-
merically to determine T(r) and 6"(r) for the initial con-
ditions T(0)=0 and 8(0)= 6'o, and then the result can be
used to determine the distribution function from (3.40)
finally.

The integral form of the kinetic equation (3.40) be-
cornes particularly simple in the collisionless limit
(r, ~~),

The kinetic equation can therefore be integrated formally
with the initial condition (3.8) as

77p T (3.42)

f(r pT k)= 1 ~, , 1f,q(r', pr, g')exp (r' —r) dr'
0 eq

C

,S(r,p„+ f, exp (r' —r) dr',
pT 0 cosh 7C

(3.39)

~ I
pL =— r'@(r')dr' .

r
(3.43)

with the r,. 's given by (3.41). Therefore, pT dependence of
the distribution function at given time is determined by
that at particle creation at earlier time. The pL depen-
dence of the distribution function is determined implicitly
by that of r;. In fact, (3.41) is equivalent at z =0 to

f(r pT 4)= 1 f.,(r' pr k')expeq ic
(r' —r) dr'

7Tp T+ /exp
~ ~

exp
1

(r; —r)
C

(3.40)

where the ~, 's are the solutions of

where g' is understood as a function of r' determined by
(3.38). The integral of the source term can be easily per-
formed by inserting (3.7),

This equation determines the longitudinal momentum of
particles which reside at z =0 at time ~=t taking into ac-
count the acceleration by the color field after their
creation at earlier times. In the absence of the color field,
we always have pL =0 at z =0. This is, of course, trivial
since we have assumed U, =z/t at the particle creation,
and therefore in the absence of the field acceleration only
particles with pL =0 remain at z =0. It follows from this
result that the pL distribution is bounded in the absence
of collision if the field strength attenuates faster than 1/~
at large ~. We shall see later that this is indeed the case.

Incidentally, we note here that the relation (3.38) can
be written as

rsinhg+ f r"6(r")dr"=0 .
pT

(3.41)
r pTsinhg+ —f dr" @(r")r"

7 0

Note that Eq. (3.41) may have more than one solutions if
A'(r) does not have a definite sign, but instead oscillates
in time (as we will see later, this actually happens when
the collision time is large). Physically, this reflects the
fact that particles which were created at /=0 at different
points in (r,pz-) space may arrive at the same point in
(r,pz-, g) space simultaneously if the direction of the field
has been altered. On the other hand, if the field does not
oscillate, particles which were originally created at (=0
are accelerated always in the same direction. In this case
g deviates from /=0 more and more as time elapses and
any particle trajectory in (r,pT, g) space can pass a cer-
tain g at most once, and therefore there is only one solu-
tion to (3.41).

The simplicity of the result (3.40) is deceptive. We em-

I'

p Tsinhg'+ —,f d r" 8(r" )r"
7 0

(3.44)

The quantity in the parentheses is nothing but the canon-
ical longitudinal momentum of the particle at z =0. To
see this choose the gauge

2 "(x ) = ( sinhi), 0,0, coshr) )a ( r ) =s "a ( r ), (3.45)

This quantity in fact coincides with the canonical longitu-

so that a(r) satisfies 6(r) =a'(r)+a(r)/r. Then one can
show

—prsinhg ——f dr" D(r")r"=s„(p~—gA")
T

(3.46)
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I
IIL(z. ) =—IIL(r, )= — g—a(z, ), (3.47)

where we have used g, =0. We add here, to avoid possi-
ble confusion, that we still have to know the time evolu-
tion off(z.,pT, g) and 6'(z. ) to determine a(z., ).

It would be useful to compare here our result with that
of Bialas and Czyz. " They imposed the initial conditions
on the distribution function and the field strength at cer-
tain early proper time r =~;„, and assumed that particle
number is conserved afterwards. This is equivalent to as-
suming that the quarks and antiquarks are created at
~=~;„at once by the following source term:

S(z.,pT, g)=6(z. r;„)5(g—)G(pT) . (3.48)

dinal momentum H, —=p, —g A 3 at z =0, where
s"=(0,0, 0, 1). Equation (3.44) implies that zIIL is a con-
stant of motion. In other words, the canonical longitudi-
nal momentum II, of a particle at z =0 decreases mono-
tonically, inversely proportional to time t from its value
at particle creation:

we still impose the same initial condition as (3.8) at z.=0
on the distribution function, then we would end up with a
trivial result: f=0. We shall circumvent this problem by
considering the evolution of the system starting from
some later time when the field strength has already di-
minished to some very small value. The second problem
is that the solution to our model kinetic equation is non-
steady even in the absence of the field: This is essentially
due to the Lorentz-boost-invariant symmetry in the solu-
tion. We therefore need to extend the usual perturbation
theory analysis to the perturbation with respect to a non-
stationary solution.

Suppose the solution of our model kinetic equation is
known at some time ~& as

f(z] pT, k) =f(r],pz-, k) =F—(pT, j), &(z.])= &] .

(4.1)

We may construct an approximate analytic solution for
6'(z. ) at later times z ) z.] by treating the eA'ect of the field
as small perturbation. To do this we write

In this case one finds

f(,pT, ()= &( IIL )G(pT ),
7

where the argument of the 5 function is

IIL = —
pz sinh( ——J di' z.'A'(z. ')

ill

1n in&i'"
'T

(3.49)

(3.50)

f(z.,pT, ()=fo(z, pT, g)+f, (z,pT, g)+0(@'), (4.2)

f( pT k)=fo( pT 4)+f](~—pT —4)+«@'»
(4.3)

where it is understood that the f ] is the order of g 6 and
the unperturbed boost-invariant distribution function fo

does not depend on the field strength. This implies that
fo and f, satisfy the following linearized transport equa-
tions:

Therefore, in this model the particle longitudinal momen-
tum at later time is uniquely determined and the pT dis-
tribution at ~=a;„ is maintained throughout the later
evolution of the system. In our result (3.42) the longitu-
dinal momentum distribution becomes continuous be-
cause of the continuous particle creation and the pT dis-
tribution does not factorize for the same reason.

and

tanhg ]If]
Bg

ufo

pz cosh/ Bg

~fo tanhg r)fo

Bz 1 ])g

g J dI pTsinhgfo=0,

(4.4)

(4.5)

(4.6)

IV. LINEARIZED COLLISIONLESS
BOLTZMANN-VLASOV EQUATION
AND THE PLASMA OSCILLATION

One of the most remarkable properties of the collision-
less Boltzmann-Vlasov equation, or the Vlasov equation
for short, is that it permits the existence of an oscillatory
solution, known as the plasma oscillation. Before
presenting the numerical results we discuss in this section
how such plasma oscillation will show up in our model
system in the linear approximation.

The derivation of the plasma oscillation solution usual-
ly starts from the linearization of the transport equations
with respect to the field strength and the small distur-
bance in the distribution function around some steady-
state solution. We meet two difhculties in applying this
method directly to our problem. First, our model kinetic
equation contains the particle source term, which is non-
linear in the field strength, and the linearization of the ki-
netic equation eliminates the source term: Therefore, if

d@ =2g Jd I pTsinhgf ] .
d7.

(4.7)

,'t F(p„r)+F(p„r)j,--
f](z„pT,g)=F (p]z., g)

,'I:F(pT k) F(pT, -4) J . — —

(4.8)

(4.9)

The solution of the unperturbed kinetic equation (4.4)
for the initial condition (4.8) can be found immediately by
the method of characteristics:

f (r,pr, ()=F]](pz, sinh '(z. sinhgl~]))

=9'o(pz-, rsinhg) . (4. 10)

Note that fo(r, pz. , g') is an even function of g due to (4.8)

The initial conditions of fo(z pz g) and f](r pz g) a' t
w=z. ], which are compatible with (4.1) and (4.5), are

fo(z] pT k)=Fo(p'T k)
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f d T' T'6'(T')
z = 7.sinhg

+ V, (pT, T sinhg), (4.11)

and therefore Eq. (4.5) is automatically satisfied. We in-
sert this result into (4.6). Integration of (4.6) along the
characteristic lines T sinhg=const yields

g 89'o(PT, z)
fi(T pT 4)=

pT Bz

where the function Vi(pT, z ) is defined by

V, (pT, z ) =F, (p„sinh '(z /T, ) ) . (4.12)

This function is odd in z since Fi(pT, g) is an odd func-
tion of g by construction. It then follows immediately
from (4.11) that f, (T,pT, g) is an odd function of g.

The right-hand side of the linearized field equation
(4.7) can now be modified using (4.11) as

BVo(PT, z )

az2g f dl pTsinhgf i =2g f dl pTsinhg
pT

(4.13)

f dT'T'@(T')+2g f dl p Tsi nhjP, (p TTsinhg)
z = 7-sinhg

f dpT pT f dz. . . , f dr TB(7- )+, f dpTp Tf dz
(2') T o — (T +z ) Bz (2~)'T ( 2+ 2)1/2

where, in deriving the last line, we have made the change
in the integration variable by z=rsinhg. We now as-
sume that the functions Vo(pT, z) and V, (pT, z) are both
well localized in z around z =0. Then we can approxi-
mate the phase-space integrals in (4.13) by replacing
(T +z )' in the integrand by T. This gives

6(T)= sin(QT' +5), (4.22)

where we have omitted the terms involving the higher
power of 1jT. Three parameters 0, p, and 5 are given in
terms of co, c „and 8, by

2g fdI pTsinhgf i
= f dT' T'8(T')+

where the constants co and c1 are defined by

(4.14)
n, =2c'"

1/2

p=v'~ 6 +
3

Cpi1

(4.23)

(4.24)

2g p oo oo

co =
z dpT pT dz Po(pT, z ),(2~)' 00

(4.15) tan(nr I "+n) =— 3/2 1/2 gco

C1
(4.25)

2
ci =

~ dpT pT dz ZPi(pT, Z )
(2m) o oo

(4.16)

c =2g i, d I cosh i„p

ci =2grj f dI pTsinhgcoshgf(T&, pT, g) .

(4.17)

(4.18)

respectively, or we can write them explicitly in terms of
the distribution function at i i1.

6(T)= 6'„sin(co5T+5'),

with

(4.26)

in the approximation retaining the leading-power term of
1/i1.

The constant Q has the dimension of (time) '~ and is
not the usual oscillation frequency. The oscillation fre-
quency co can be found by writing i=i1+6i and expand-
ing the above result in terms of 5i/i1. This yields

We note that the constant co is always positive.
The linearized field equation now takes the form

d6
di (4.19)

We can convert this integro-differential equation to a
simple second-order differential equation:

0
CO—

1/2i1

p
i1

Cp

' 1/2

1/2
C16 +

Cpi1

(4.27)

(4.28)

dA" 2db 6
dT 1

with the initial conditions

6(T, )=N, ,
C1

i2
1

(4.20)

(4.21)

(4.29)

We can show using (4.17) that the square of the fre-
quency is related to the integral of the distribution func-
tion at i=i„

co =2g f dI c soghf( Tp Tg).
'(4.30)

Since the constant co is positive, the solution of this
linearized field equation becomes oscillatory. It is given
approximately by

It is interesting to note that if we replace f(T&,pT, () by
the local equilibrium distribution function (3.12), then we
find
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=2g d I cosh, z„p„,

24
(4.31)

g y =48,300, respectively, and cover the range for
a, =g /(4'�) from 0.31 to 2.0.

A. The plasma oscillation

ru =2g y(g8o) fdf'cosh'(r„PT, () . (4.32)

Comparing (4.32) to (4.31), we see that in the nonequili-
brium collisionless evolution the quantity
gho J dI cosh' plays a role similar to the square of the
temperature at time ~=~1.

We also find using (4.18) that the amplitude of the plas-
ma oscillation can be written as

1 /2

6+ g2
os 1

CO

(4.33)

where

J=2g f dI pTsinhg cosh' (ri,pT, g) (4.34)

measures the strength of the color current in the plasma
at time ~, . Unless both 8, and J vanish in our initial
conditions, which is very unlikely, 8„ is finite. We may
thus conclude from this result that the plasma oscillation
almost always appears spontaneously in the collisionless
evolution of our system. [The condition cor& )) 1 must be
satisfied for a well-defined plasma oscillation to develop.
According to (4.30), this condition is equivalent to

2g'yr"', fdI cosh'�(~,,pT, g) ))1, (4.35)

which is always satisfied if ~, is sufficiently large. ]

which differs from the well-known result for the plasma
frequency, co~, =(g y/12)T, by the factor of m./2. The
origin of this difference can be traced back to the factor
cosh/ in the integrand, which is absent in the ordinary
plasma oscillation. This factor has arisen because of the
nonstatic Lorentz-boost-invariant symmetry in the solu-
tion. In the actual collisionless evolution of the system,
the form of the distribution function is always very
different from the equilibrium one. In such cases we can
write the formula (4.30) using the scaling properties of
the distribution function found in the preceding section

We first show the time evolution of the field intensity
and the proper energy density in the collisionless limit
(w, = cc) in Figs. 2 and 3, respectively. They show that
the plasma oscillation is indeed excited spontaneously in
the system, as expected from our more general analysis in
the previous section. In the beginning the field intensity
decreases monotonically, converting its energy to the
proper energy density and How energy of the plasma.
The field intensity eventually vanishes, but continues to
decrease for a while with opposite sign. This overshoot-
ing is caused by the conduction current generated in the
plasma, which polarizes the color charge in the plasma.
This decrease of the field is eventually halted by the re-
storing force exerted by the electrostatic force between
two polarized charges, and then the field oscillation fol-
lows.

The frequency and amplitude of the plasma oscillation
depend on g y. In the case of strong coupling (g=5),
both the amplitude and period of the plasma oscillation
are small, the amplitude being so small that it is hardly
visible in these figures, while in the weak coupling case
(g =2) the oscillation is so prominent that one can see
the oscillation of the proper energy density of the plasma
out of phase with the field oscillation. This may first look
contradictory to what one would naively expect from the
formula (4.30), which suggests that the frequency of the
plasma oscillation is proportional to the coupling con-
stant.

To understand this behavior, we must first of all recall
that here we have used the scaled time ~=r(g6'0)'~ in
these figures; thus, in the physical time scale, the results
for smaller coupling would be prolonged in the time
direction. We replotted, therefore, in Fig. 4, the same re-
sults against the rescaled time g' ~. It now appears that

FQ

1.00

V. NUMERICAL RESULTS AND DISCUSSIONS 0.75

Our numerical calculation has been performed in two
steps. First, the integral form (3.41) and (3.42) of the ki-
netic equation was solved self-consistently with the tem-
perature equation (3.20) and the field equation (3.22).
Next, the resultant distribution function is used to calcu-
late the dilepton spectrum using the formulas
(2.17)—(2.20). Owing to the scale-invariant properties of
the solutions with respect to the initial conditions as dis-
cussed in Sec. III B, we have only two free parameters in
our calculations: the effective coupling strength g y and
the scaled collision time w, . Throughout our calculations
we set y = 12, which corresponds to a two-flavor quark-
antiquark plasma. We chose two different values of the
coupling constant g =2,5, which correspond to

0.50

0.25

0.00

-0.25 Q i & i I

0 2.5 5 7.5 10 12.5

FICi. 2. Time evolution of the field intensity 4, scaled by the
initial field strength @o in the collisionless limit. Solid and
dashed curves are for g= 2 and 5, respectively. The proper time
r is scaled as r=rQg Co.
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FIG. 3. Time evolution of the proper energy density of
matter e, scaled by the initial field energy density 80/2 in the
collisionless limit.

FIG. 5. Time evolution of the proper particle density n

scaled by (g Do)

the oscillation frequencies are almost the same for both
cases. Further insight can be obtained by looking at the
time evolution of the proper quark density n (r)
= J dt u„p"f(x;p) as shown in Fig. 5. For a larger
coupling the field initially decays faster, and because of
the boost-invariant expansion, the initial field energy is
converted faster into plasma fl.ow energy; this results in a
lower plasma density. This is the reason why the ampli-
tude of the plasma oscillation is smaller for a larger cou-
pling constant. The weak g dependence of the plasma
frequency may be explained as a result of the effective
cancellation of the factor g in the form. ula for the plasma
frequency (4.32) with the g y dependence of the quark
density.

We plot in Fig. 6 a snapshot of the charge-density dis-
tribution p(t, z)=j, „d(t,z) at r/so=2 for g=2. Note
that the charge density is antisymmetric by the space
reliection, p(t, z)= p(t, —z), and by —this symmetry the
p lasma is always neutral at z=0: This also implies that
the proper charge density j (~)=u„j "„„dmust always van-
ish. The charge density becomes large in the vicinity of

two light-cone edges t =+z, where the Lorentz-
contracted color-charged nuclei reside (it vanishes right
at the light cone), decreases monotonically for a while as
we go away from each edge toward the interior, and then
oscillates. It may first seem that the apparent increase of
the charge density near the edges is caused by the

2 —1/2Lorentz-contraction factor y = [ I (z/t ) j
—= t /r,

which diverges at the light cone where ~=0. There is yet
another effect of special relativity near the edges, i.e., the
time dilatation: since the time evolution is delayed near
the edges and there should not be much quarks and anti-
quarks produced yet which are needed to generate the
current in the system. In fact, one can show that the
charge density actually vanishes in the very vicinity of
the edges in proportion to ~. The oscillation of the
charge density is the manifestation of the plasma oscilla-
tion. The amplitude of the oscillation decreases since the
plasma has been diluted more in the interior where the
proper time has elapsed more.

The distribution functions obtained by this calculation
are shown in Fig. 7 where the time evolution of the

I I I I I

I

I I I I

I

I I

1.00
( g )~ 0.10

0.75 0.05

0 ~ 50

0.25

0.00

0.00
-0.05

I.I I I I I

0 5 10 15 20 25
g j~

-0.10-20
s i I «& s I

-10 0 10 20

FIG. 4. Same as Fig. 2 plotted against rescaled proper time
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FIG. 6. Snapshot of the charge-density distribution jo at
r=20.67 for g=2. The z coordinate is scaled as z =zQgA'o.
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FIG. 8. Comparison of time evolution of the field intensity
y 1 /2,for three difFerent values of the collision time 7 ='T

l, g oy

Solid line is for ~, = oo (the collisionless limit); dashed line for
v. =2. 1' dot-dashed line for r, =0 (the hydrodynamic limit).C

All computed for g=2.

FIG. 10. Time evolution of the ratio of the average longitudi-
nal momentum and the average transverse momentum. The
solid curve is for the collisionless limit, the dashed curve for
~, =2. 1 and the dot-dashed curve is for the hydrodynamic limit.
All computed for g =2.

constant. The height of the distribution is determined by
the rate of particle creation at the point where the parti-
cle was created and hence depends on the transverse
momentum. It is seen that at small pT the particle piles
up at small pL as the time elapses. This is caused by the
particle creation at later times when the field strengt is
weakened and, therefore, happens only at small trans-
verse momenta since high-pT-momentum particles are
produced only at early times when the field strength is
large enough so that the production rate for such parti-
cles is not to be suppressed by the Csaussian form of the
source term. At large pT the distribution function has a
peak at the edge where the particles created at the early
time (when the field is strong) reside. It is expected, how-
ever, that this interesting nontrivial behavior of the dis-
tribution function will be smoothed out in the presence o
the collision. The time evolution of the distribution func-
tion in the extreme local equilibrium situation is shown in
Fig. 7(d). In this case the distribution function decreases
monotonically for all value of pT.

In Figs. 8 —10 we study the effect of the collisions corn-
paring three cases at g =2: (i) the collisionless limit
(r = oo ) (ii) the hydrodynamic limit (~, =0), and (iii) thec
case with finite collision time (~, =2. 1). In the last case
we have chosen a rather small value for the collision time
compared with the time scale of the plasma oscillation,
which is =10. Nonetheless, the results with the finite
collision time differ significantly from those in the hydro-
dynamic limit as far as the field intensity and plasma en-
ergy density are concerned. They look, rather, more like
the average behavior of the collisionless limit where the
oscillatory feature which is characteristic of the collision-
less limit is smeared out. It appears, however, the result
of the case (iii) is very similar to the hydrodynamic limit
in the momentum distribution of particles. To show this
we plot the ratio of the average of squared longitudinal
momentum and the average of squared transverse
momentum, (pL ) /(pz-) at z =0, in Fig. 10. This quanti-
t is always 0.5 in any proper frame in the hydrodynamic
limit. Note that in the collisionless limit this quantity
eventually reaches zero, since a11 particles with finite lon-
gitudinal velocity will go away from z=0. Figure 10
shows, however, that this ratio finally reaches 0.5 in the
case of finite collision time. This is so for any value of ~,
because for ~))~, the hydrodynamic approximation
should become valid.

0.2
B. Dilepton spectrum

0.1

oo
10 20 40

FIG. 9. Same as Fig. 8 for the proper energy density of
matter.

We now turn to the discussion of the dilepton spec-
trum. We have seen that in the collisionless limit the
evolution of the distribution function shows some prom-
inent features which are absent in the case of (local) equi-
librium as assumed in the hydrodynamic calculations.
We study how these nontrivial features will be rejected
in the spectrum of dilepton pairs emitted from such a
nonequi1ibrium quark-gluon plasma.

We concentrate here on two extreme limits, i.e., the
collisionless and hydrodynamic limits. In the following
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calculations we use g=2. To make our result concrete,
we set the physical scale by measuring the initial field en-
ergy density 60/2 in a physical unit (GeV/fm ). Also, we
introduce a new parameter e&, the "final" proper energy
density, which specifies a cutoff time ~I in the integration
over the proper time in (2.16) by e(~&) =e&. This param-
eter may be considered as the proper energy density at
which the quark phase ceases to exist and the transition
to the confining hadronic phase starts. Here we only cal-
culate the contribution from the plasma phase and
neglect dileptons from all other sources, e.g., Drell-Yan
processes, mixed phase, hadron gas phase, etc. It may be
expected that contributions from the mixed and hadronic
phases would not be significant at sufficiently high ener-
gies. The parameters ~I and eI are related to the energy
per unit rapidity at the transition time by

dE
dy

=~~e~S, (5.1)

dN =2~~n~S, (5.2)

where n& is the proper density of quarks at ~=~&. In the
hydrodynamic limit the number of the excitations in the
system is related to the entropy, and this may be related
directly to the observed multiplicity of the particle since
the entropy is conserved even during the hadronization
transition. In the nonequilibrium evolution, how-
ever, the relation between the number of excitations in
the quark phase and the observed particle multiplicity is
not so clear. We conjecture that dE/dy is less affected
than dN/dy by the details of the hadronization transition
and the later evolution of the system. Thus we adopt
dE/dy rather than dN/dy to adjust the initial conditions

where S is the transverse cross section of the volume oc-
cupied by the plasma, which may be given by S=~R for
a central collision of nuclei of radius R. This quantity
may be compared with the observed transverse energy de-
posited in the central rapidity region. To compare the re-
sult obtained in the collisionless limit to that in the hy-
drodynamic limit, we chose the same value for e&, but ad-
justed the initial field intensity so that it gives the same
value for dE/dy, when calculated excluding gluon excita-
tions, as in the collisionless case. The numerical values
for these parameters used in our calculation are listed in
Table J.

Also shown in the table are the values for the number
of particles per unit rapidity at the transition time calcu-
lated by

of two extreme cases so that they correspond to similar
final observable conditions.

The result for the dilepton spectrum obtained in the
collisionless limit is shown in Fig. 11. The two figures
correspond to the two different values of the initial field
energy: AO/2=10 GeV/fm [Fig. 11(a)] and 60/2=20
GeV/fm [Fig. 11(b)]. In this calculation the transverse
cross section was set as S=~R =140 fm, corresponding
to a U+ U central collision. We have chosen two
different values for q~ of dilepton: Solid lines in each
figure are at q~=0 GeV and dashed lines at q~=1 GeV.
According to formula (2.15), the dilepton spectrum de-
pends only on the variable Mz at M ))mI in the case of
one-dimensional scaling hydrodynamic expansion, but
this scaling is violated in the case of nonequilibrium evo-
lution. It is seen that this violation of Mz scaling is
prominent only at small Mr ( (2 GeV), but not so
significant at large Mz-. In these figures we also present
results for two different values of e&. Upper lines in each
case are for e& =1 GeV/fm and the lower lines for e& =2
GeV/fm . It is seen that the spectrum is not sensitive to
the choice of this parameter in the large-Mz region
(Mr) 2 GeV). This indicates that dileptons with large
Mz are created only at the early stage.

In Fig. 12 the collisionless and hydrodynamic limits
are compared. The solid and dashed lines correspond to
qr =0 and 1 GeV, respectively, with @+~2=10GeV/fm3,

e&
= 1 GeV/fm, and g =2 in the collisionless limit. The

dot-dashed lines represent the dilepton creation rate from
the thermalized plasma with the initial conditions
specified as we described earlier. It is seen that in the col-
lisionless limit the rate is enhanced at small Mz- and is
suppressed much at large Mz compared with the hydro-
dynamic limit. We found that this tendency persists for
all parameter sets in the absence of collision. Also shown
are the expected yields for the Drell-Yan pairs at pp
center-of-mass energy &s =200 GeV scaled to UU cen-
tral collisions assuming a simple factorization of the nu-
clear mass dependence. [The transverse-momentum
dependence of the Drell-Yan pairs is calculated from the
formula (5.7.14) in Ref. 34 for the perturbative QCD esti-
mate of gluon emission (infrared singularities being regu-
lated by "Sudakov form factor") by taking a convolution
with the Gaussian primordial transverse-momentum dis-
tribution of primary partons. ] It may be expected
naively that from the preequilibrium quark-gluon plasma
rather high-energy dileptons are produced and that the
contribution of those is seen significantly in an intermedi-
ate region, which lies between the low-mass region which

TABLE I. Values of the parameters used in the numerical calculation (Do is the field strength which
would give the same dE/dy in the hydordynamic limit. See text for definitions of other parameters).

(GeV/fm')

10

e& (GeV/fm )

1.2
1.6

dE
dy

320
230

dN
dy

S50
580

(Gev/fm )

9.3
4.8

20 1.4
2.7

380
380

810
1060

9.6
6.5
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FIG. 11. (a) Dilepton yield calculated by using the distribution function for collisionless evolution is plotted against the transverse
dilepton mass. The physical scales are set by choosing Do/2=10 GeV/fm' and g=2. Solid lines are for qT=0 and dashed lines for
qT=1 GeV. The upper curves were computed with the final (cutoff proper energy density ef =1 GeV/fm and lower curves with
ef =2 GeV/fm'. (b) Same as (a) but with higher initial energy density 6&/2=20 GeV/fm'.

1f(r,pT, k) ——exp
2

7TP T 5(prsinhg+P(r) ),T (5.3)

where

is dominated by the thermal pairs and the high-mass re-
gion dominated by the Drell-Yan pairs. Our results,
however, do not show such an intermediate behavior.

To understand this behavior qualitatively, it is instruc-
tive to approximate the distribution function by the fol-
lowing simplified form similar to that used in Ref. 10 [see
(3.50)]:

P(r)= —f r"6(r")dr"
0

(5.4)

is the longitudinal momentum of particles at z =0, where
pTsinhg= —PL. This may be a good approximation at
large pT since, as we have shown, the distribution func-
tion at time r has a sharp peak at pl =P(r), where the
particles created at ~=0 reside. With this approximation
three integrals in the formula for the differential dilepton
yield (2.16) and (2.17) can be performed analytically, ow-
ing to the two 5 functions and the Gaussian form of the
pT dependence, ' and one obtains

dN 1
exp

dMTdyd qT M
~qT d~ qT w M —4P

exp 2+
2gbo r M' 4g@,

rrqr[M 4P (r)]-
4M gDo

(5.5)

M, =(4P',„+q,')'"=M, ,
—

(5.6)

where P,„ is the maximum value of the longitudinal

where Io(x) is the modified Bessel function of the first
kind and the integration is taken over the region of ~,
which satisfies the kinematical condition M )2P(r).

This approximate formula for the dilepton spectrum
has a derivative singularity at

momentum given by (5.4). This derivitive singularity
arises as a result of the kinematic condition M 2P(r),
which is always satisfied when MT becomes greater than
MT since M —4P ~» =MT —MT . At large transverse

S S

masses (Mz. )MT ), the spectrum is essentially Gaussian.
S

On the other hand, at lower transverse masses
(MT (MT ), the dilepton yield becomes suppressed com-

pared with the extrapolation of this Gaussian because of
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the limitation of the integral over ~ by the condition
M ~ 2P(r), which arises when MT (MT . At lower trans-

S

verse mass this constraint becomes more severe and this
makes the spectrum a shoulderlike shape. The slope of
yield grows infinitely as the transverse mass approaches
to Mz from below. This singular behavior at MT has

S S

appeared as a result of the 5-function approximation of
the longitudinal-momentum distribution and is therefore
smoothed out in the actual numerical calculation. Yet
we can still see the remnant of this derivative singularity
in our numerical result. For instance, with the parame-
ters used for Fig. 11(a), 8c/2=10 GeV/fm and g=2, we
find P „=0.77 GeV, which gives MT =1.55 and 1.84

S

GeV for qT=0 and 1 GeV, respectively; these values of
MT in fact coincide with the values of MT around which

S

the spectrum changes its shape in Fig. 11(a). We found
that P „cannot exceed 1.5 GeV within a reasonable
range of the parameters: 1 +g + 5 and dE/dy =300—400
GeV for U+U collisions. Thus our model does not pre-
dict the intermediate behavior in the dilepton spectrum
between the thermal exponential shape and the Drell- Yan
power-law shape in the region where two lines intercept.

This analysis also gives an intuitive understanding of
the origin of MT-scaling violation in the low-MT region.
The suppression of the yield at large qT and small MT is
due to the kinematical reason that the condition
M =MT qT ~ 4P (—r) severely constrains the phase
space of the available quarks and antiquarks which can
produce dilepton. We note that direction of the scaling
violation in our calculation is opposite to that caused by
the transverse flow.

The dilepton spectrum from a thermalized plasma
which undergoes a cylindrical boost-invariant expansion
with the four-flow-velocity

I I I I I I I I I I I I I I

10 6

10—9

yp
—ta

1.5 2 2.5
Mp [GeVj

FIG. 12. Comparison of the dilepton spectrum for the case of
collisionless evolution (solid and dashed lines) and the case of
hydrodynamic (thermal) evolution (dot-dashed line). The pa-
rameters for the collisionless case are the same as in Fig. 11(a).
The initial conditions of the hydrodynamic evolution were
chosen so that they give the same value for dE/dy (excluding
gluon excitations) at the cutoff time. Note that the spectrum in
the hydrodynamic limit does not depend on the transverse
momentum qT of the dilepton. Two curves below the sign
"Drell-Yan" are a prediction of the dilepton yield due to the
Drell-Yan mechanism at qT=0 (solid line) and at qT=1 GeV
(dashed line) calculated by perturbative QCD (Refs. 34 and 35).

u"=(coshacoshg, sinhacosy, sinhasiny, coshasinhg)

is given by

dX -4' dr r dp pI~(qTstnha(r, p)/T(w, p) )Ko(MTcosha(r, p)/T(r, p) ),
dMT dy d qT

(5.7)

(5.8)

where Io(x) and Kc(x) are the modified Bessel function
of the first and second kind, respectively. Since Io(x) is
positive definite and monotonously increasing function of
x for x )0, this formula predicts that in the presence of
the transverse flow a) 0 the yield increases with qT at a
fixed Mr. Since matter is cooled (and perhaps already
hadronized) when the transverse expansion becomes
significant, this hydrodynamic MT-sealing violation is ex-
pected to be significant also at relatively small M or MT.
Similar effect would arise even in the case of nonequilibri-
um evolution of the plasma if one includes the effect of
transverse expansion, which we expect, however, is not
significant in the plasma phase since the lifetime of the
plasma is 1 —2 fm in the present estimate, which is much
shorter than the transverse size of the system.

VI. SUMMARY AND CONCLUSION

We have studied dilepton emission from a quark-gluon
plasma which might be produced in the course of an ul-
trarelativistic nucleus-nucleus collision based on the
semiclassical kinetic theory. In this formalism we are
able to relax the condition of local thermodynamic equi-
librium on the one-body distribution function of the
quarks and antiquarks, a strong condition which has been
assumed in most of the earlier works. We applied this
method to the flux-tube model for ultrarelativistic
nucleus-nucleus collisions. This model assumes that a
quark-gluon plasma is created by the pair creation from
strong color electric field which spans between two
color-charged nuclei. We have computed the nonequili-
brium evolution of the quark distribution function by
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solving the Boltzmann-Vlasov equation which couples to
the field equation for the background color field for a
one-dimensional boost-invariant evolution.

It was shown that in the collisionless limit, a collective
plasma oscillation is excited spontaneously in the system
and the evolution of the quark distribution function
differs considerably from that in the local thermodynamic
equilibrium. As we have examined analytically in the
linearization approximation to the Boltzmann-Vlasov
equation, the excitation of such collective excitation is
inevitable in the boost-invariant collisionless evolution.
The amplitude of this nonequilibrium plasma oscillation
attenuates gradually because of the Lorentz-boost-
invariant longitudinal expansion. This collective behav-
ior of the plasma is a characteristic of collisionless evolu-
tion and the collisions between plasma constituents,
which drive the system toward local thermodynamic
equilibrium and thus lead to hydrodynamic expansion,
work to suppress the plasma oscillation.

We used the resultant nonequilibrium quark and anti-
quark distribution functions to compute the dilepton
spectrum and compared the result with that obtained by
assuming local thermodynamic equilibrium. Contrary to
our most naive expectation, our model predicts that the
dilepton emission from no nequilibrium plasma is
suppressed in the high-mass region and, instead,
enhanced in the low-mass region in comparison with the
spectrum obtained from equilibrium plasma.

The suppression in the high-mass region is essentially
due to the Gaussian transverse-momentum distribution in
the particle source term used in our model kinetic equa-
tion. We note that this Gaussian shape of the
transverse-momentum distribution is a consequence of
the Schwinger mechanism of the particle creation in a
constant uniform-color electric field. We have assumed,
however, a strong correlation between the longitudinal
momentum and the space-time position for particle
creation in determining the unknown longitudinal-
momentum dependence of the source term, as done in the
previous works ' so that the spreads in the
longitudinal-momentum distribution at each space-time
point arises only from the acceleration of the particle by
the field after its creation. Our result indicates that the
Gaussian shape of the transverse-momentum distribution
in the source term dominates the high-mass tail of the
dilepton spectrum in the collisionless limit, which dimin-
ishes faster than the exponential falloff of the spectrum
from equilibrium plasma. The longitudinal acceleration
of the quarks just after their creation by the remaining
strong color field is not quite significant enough to alter
this behavior at the high-mass region, although it is
essential for the excitation of color plasma oscillation. It
remains to be seen, however, whether or not a more mi-
croscopic treatment of the particle creation based on a

fully quantum-mechanical formulation of the problem
alters our result at the high-mass region.

It was shown that the effect of the collective plasma os-
cillation appears as an enhancement of the yield in the
relatively low-mass region. These pairs are produced by
the annihilation of low-energy quarks and antiquarks
while they oscillate out of phase collectively. The role of
the color plasma oscillation here is to provide an intense
and extended source of low-energy quark-antiquark Aux
for the incoherent process of qq pair annihilation into lep-
ton pair. Although our model for nonequilibrium plasma
evolution still lacks in the description of later hadroniza-
tion stage, we do not anticipate a significant change in
these behaviors: The pairs created at the .later stages of
matter evolution would only contribute to enhancement
in the low-mass regions.

We would like to note here that a large enhancement of
the low-mass dilepton pairs has actually been observed in
high-energy pp collisions, and this effect has been inter-
preted by several authors as due to the annihilation
of low-energy partons (quarks and antiquarks) produced
by the collision. Our physical picture is somewhat simi-
lar in spirit to that of these authors. We would like to
emphasize, however, that the effect we have studied in
this paper is a genuine collective phenomenon which in-
volves large degrees of freedom to participate in the pro-
cess coherently in a large space-time volume. In this
sense it should be regarded as a phenomenon unique to
nucleus-nucleus collisions, although some precursory
effect may exist even in pp or p-nucleus collisions.

We finally note that one of the characteristic behaviors
of the dilepton spectrum predicted by our model, namely,
the violation of the MT scaling in the low-mass region,
can be tested experimentally.
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APPENDIX

In this appendix we derive the formula (2.17) for the
dilepton creation rate.

We start with the following expression for 8' given by
(2.13) for the boost-invariant one-particle distribution
functions f(rpT, g') and f(r,pT, g), which we assume are
the same for all species:

d pi d p2
W(r, M, qT, g —y ) = f(& p'T ki)f(& p'T (2+'(pi+p2 q»—4~'

where g, = rj —y, and g2= g —y2. The pz integral in (Al) is carried out easily to give
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RM pr,
II'(r, M, qT, i) y—)= f ~pT ~yi &q

' f(r,pT, , pi)f(r, pT, , (2)o(l pil+ Iq —pil —qo), (A2)

where we have used d p, /E, =pT dpT dy, dq&.

Since we know that the final result of 8'is invariant by the boost in the beam direction, we have freedom to choose
any Lorentz frame, which is transformed to each other by such a boost, to calculate this quantity. It is convenient to
work in the frame where the longitudinal momentum of the pair vanishes, q, =0, or equivalently the rapidity of the pair
vanishes, y =0. We set the frame so that the direction of the pair momentum coincides with x direction:

q"=(MT, qT, O, O) .

In this frame we write

(A3)

p", =(pr coshy„pT cosy„pT sing„pT sinhy, ) . (A4)

Then we find

~q
—p, ~ =(qT+pT cosh y, —2pT qrcosrp, )'~ (A5)

The argument of the 6 function,
~ p, ~

+
~ q

—p, ~

—
qo, therefore vanishes at

cp
=+arcsin

[pr qT
—(pT MTcoshy, —M /2) ]'

p'T, 9'T

=+0'o ~

for pT such that p pT p+, where
1

M /2p+=
~Tcoshy1 + g T

Performing the p integral in (A2), we finally find

(A6)

(A7)

pT,f (& pT, Ki)f «pT, 4)
II'(r, M, qT, r1)= &pi &pT

2~ — i'- ' [pT qT
—(pT MTcoshy, —M /2) ]' (A8)

where the arguments of the antiquark distribution are related to the integration variables by the energy-momentum
conservation, p~2 =q~ —p"„which immediately gives

pT2 [MT 2MTpTi cos ( q ki ) +pT 1— (A9)

To find the relation between $2 and integration variables, we define a vector s"=(sinhr), 0, 0,cosh') and calculate
s„p", +s„p~2 =s„q",which yields

MTsinhi) —pT sinhg,
sinhg2 = (A 10)

Formula (AS) coincides with (2.17), except that we have replaced r) —+g to recover the manifest boost invariance.
In the limit of qz. ~O, where pT =pT and y, = —y2, the pT integral in (A8) can be carried out analytically, and one

1 2

finds a more compact formula

RM 1
W(r, M, O, g)= dg, 2 f(rpr, g, )f(r,pT, (2),4~ —~ cosh (g —g, )

where pT=M/[2cosh(r) —gi)] and gz=2rI —gi.

(A 1 1)
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