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The physical mechanism of multihadron production in high-energy nondiffractive collisions is

discussed based on the quantum coherent state. A remarkable agreement is obtained between the
theoretical results and experimental data in respect of the high-order normalized moments at c.m.
energies from 11.5 to 900 GeV for the full phase space. Predictions are made for Fermilab Tevat-
ron, CERN Large Hadron Collider, and Superconducting Super Collider energies by using an
empirical formula for (n No ) and our relation involving the parameter A, .

In recent years, an increasing interest in strong-
interaction physics has been encouraged by the order-of-
magnitude increase' of center-of-mass (c.m. ) energy v s
due to the successful operation of the CERN SppS and
Fermilab Tevatron colliders and the planned future
operation of the CERN Large Hadron Collider (LHC)
and the Superconducting Super Collider (SSC). The most
significant feature in the vast majority of collision pro-
cesses of two hadrons at high energy is the creation of a
number of low-transverse-momentum hadrons that form
rather complicated multihadron final states. Most physi-
cists believe the theory of quantum chromodynamics
(QCD) to be our best theoretical candidate for strong-
interaction physics at the moment; within QCD hard
processes with large momentum transfers can be success-
fully described in the perturbative calculus, but the un-
perturbative part, including the soft processes with small
momentum transfers, still cannot be understood by the
QCD. For this reason we need phenomenological
analysis of experimental data on multihadron production
in high-energy collisions.

Although the possibility of intermittent behavior of
spectra of the hadrons produced in high-energy collision
was investigated as a new way to understand the dynam-
ical fIuctuations, it is too early to draw any definite con-
clusions at the present stage. There is plenty of work to
be done before we shall be able to assess the real meaning
of the intermittent phenomenon. While studying inter-
mittency, we should pay some attention to the situation
of the multiplicity distributions as a whole. It is obvious
that the multiplicity distributions can be considered as
the mostly readily obtainable and the simplest charac-
teristics of multihadron final states. Multiplicity distribu-
tions contain much information on the multihadron pro-
duction mechanism arid from the phenomenological
study of multiplicity distributions there were several
models (see the excellent review by Carruthers and
Shih ). In this paper we show that the higher-order mo-
ments of multiplicity distributions of the available
nondiffractive pp and pp experimental data in a broader

energy region from v's =11.5 to 900 GeV can be de-
scribed by the quantum coherent production mechanism
and that predictions for higher energies can be made in
the near future.

It is shown by experiment that most of the produced
hadrons of the final states in high-energy hadron-hadron
collisions are pions, which obey the Bose-Einstein statis-
tics. Therefore, we can discuss the physical mechanism
of multihadron production based on the quantum
coherent states. As is well known, the best thing one can
do is to measure the probability of finding particles in a
state with minimal uncertainty, i.e., in a coherent state.

We recall that the S matrix is defined by

which represents that the measured outgoing final state
~ g,„,) comes from the incoming initial state

~ g;„) as

pout S pinS

where p;„=~/;„)(g;„~ and p,„,=~/, „,)(P,„,~

are density
matrices of the incoming initial state and the outgoing
final state, respectively. Although the dynamical repre-
sentation of p,„, might be more complicated than the S
matrix, we can construct p,„,according to the experimen-
tal data analysis and with the aid of the coherent-state
description of quantum mechanics. By studying the mul-
tihadron final states that almost involve pions, we know
that the best approximation is to adopt a set of boson-
field operators, which is analogous to oscillator coherent
states if we do not consider momentum and other degrees
of freedom.

Consider a density matrix p represented by the quan-
tum coherent state ~g) as

p Jd'kd(k)lk&&kl

where g is a complex variable and P(g) is a weight func-
tion with real value. Expanding ~g) in the basis of num-
ber representation and normalizing we have
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In general, the weight function P(g) is taken as a Gauss-
ian one,

I g
—P I

'
(6)

where a and P are complex parameters. Inserting Eqs.
(4) and (6) into Eqs. (3) and (5), it leads to the distribution
ofn

The distribution of number n, P(n) is related to the densi-
ty matrix as

ly), which "forget their history" after the materialization,
because of the violent interactions among the gluons
(and/or sea-quark pairs). Taking an approximation for
simplicity, we assume that such four hadron-producing
sources are independent.

We now calculate the higher moments of the multipli-
city distributions and compare them with the existing ex-
perimental data.

Let us first consider the contribution from the frag-
mentation region F. The produced hadrons in F stem out
of sources FR and FL. As a result of fragmentation of
valence quarks in colliding objects R and L, both of FR
and FL should appear to be states with strong coherent
character, which means that the ratio y~ ~. From Eq.
(6), the weight function should be

pp(g)=&(g —p) .

P(n)=
f2n

(1+ f~f )"+' I+ f~f
exp Inserting it into Eqs. (3) and (5), the distributions of the

number of produced hadrons in sources FR and FL can
be obtained and have the same form of the Poisson one as

2n

Pli(n) =, exp( —P ) .

where L„ is the Laguerre polynomial. For the conveni-
ence of the following discussion, we introduce a ratio of
signal to noise, y= Pf /laf .

We now return to the discussion on the multihadron
production in high-energy hadron-hadron collisions. The
physical picture is based on the following hypotheses,
parts of which are very well known and have already
been checked experimentally.

(i) Hadrons are spatially extended objects of many inte-
rior degrees of freedom.

(ii) In terms of the conventional quark-gluon picture, 6

hadrons are made out of valence quarks and gluons, and
on the average about 35 —50% of the momentum of a
high-energy hadron is carried by its valence quarks and
the rest by the gluons (and/or sea-quark pairs).

(iii) At high energy the colliding objects, one of them
named R and its counterpart named L, in nondiffractive
hadron-hadron collision processes may go through each
other. While going through and interacting with each
other, they lose a considerable part of their energies and
momenta.

(iv) While a part of this "lost energy" from a colliding
object R (or from the counterpart L) will be brought by
the fiying valence quarks of R (or of L) and then decays
into a number of hadrons in the fragmentation region
(denoted by F), another part of this lost energy from R
(or from L) will be detained due to the interactions be-
tween the gluons (and/or sea-quark pairs) in the colliding
objects R and L and then materializes a number of had-
rons in the central region (denoted by C).

(v) In fragmentation region F there are two hadron-
producing sources, one from R and another from L
(denoted by FR and FL, respectively), which were direct-
ly fragmented from the valence quarks of R and L and
should strongly "keep their remembrance of the case be-
fore the collision, " while in central region C, although
there are also two hadron-producing sources, one from R
and another from L (denoted by CR and CL, respective-

exp

Using Eqs. (3) and (5) we find the Bose-Einstein distribu-
tion,

P („)
f2) +1 (13)

As discussed above, the distributions of the number of
the produced hadrons ncz and n&L, in sources CR and
CL, respectively, have the same form as Eq. (13) and the
same mean value

Because of the symmetry of pp (or pp) collisions in their
center-of-mass system, the mean values of the number of
produced hadrons n~~ and nII in sources FR and FL are
the same, i.e.,

(nF~ ) = (nFL ) = lp '=
—,'(nF ),

where (nF ) is the mean value of multiplicity nF in the
fragmentation region F. Therefore, the multiplicity dis-
tribution for region F is

(nF )""
PF(nF)= exp( —(nF)),

nF!

which is followed by a trivial calculation with nF=~ra +~FL.
Next, we consider the contribution from the central re-

gion C. Because the interactions in region C are quite
violent and in confusion due to the complexity of ex-
change among the gluons (and/or sea-quark pairs), the
states of the hadron-producing sources CR and CL are
characteristic of incoherence (or chaos). This signifies
that the ratio y ~0, and the corresponding weight func-
tion as
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TABLE I. Mean multiplicities (n No ) and chaotic producing
ratio I, in the energy region from 11.5 to 900 CseV. Data taken
from Ref. 4.

&s GeV

distributions of nc and nF, i.e., Eqs. (11) and (15). The
higher normalized moments of the multiplicity distribu-
tion in the full phase space is defined by

1 1.5
13.8
19.7
23.9
27.6
30.4
44.5
52.6
62.6

200.0
540.0
900.0

6.35+0.08
7.21+0.06
8.56+0. 11
9.25+0.20
9.77+0. 16

10.54+0. 14
12.08+0. 13
12.76+0. 14
13.63+0.16
21.40+0.80
29.10+0.90
35.10+0.60

0.264
0.267
0.328
0.382
0.454
0.445
0.465
0.488
0.472
0.621
0.715
0.748

(14)

where

i=0

By taking the derivation from Eqs. (11) and (15), it is easy
to get

(18)

and

where (nc) is the mean value of multiplicity nc in the
fragmentation region C. It is known that in the case of k
independent sources having the same distribution form as
Eq. (13), the distribution is the negative-binomial one.
For our case we have k =2 and the multiplicity distribu-
tion of nc a

3 (i,j ) =( —1)J t1t2. . . t.

where the coefficient A (i,j) is defined by

(20)

I'c(nc ) =
nc+1 (n ) "c .

nc (nc&+2 (nc)+2

2

(15)
Let A, be the ratio of the mean multiplicities of the cen-

tral region to the full phase space; then

(n
where nc =ncz+ncl

The observed multiplicity in the full phase space, nND
(ND stands for nondiffractive collisions) is the sum of nz
and nF and its distribution can be given by folding the

&nND&
(21)

It is quite evident that k represents the contribution of
the central region, i.e., of the chaotic production of had-

TABLE II. Higher-order moments, C (q =2—5), in the energy region of Serpukhov and Fermilab.
Theoretical values given in the first row of each energy in Table I are obtained by taking data-fitting pa-
rameter A, ; the second row of each energy are calculated by taking parameter A, from Eq. (22). Experi-
mental data in brackets are taken from Ref. 4.

v's (aeV)

11.5 1.1923
1.1928

(1.192+0.009 )

C3

1.6274
1.6293

(1.630+0.030)

C4

2.4891
2.4944

(2.490+0.080)

4.2073
4.2220

(4.200+0.200)

13.8 1.1743
1.1925

(1.175+0.006)

1.5666
1.6368

(1.570+0.020)

2.3308
2.5366

(2.330+0.040)

3.8209
4.3831
(3.800+0. 100)

19.7 1.1706
1.1938

(1.174+0.010)

1.5620
1.6524

(1.570+0.030)

2.3394
2.6071

(2.340+0.080)

3.8920
4.6345

(3.800+0.200)

23.9 1.1811
1.1950

(1.190+0.020)

1.6064
1.6611

(1 ~ 620+0.060)

2.4790
2.6430

(2.470+0. 140)

4.2947
4.7581

(4.200+0.300)

27.6 1.2054
1.1962

(1.210+0.010)

1.7051
1.6685

(1.720+0.050)

2.7839
2.6716

(2.760+0. 130)

5.1805
4.8539

(5.000+0.400)
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TABLE III. Higher-order moments, Cq (q =2—5), in the energy region of the CERN ISR. Theoreti-
cal values given in the first row of each energy in Table I are obtained by taking the data-fitting parame-
ter A, ; the second row of each energy are calculated by taking parameter A, from Eq. (22). Experimental
data in brackets are taken from Ref. 4.

&s (GeV)

30.4 1.1939
1.2032

(1.200+0.010)

C3

1.6629
1.6998

(1.680+0.030)

C4

2.6627
2.7755

(2.640+0. 100)

C5

4.8460
5.1737

(4.600+0.300)

44.5 1.1909
1.2088

(1.200+0.010)

1.6567
1.7278

(1.670+0.030)

2.6564
2.8749

(2.630+0.100)

4.8557
5.4954

(4.600+0.300)

52.6 1.1974
1.2112

(1.210+0.010)

1.6846
1.7395

(1.700+0.030)

2.7460
2.9159

(2.700+0.090)

5.1257
5.6278

(4.800+0.300)

62.6 1.1848
1.2157

(1.200+0.010)

1.6368
1.7599

(1.670+0.030)

2.6058
2.9849

(2.600+0.080)

4.7318
5.8464

(4.400+0.200)

rons in high-energy hadron-hadron collisions. By fitting
the available experimental data at twelve c.m. energies
&s from 11.5 to 900 GeV, we obtain the corresponding
values of A, which are shown in Table I. The second
column in Table I represents data of the mean multiplici-
ties (nND) corresponding to each energy. One can see
from Table I that the ratio A. increases with c.m. energy
&s, which might indicate that the interactions among
the gluons (and/or sea-quark pairs) will become stronger
and the chaotic production of hadrons will increase as
&s rises. As a result of such an efFect the contribution
from the central region will be greater.

Using Eqs. (16)—(21) and taking the values of (nND)
and A, in Table I as the parameters we can calculate the
higher normalized moments C (q =2—5) for these
twelve energies. The calculated results are collected in
Table II for Serpukhov and Fermilab energies, in Table
III for CERN ISR energies, and in Table IV for CERN
SOS energies (in the first rows of each energy). The ex-

(nF ) —(2+@)=1n&s (22)

where the corrected parameter e is 0.22. In terms of this
relation we can directly calculate the value of A, for any
c.m. energy &s without the data fitting as an input. To
repeat the calculation of the higher normalized moments
we obtain a set of new results which are shown in Tables
II—IV (in the second rows of each energy). They agree
with the experimental data too.

For making predictions at Tevatron, LHC, and SSC
energies we take the empirical formula from the experi-
mental fit

perimental data taken from Ref. 4 are also shown in
Tables II—IV for comparison (in the third row of each en-
ergy). One can see that all calculated normalized mo-
ments are in excellent agreement with the observed data.

From Table I we And an interest relation between the
mean multiplicity of the F region, (nF ), and the c.m. en-
ergy v's as follows:

TABLE IV. Higher-order moments, Cq (q =2—5), in the energy region of the CERN SppS. Theoret-
ical values given in the first row of each energy in Table I are obtained by taking the data-fitting param-
eter A, ; the second row of each energy are calculated by taking parameter k from Eq. (22). Experimental
data in brackets are taken from Ref. 4.

&s (GeV)

200

540

1.2395
1.2571

(1.260+0.030)

1.2900
1.2846

(1.310+0.030)

C3

1.8676
1.9359

(1.910+0.120)

2.0802
2.0580

(2.120+0.110)

3.3534
3.5880

(3.300+0.300)

4.0692
3.9937

(4.050+0.320)

7.0409
7.7907

(6.600+0.900)

9.4063
9.1519

(8.800+ 1.000)

900 1.3082
1.3045

(1.340+0.030)

2.1587
2.1429

(2.220+0. 130)

4.3426
4.2879
(4.300+0.400)

10.3519
10.1631
(9.300+ I. 100)
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TABLE V. Prediction of higher-order moments, C~ (q =2—5), in the energy region of the Tevatron,
LHC, and SSC. Theoretical values are calculated by taking parameters (nNn) and A, from Eqs. (22)
and (23).

&s (TeV)

1 ' 8
16.0
40.0

1.3864
1.4196
1.4642

C3

2.4941
2.6409
2.8391

5.5454
6.0987
6.8623

14.7129
16.8422
19.8771

( n ND ) = ( 2.7+0.7 )
—

( 0.03+0.21 )lns

+(0.167+0.016)ln s (23)

TeV, respectively. In Table V the predicted values of the
higher normalized moments are shown.

to estimate the mean multiplicities in the full phase space.
Corresponding to the c.m. energies &s =1.8, 16, and 40
TeV we obtain (nND ) =39.78, 64.72, and 77.07, respec-
tively. Using the relation of Eq. (22) and the estimated
mean multiplicities we estimate the values of A, =0.756,
0.816, and 0.834 for c.m. energies (/s =1.8, 16, and 40
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