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In this paper we give an analytical derivation of the large-order behavior of the perturbation
series for both the ground state and the excited states of the supersymmetric anharmonic oscillator
and of the anharmonic oscillator obtained from the supersymmetric case by varying the strength of
the ferrnion coupling. The results which are obtained with the help of instanton calculus coincide
with those obtained numerically in previous work. The large-order perturbation series of the
ground state vanishes in the supersymmetric case, whereas away from the supersymmetric point the
perturbation series diverges factorially. The perturbation series of the excited states diverges fac-
torially both at the supersymmetric point and away from this point.

I. INTRODUCTION

The large-order behavior of the perturbation series for
the anharmonic oscillator and its connection to the semi-
classical limit was investigated in an early paper by
Vainshtein. ' However, this paper did not get much at-
tention, and the subject only got widely known after the
work of Bender and Wu ' who, at that moment, were not
aware of the work of Vainshtein. It was found both nu-
merically and by a WKB approximation that the
coefficients of the perturbation series for the eigenvalues
diverges factorially. Later, with the help of instanton cal-
culus it was shown that this type of large-order behavior
is generic to a much wider class of theories including field
theories in 2, 3, and 4 dimensions. The original re-
sults of Bender and Wu could be reproduced with this
technique. In supersymmetric quantum mechanics, as in
any supersymmetric theory, ' the ground state vanishes
to all orders of perturbation theory. This raises the ques-
tion whether the large-order behavior of the excited
states of supersymmetric theories is special.

In previous papers' ' " we investigated this question
numerically. It was found that for the excited states of
supersymmetric quantum-mechanical models the large-
order behavior was generically of a factorial type. How-
ever, by varying the couplings in the potential away from
their supersymmetric values, it was seen that the super-
symmetric point is a point of bifurcation in the sense that
the large-order behavior changed in some discontinuous
way as one moved the couplings through their supersym-
metric values. This demonstrated the existence of a can-
cellation of contributions from large-order boson and fer-
mion loops.

The aim of this paper is to give an analytical derivation
of these numerical results and also to extend them using
the instanton techniques of Lipatov. ' The dependence
of the ground state of the double well on the fermion cou-
pling was already investigated by Balitsky and Yung. '

We study the large-order behavior of both the ground

state and the excited states for two different potentials:
the double well and the triple well. We will be able to
show the vanishing of the ground-state energy but also
recover the generically factorial results for the excited
states. As such we will study the theory for the "Yukawa
term" for an arbitrary value of its coupling in order to be
able to study the deviations from supersymmetry and
trace in a clear way the vanishing of the ground-state en-
ergy in the supersymmetric case.

As we will see in Sec. III the fermionic zero modes play
an important role. They give rise to a zero fermion deter-
minant in the presence of one instanton or one anti-
instanton. Therefore, the leading contribution originates
from classical paths that are a superposition of an instan-
ton and an anti-instanton. These paths are not classical
solutions. However, they are the closest one can come to
classical solutions: they are streamlines' ' which Aow
through the classical configuration space as a river Bows
through a mountainous landscape. As we will show in
Sec. IV, to leading order in the instanton —anti-instanton
separation we do not need an explicit streamline solution,
and it is sufhcient to expand about a configuration given
by the superposition of an instanton and an anti-
instanton. The fermion determinant for this
configuration is treated analogous to the fermion deter-
minant of QCD instantons. ' '' ' It is factorized in a
factor that involves the zero modes and another factor
that involves the nonzero modes (this procedure was also
used in Ref. 18). As we will see in Sec. V, the latter fac-
tor is calculated in the one-instanton approximation,
whereas the first factor is calculated exactly (it would be
zero in the one-instanton approximation). This pro-
cedure amounts to a semiclassical approximation and
suffices to obtain the large-order behavior of the pertur-
bation series for the eigenvalues.

II. LARGE-ORDER PERTURBATION THEORY

In order to investigate the Borel resummability of a
theory we study the large-order behavior of the perturba-
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tion series for its eigenvalues. In this section we outline
some of the steps taken when deducing the large-order
behavior. By necessity the discussion wi11 be somewhat
generic. Reviews on this subject can be found in Refs. 19
and 20.

When we denote the eigenvalues for zero coupling con-
stant by E&, the eigenvalues for coupling constant g can
be written as

Ei(g ) =Ei +5Ei(g ) . (2.1)

The corrections to the energy levels 5E&(g) are analytic
functions of g except in some interval [a,b] of the real
axis. For the usual anharmonic oscillator this interval is
( —~,0], while for potentials in this paper both this in-
terval and the interval [0, ~ ) occur. A consequence of
this analyticity property is that

die points (given by the solutions of the classical equa-
tions of motion) and taking into account that
6(5E&(g ) ) —+0 for g ~0, we find in this limit

Pb, (—5E&(g))exp( PE—
&
)= gD exp( —S/g), (2.7)

sp

where D is a factor resulting from the Gaussian oscilla-
tions about the classical solutions of the equation of
motion. The sum is over all nontrivial saddle points. In
the case of zero modes this sum also includes an integra-
tion over the corresponding collective coordinates with
the integration contour determined by C+ and C
Combining Eqs. (2.7) and (2.4) we obtain

pa/exp( PE& )—= f k, gD exp( —Slg),p 1 b dg'

1
2~' ' g sp

g~
~

5Ei(g')dg'
5E((g ) =

27ri g ™(g'—g )

gm f b 6(5Ei(g'))dg'
27ri a g™(g'—g )

(2.2)

which is the final result of this section.

III. THE PERTURBED SUPERSYMMETRIC
ANHARMONIC OSCILLATOR

(2.8)

where h(5(E&(g)) is the discontinuity of 5E&(g) across
[a,b]. The integer m is adjusted such that when distort-
ing the contours the contribution at infinity vanishes.

The perturbation coe%cients are given by

5Ei(g )
a/=

2 gdg k+2&l g
(2.3)

where the contour encircles the origin counterclockwise.
Substituting 5E&(g ) from Eq. (2.2) into (2.4) we find that

b &(5Ei(g'))
ak dg

2&l a g
(2.4)

Consequently, to find the large-order behavior requires
the discontinuity b, (5E&(g)). However, for k —+~ it
turns out that the above integral is dominated by the re-
gion g —+0, and in this region the discontinuity also ap-
proaches zero.

The energy levels can be evaluated using the relation
between the partition function and the path integral

In this paper we study the effect of fermions on the
large-order behavior of the eigenvalues of the anharmon-
ic oscillator. We do this in a quantum-mechanical model
in which the fermions are coupled to the potential via a
Yukawa-type interaction. The model is defined by the
Euclidean action

S= dt —,
' x +8" + +c8"' o.

2 (3.1)

where o.
2 is one of the Pauli spin matrices and a time

derivative is denoted by a dot. The functions 8 ' and 8"'
are the first and second derivative of the function W(x ).
For c=1 the model is supersymmetric. The supersym-
metry transformation is given by

5x =go 2$,
5g =o2 iigtix

—W'g

(3.2a)

(3.2b)

where g is a fixed Grassmann variable. Below we will
study the large-order behavior for two different choices of
8":

P(g )—:Tr exp( PH)— 8,' =x+gx", n =2, 3 . (3.3)
qexp —S g

q( —P/2) =q(P/2)

where S is the Euclidean action. The path integral is
defined for some real coupling, but we may actually ex-
tend it to complex g by rotating g into the complex plane,
and, at the same time, rotating the q(r) integration from
the real axis to an appropriate contour in the complex
q(r) space. By rotating g to be above and below the
discontinuity, S=—f dt ,'(x +8" +g g —+cgW"gozt/i) .

1
(3.4)

[The ground state of the model (3.1) for n =2 was also
studied in Ref. 12.] To exhibit clearly the dependence on
the coupling constant we introduce new variables
g

' " 'x ~x and redefine the coupling constant by
g

" '~g. In terms of these variables the action is
given by

P(g+iO) —P(g —iO)= f 2)q exp( —Slg)
C+

—f 2)q exp( —S/g), (2.6)

where C+ and C are the contours in the q(r) space re-
sulting from the above rotations. Further distorting the
contours C+ and C to run through the nontrivial sad-

Now, g plays the role of Planck's constant. As usual the
fermionic term is subleading in g.

In order to evaluate the large-order behavior we have
to evaluate the functional integral corresponding to the
action (3.1). This will be performed with the help of a
saddle-point approximation. The saddle points are given
by the solutions x,&(t ) of the classical equations of motion
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A,(x„)=x,i
—W"(x,1 ) W'( x,1 ) =0 . (3.5)

The classical solutions with a finite action are called in-
stantons and anti-instantons. As an example we give ex-
plicit expressions for the one-instanton solutions. For
n =2 we find

Fluctuations in the directions of the zero modes cannot
be evaluated via a saddle-point approximation. They
have to be treated separately. Their contribution is
denoted by the factors D~zM and DFzM.

We will first discuss the contribution of the bosonic
zero modes. They obey the equation

(3.6) Qxo(t)=0 . (3.14)

and for n =3 the instanton solutions are given by

l

( I+ —2t)1/2 (3.7a)

By diA'erentiating the classical equation of motion that
solution is given by

xo(t)=x„(t) . (3.15)

l
X

( I +e
—2t)1/2 (3.7b)

The anti-instanton solutions are obtained by replacing t
by —t. Instantons or anti-instantons located at ~l or ~~,
respectively, are obtained by translating the correspond-
ing solution in time.

We evaluate the path integral by expanding a given
path x ( t ) around a classical solution x„:

This solution corresponds to the translation of the instan-
ton solution. It can be proved that this is the only boson-
ic zero mode. Instead of integrating over the coefficient
of this mode we will integrate over the position of ~ of the
instanton. This change of variables gives rise to a Jacobi-
an. It can be shown ' that its value is equal to
(/I o/21r)', where Ao is the absolute value of the action
of a single instanton. The contribution of the bosonic
zero mode is thus given by

x(t)=x„(t)+g(t) . (3.8) [Ds (xI )] '
(

.
) =(/I0121r)' f dr( ), (3.16)

Up to second order in g we obtain, for the action (see Ref.
21),

S=S(x„)+f dt A, (x,1)g+ f dt gQ(x, 1)g

+ f dt(g Q +cW"go21t/),

where Q(x,1) is defined by

(3.9)

Q(x„)= — + W" (x„(t) )
dt

+ W'(x„(t)) W'"(x,i(t)) . (3.10)

Most simply x,1
is a classical solution for which A, (x,1)

vanishes. To leading order in g we have to evaluate [see
Eq. (2.7)]

g D(x„)exp
SP

S(x,i )
(3.11)

D(x ) [DzM( )DNzM( )]
—1/2

X [DZM( )D NZM( ) ]1/2 (3.12)

The nonzero-mode (NZM) parts of the bosonic and the
fermionic determinants (a prime indicates that zero ei-
genvalues are excluded in the calculation of the deter-
minant) are defined by

where the sum is over all saddle points (including an in-
tegration over the collective coordinates). The contribu-
tions of the Gaussian oscillations around a classical solu-
tion, denoted by D(x,1 ), can be factorized as

where the integrand is constituted by all other contribu-
tions to the partition function.

The fermionic zero modes obey the equation

+co W2" { x(t )) y(t ) =0 .
dt

(3.17)

The solutions of this equation are given by

I
(&)=i' exp + f cW"(x„)dr'

oo +i

=NW"(x,—,(t))
+& (3.18)

where N is a normalization factor (an explicit solution for
the potential for n =2 [see Eq. (3.3)] can also be found in
Ref. 12). In this equation, the upper sign holds for the
instanton and the lower sign for the anti-instanton. The
existence of a normalizable zero mode generically does
not depend on the value of the constant c but follows
from the topological properties of the classical solution.
For an extended discussion we refer to Secs. 3e and 6 of
the review by Gendenshtein and Krive. Only one of the
two zero modes corresponding to an instanton is normal-
izable (an explicit discussion can be found in Ref. 25).
Obviously, in the presence of a zero mode the fermion
determinant DF in Eq. (3.12) is zero and the one-
instanton contribution to the partition function vanishes.
In the next section we will study the leading nonvanish-
ing contribution which is given by a path that is a succes-
sion of an instanton and an anti-instanton.

NZMDs (x,
1
)—:det' — + W' (x,1)

dt

DFNzM(x„) =—det' +co,W"(x„)dt

(3.13a)

(3.13b)

IV. CLASSICAL ACTION OF THE PERIODIC
INSTANTON —ANTI-INSTANTON CONFIGURATION

A path given by the succession of an instanton and an
anti-instanton does not allo~ for a normalizable zero
mode. The reason is that the topological charge of this
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A(xt„)=6(xt+1)(x~+ 1)(1+xi+x„),
A(xtg )=3(xt 1 )(xg l )[5xt +5xg +5xg +5xtxg

—Si(xt +x„)—1],

(4.4a)

(4.4b)

respectively. From the explicit expressions given in Eqs.
(3.6) and (3.7) it can be easily verified ' that the factor
(xt+1)(x„+I) in Eq. (4.4a) is of O(e ). Analogously,
we find that the factor (xt —i )(x~ —i ) in Eq. (4.4b) is of
O(

—29)

The path integral (2.5) is over all periodic trajectories
q(t) with q( —p/2)=q(p/2). In analogy with the calo-
ron solution of QCD, it is possible to construct from
xt~(t) a path that satisfies these boundary conditions.
The solution is given by

X(t)= g xt„(t—np) . (4.5)

path is zero (it converges to the same value for t~+ ~).
Such a path is not a solution of the classical equations of
motion. Therefore, the linear term A, ( x(t )) does not van-
ish, and after completing the square in Eq. (3.9) the clas-
sical action is given by '

S=S(x„) ,' —f—dtdt'A(x(t))Q '(t, t')A(x(t')) . (4.1)

The additional term is of O(A, ), and below we will con-
struct a path for which this term can be neglected to
leading order in our expansion parameters.

For the instanton —anti-instanton path

xt„(t ) =xt(t rt )+—x„(t r~ ) —xt( ~—),
t e ( —~, m ) (4.2)

the linear term is equal to

A (xt~ ) = [xt xt ( ~ ) ][—x„x„—( —~ ) ]F(xt,x„), (4.3)

where F is a function free of singularities (note that
A, (xt )=A,(xz )=0 [see Eq. (3.5)]}. For n =2 and n =3 we
find

f'" d.„f"' d.,—p/2 —p/2 2' (4.6)

in the path integral. Changing the variable to
s =(rt+r„)/2 and O=r„rt and ta—king into account
that, due to the translation invariance and the periodicity
in the ~l and the ~~ variables, the integrand only de-
pends on 9, we find that the factor (4.6) becomes

(4.7)

After the integration over the center of mass its position
has to be fixed. For definiteness we will locate the instan-
ton at —0/2 and the anti-instanton at 0/2.

Next we evaluate the classical action for pseudoparti-
cles fixed at these positions. For n =2 we obtain, for the
action of the periodic configuration X(t ) of Eq. (4.5),

t ~—~ we conclude that the only other relevant contri-
bution is from neighboring instantons. The magnitude of
these contributions to the linear term A, (x ( t ) } is of
O(e '~ '), both for n =2 and n =3. Therefore, we have
shown that to leading order in the small parameters e
and e '~ ' the quadratic term in Eq. (4.1) does not con-
tribute to the instanton interaction.

For a more systematic treatment of these "almost clas-
sical solutions" we have to generalize the notion of a clas-
sical solution to the so-called streamline
configurations. ' ' ' ' They are defined as paths for
which the linear term vanishes in all directions except for
one (which is called the streamline). Since we are in-
terested only in the leading-order contributions to the
instanton —anti-instanton interactions there is no need to
use this concept (see e.g., Ref. 12 for an extensive discus-
sion of streamlines and their relevance in the present con-
text).

The instanton —anti-instanton ansatz Eq. (4.1) has two
approximate zero modes. As explained above we may
choose to integrate over the collective coordinates ~1 and

of the instanton and the anti-instanton. This yields
the factor

We already have shown that the linear term A,(x(t )) is of
O(e ) (for n =2) or O(e ) (for n =3) for each of the
terms contributing to this sum. From the observation
that xt~(t) decreases exponentially both for t +~ and—

I

S,i= —,
' f dt[X + W' (X)]=—,'+S;„, .

The instanton interaction 5;„, is given by

(4.8)

S;„,=2 g f dt[xt(n )+xt(n )+xz(n )+xz(n )][I +x(tn )][1+x„(n)]—P/2

+2 g f dt[ x(tn )+xt(n )+x~(n )+x„(n )][xt(n )x„(n —
) 1+x(n )xt(n+1)]—P/2

+o( -")+o( -"i'-") (4.9)

where xt(t np) and—x~(t —np) are denoted by xt(n ) and x„(n ), respectively. The second term on the right-hand side
results from the instanton —anti-instanton pairs in the intervals [(n —1)/3/2, np/2], n HZ, and the third term is from
neighboring instantons and anti-instantons in intervals [(n —1)p/2, np/2] and [np/2, (n+ 1)p/2], n EZ. They are of
O(e ) and O(e '~ '), respectively. The sum over n and the integral over the interval [ p/2, /3/2] can be r—eplaced
by a single integral from —~ to ~ without an additional summation over n. To leading order the evaluation of this in-
tegral is straightforward and we obtain, for the classical action,

S,i= —,
' —2[e +e ~]+O(e = )+O(e '~ ') for n =2 . (4.10)
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The calculations for n =3 proceed along the same lines but are slightly more involved. In this case we obtain, for the
classical action,

S„=,' jd—t[X + W (X)]=—
—,'+S;„,

where the instanton interaction S;„, is given by

(4.11)

S;„,=3 g J dt[xl(n)+xI(n )+xz(n )+xz(n )][xI(n ) i —][xz(n ) i —][xJ(n )+x~(ri )]—P/2

+3 g J dt[xI(n )+xI(n ) +xz(n )+x„(n )]
n=—

X [x„(n )xI(n+1)[xI(n+1)+x„(n ) ]+x„(n—1)xI(n )[xI(n )+x~(n —I)]]
+O(

—40)+ O(
—2(P—8)

) (4.12)

Substitution of the explicit instanton and anti-instanton solutions (3.7a) and (3.7b) enables us to obtain S;„, in a straight-
forward way. To leading order in the pseudoparticle separation we find

S,)
= ——'+(e +2e ) )+O(e )+O(e 'i ') for n =3 . (4.13)

Note that the exponents are proportional to the curvature of the potential. The action (4.10) and (4.13) will be used in
the evaluation of the partition function according to Eq. (3.11)

V. FLUCTUATIONS ABOUT THE CLASSICAL PATH

We consider fiuctuations about the path X of Eq. (4.5) on the interval [ —/3/2, P/2]. We study both the case of the
double well and the triple well. A similar discussion for the double well can be found in Ref. 12. For an
instanton —anti-instanton configuration on the interval [

—P/2, P/2] we have the approximate fermionic zero modes
Xl(t+0/2) and X„(t—9/2) [see Eq. (3.18)]. Their contribution to the fermion determinant is given by

r

(Dz (x )]' '= Id/„dglexp —
—,
' J' dt((IXI+gzXz )(8, +ccr2W")((IXI+gzXz )—P/2

The Grassmann integration results in the square root of a determinant of a 2 X 2 matrix:

(X, l~, +,W" iX, & (X, ~~,+,W" lx, &

(5.2)

Note that this matrix is skew symmetric (its diagonal elements vanish). The contributions to the overlap matrix ele-
ments of the instanton —anti-instanton pairs that are not located in the interval [

—P/2, 13/2] are subleading in e
Therefore, we can replace X(t) by &xi(t) and extend the range of the t integration from —~ to ~ to first order in e
The square root of its determinant is thus given by

[DF (X)]'~ = J dt X„(B,+ca 2W"(xl~ ))XI+0(e ~) .

To leading order in e we have

W"(xI„)=W"(x~)+ W"(x„)+I+O(e ) for n =2,
W"(xi& )= W"(xz)+ W"(xz )+2+0(e ) for n =3 .

(5.3)

(5.4a)

(5.4b)

By using the equations of motion for the fermionic zero modes yl and g z we can rewrite the overlap matrix element

[DF (X)]' = —f dt X~ (
—8, —c )Xl for n =2,

[D~ (X)]' = —1 dt X~( —8, —2c)XI for n =3 .

(S.sa)

(5.5b)

In this equation we substitute the explicit expressions (3.18) for the zero modes and evaluate the integrals to leading or-
der in e . To leading order in e and e ~ the final result for the contribution of the fermionic zero modes is given by

[D (X)]' '=X'2 'e ™~ for n =2,
[DzM(X)]1/2 Pf2e

—28c for n
—3

where X is the normalization factor defined by Eq. (3.18).

(5.6a)

(5.6b)
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The contribution of the fermionic nonzero modes is calculated by factorizing the determinant DF in one-
pseudoparticle contributions. They can be obtained conveniently by generalizing an identity derived by Salomonson
and van Holten for the supersymmetric case (c =1) to arbitrary values of c. Using the technique discussed in Appendix
A of Ref. 25 we have shown that

T2
det'((), +co2 W" ) = exp ——f dr' W"(x (r'))+ —f dr'W"(x (r') )[W'(x(r))]' 2 Ti

f [W'(x(r'))dr'] '
1

[ W'(x(T, ))W'(x(T2))]'
(5.7)

The determinant has been evaluated for fermionic paths 1//(t ) on the interval [ Ti, T2] ( T2 )T, ) satisfying the boundary
conditions 1/(T, ) = —1/j(T2). The final answer does not depend on the point r inside this interval. The contributions of
the instanton —antiinstanton pairs outside the interval [ —/3/2, P/2] are subleading in e ~, and to this order only the
pair inside this interval has to be taken into account. The instanton happens at time —9/2 [see below Eq. (4.7)] be-
tween —/3/2 and 0. In Eq. (5.7) we thus have T1 = —/3/2 and T2 =0. For the anti-instanton happening at time 8/2 be-
tween times 0 and /3/2 we have T, =0 and T2=p/2. Using the explicit expressions for W'(xr) and W'(x~ ) and the
factorization of the determinant DI; in a factor corresponding to the instanton and another factor corresponding to
the anti-instanton, we obtain, as the leading-order contribution from the fermionic nonzero modes,

[DNZM(~)]1/2 ~—22 —4c &
P

[DNzM(g )]1/2 ~—2 c (P+g) for n=3 . (5.8b)

In our case the contribution of the bosonic nonzero modes for a single pseudoparticle is given by [see Eq. (A14) of
Ref. 25] [(2'//10)exp( —2coT)]'/, where Ao is the absolute value of the classical action of an instanton, co is the curva-
ture at an extremum of the potential, and T is the total time spent near this extremum. By using the factorization of
D21 (X) in an instanton contribution and an anti-instanton contribution we thus obtain

[D (X)] ' =12expB 2
for n =2, (5.9a)

[DNzM(~ ) ]
—1/2 8+2B 2 2

for n=3. (5.9b)

Again this result is valid in the dilute instanton gas approximation, i.e., to leading order in e and e
Now we are in a position to collect all contributions (3.12) to the fiuctuations about an instanton —anti-instanton pair.

As a fInal result of this section we find, for the partition function,

Tr exp( /3H)= —dOexp —c0+—(c —1) exp
/3 /3/2

&g —P/2 2

S,i
fof n =2 (5.10a)

/32M 2 P/2 3 0 /3Tr exp( /3H )=- d9exp ——cO ——+—(c —1) exp
7Tg —P/2 2 2 2

S,i
for n =3, (5.10b)

where S„ is given in Eqs. (4.10) and (4.13). The preexponential factors have been evaluated to leading order in e ande, and the classical action has been evaluated to next leading order in these parameters. Note that in the case n =3
there is an extra factor 2 due to the existence of two equivalent saddle points.

VI. LARGE-ORDER BEHAVIOR

In this section we derive the large-order behavior of the perturbation series of the eigenvalues by substituting the
saddle-point approximation for exp( /3H ), obtained in p—revious section, in Eq. (2.8). We obtain

g akexp( /3E& )= . exp——(c —1) f dg „cd8d„(g)exp. o= 1 /3 b

2~i 2 & g
k+2

S,i (6.1)

where S,1
is given in Eqs. (4.10) and (4.13), and the functions d„(0) are defined by
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1d„(8)=—exp( —c8) for n =2,
'li

d„(9)= exp —c8——(c+1) for n =3 .
23/Z e

7r 2

(6.2a)

(6.2b)

For n =2 the integration over g runs from 0 to ~, and for n =3 the integration runs from —~ to 0. The 0 integra-
tion runs over the contour C, which will be discussed in the next paragraph.

In Eq. (2.8) the sum over the nontrivial saddle points includes the integration over the collective coordinates. In our
case the only relevant collective coordinate is 8. Originally, the 8 integration is over the real axis between —/3/2 and
/3/2. As discussed in Sec. II depending on the sign of the imaginary part of the coupling constant we have to deform
the integration contour to C+ or C . For n =2 a choice for C+ that yields convergent integrals is obtained by rotat-
ing the contour in the variable z:—e about the trivial saddle point z =exp( —/3/2) by —vr/4 To. obtain C we rotate
the contour around the same point in the opposite direction by the same angle. For n = 3 we introduce a new variable z
by z =exp( —28). The trivial saddle point is located at z =exp( —2P/3). Now, the contours C+ and C are obtained
by rotating about this point by the opposite angles as for n =2. The contributions from the trivial saddle point of the
two contours cancel. Therefore, using the analyticity properties of the z integrand we can deform the contours in such
a way that they can be combined in a single contour C„encircling the negative real axis counterclockwise for n =2 and
clockwise for n =3. The integration over g results in (for n =2)

I (k+1) /3 dzg akexp( /3E, ) =— exp (c —1—)
27Tl [g ( 1 )]k+1 (6.3)

Finally, we perform the integration over z by exponentiating the denominator of the integrand and expanding the ex-
ponential function in powers of e ~. For n =2 we obtain for the asymptotic values of the coefficients

() I (k+ 1)3" '
/3

c —1

g akexp( /3E( ) = —— exp —(c —1) f c dz
2& l 2 ' [ I —6(z+z 'e ~) ]"+'

I (k+1 —c) 6 '3"+'
I (1—c)

c —1
exp /3

2
I (k+3 —c) 6 '3"+'

I (2 —c) vr

c —1
exp /3

—
/3 —,(6.4)

2

which agrees with our numerical results. For n =3 a similar calculation leads to

I (k+ 1)( 2)k+)3/2 /3
z(3/4)(c —))

g akexp( —/3E( )=-
2& l

exp —(c —1) f c dz
[ 1 2( +2

—1/2 —
/3) ]

k + )

2(1/4) —(3/4)c r(k+,' —,'c )

( —2)"+ 'exp /3
4 4

4X2(3/4) —(3/4)c r(k+-', —,'C )+ (
—2)"+'exp —(c —1)—/3

'Tr I ( —' ——'c) 24

16X2(1/4) —(3/4)c I'(k+ —", —
—,'c)

/3+ ( —2)"+'exp —(c —1)—2/3
'lT I (-' ——'c) 24 4

+ ~ ~ ~ (6.5)

cS=—'x +—'8" ——8"' . (6.6)

For zero coupling (g =0) the potential is given by

Note that the factors e ~ resulting from the classical ac-
tion are always accompanied by a factor k. Therefore,
the O(e ~) corrections to the determinants give rise to
contributions of O(1/k ) and can be neglected for the cal-
culation of the large-order behavior of the coefTicients aI', .
Prom the calculation of the integrals in Eqs. (6.4) and
(6.5) it can be easily deduced that corrections to the
preexponential factors of O(e ) also give rise to contri-
butions of O(1/k).

In Eq. (3.9) the fermions can be integrated out first.
This yields the action"

V= —,'x —c/2. The energy levels of this shifted harmon-
ic oscillator are given by E„=n + —,

' —c/2, n =0, 1,2, . . . ,
which explains the /3 dependence in Eqs. (6.4) and (6.5).

Indeed, we find that for the supersymmetric case
(c =1) the large-order behavior of the coefficients ak of
the ground state is suppressed by at least a factor 1/k.
Corrections of O(e ) to the preexponential factors only
modify the z integrand by a regular function and do not
have an effect on the zero result for the ground state.
Corrections of O(e ~) only aff'ect the higher states and
not the ground state. However, the large-order perturba-
tion series is affected by corrections to the classical ac-
tion, and by higher-order quantum corrections. For c =2
the potential —,

' 8'„'
2
—(c/2) W„"

2
—

—,
' is also supersym-

metric. This can be seen by rewriting the potential in
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terms of the function 8"= 8'„'
2
—1/x. The zero-energy

state of this potential corresponds with the first excited
state of our original potential for c=2 and n =2, and
therefore all coe%cients of the perturbation series vanish.
For n =3 the same argument can be used to show that
the perturbative expansion of the first excited state van-
ishes for c = 3.

VII. CONCLUSIONS

We have studied the large-order perturbation theory
for excited states in the supersymmetric double and triple
well, as well as, for variations about the supersymmetric
point. In this paper we studied the effect of the strength
of the "Yukawa-coupling" (denoted by c) and were able
to reproduce analytically the results that were obtained
numerically in an earlier paper. " The study of the excit-
ed states could be achieved in particular by constructing
the analog of the caloron solution in QCD. ~6

The perturbation series for the ground-state energy
vanishes in the supersymmetric case because of the ana-
lytic structure of the integration over the collective vari-
ables: at the supersymmetric point (c =1) the cut in the
complex plane that exists for non-integer values of c
disappears leading to vanishing coeScients. Since our
calculations were performed in the dilute-instanton-gas
approximation this actually was only shown to leading
order in 1/k (k is the order of the perturbation theory).
However, from numerical" work we know that the
coefficients are equal to zero. From Eqs. (6.4) and (6.5)
we find that the large-order perturbation series also van-
ishes for an infinite discrete series of e values different
from c = 1. In this case, numerical calculations show that
subleading contributions in 1/k to the perturbation series
do not vanish, and that the resulting series still diverges
factorially. Apart from the exceptional case discussed
above the same is true for the excited states. For all oth-

er c values the perturbation series diverges factorially
both in the case of the ground state and the excited
states.

In our previous paper, we also studied another varia-
tion about the supersymmetric point, i.e., the addition of
the term (d —1)gx and (d —1)gx for the double well
and the triple well, respectively. For d=1 the potential
has two degenerate minima, and in this case the fermion-
ic term, which is subleading in the coupling constant, can
play an important role. For d&1 the fermionic term
only affects the overall constant of the large-order pertur-
bation series. The d dependence of this series was studied
analytically in Ref. 6 and their results can be applied and
shown to agree with our numerical study. " In particular
it was found that the large-order perturbation series has
an oscillatory behavior for d &1, whereas it is monoto-
nous or alternating for d & 1. The reason is that for d & 1

the classical action becomes complex. At d = 1 the
period of this oscillation becomes infinite. In this sense
the supersymmetric point is a point of bifurcation.

Finally, we want to note that the analytic derivation of
the large-order behavior given in this paper relies upon a
sophisticated evaluation of the Feynman path integral.
In this the comparison of our answers with numerical re-
sults has been an important check on the techniques we
have made use of.

ACKNOWLEDGMENTS

We would like to thank T. T. Wu for useful discussions
in the early stage of this work and Edward Shuryak for
useful suggestions and a critical reading of the
manuscript. We also would like to thank George Papa-
dopoulos and Mitya Diakonov. The work of J.J.M.V.
was supported by the U.S. Department of Energy under
Grant No. DE-FG02-88-ER40388.

iA. Vainshtein, Decaying Systems and Divergence of Perturba
tive Series (in Russian) (INP, Novosibirsk, 1964).

~C. M. Bender and T. T. Wu, Phys. Rev. 184, 1232 (1969).
C. M. Bender and T. T. Wu, Phys. Rev. D 7, 1620 (1973).

4L. N. Lipatov, Pis'ma Zh. Eksp. Teor. Fiz. 24, 179 (1976)
[JETP Lett. 24, 157 (1976)].

5L. N. Lipatov, Pis'ma Zh. Eksp. Teor. Fiz. 25, 116 (1977)
[JETP Lett. 25, 104 (1977)].

E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. D
15, 1544 (1977); 15, 1558 (1977).

7E. Brezin, G. Parisi, and J. Zinn-Justin, Phys. Rev. D 16, 408
(1977); 16, 996 (1977).

8P. West, Nucl. Phys. B106, 219 (1976).
B.Zumino, Nucl. Phys. B89, 535 (1975).
J. J. M. Verbaarschot, P. West, and T. T. Wu, Phys. Rev. D
42, 1276 (1990).

"J.J. M. Verbaarschot, P. West, and T. T. Wu, Phys. Lett. B
240, 401 (1990).

~~I. I. Balitsky and A. V. Yung, Nucl. Phys. B274, 475 (1986).
I. I. Balitsky and A. V. Yung, Phys. Lett. 168B, 113 (1986).

i~E. V. Shuryak, in Proceedings of the Conference on Numeri-
cal Experiments in Quantum Field Theories, Alma Ata,

USSR 1985 edited by A A Migdal (in Russian) (unpub-
lished).
E. V. Shuryak, Nucl. Phys. B302, 621 (1988).

6D. I. Diakonov and V. Yu. Petrov, Zh. Eksp. Teor. Fiz. 89,
361 (1985) [Sov. Phys. JETP 62, 204 (1985)]; 89, 751 (1985)
[62, 431 (1985)].

D. I. Diakonov and V. Yu. Petrov, Nucl. Phys. B272, 457
(1986).
R. Kaul and L. Mizrachi, J. Phys. A 22, 675 (1989).

i9J. Zinn-Justin, Phys. Rep. 70, 109 (1981).
D. I. Kazakov and D. V. Shirkov, Fortsch. Phys. 28, 465
(1980).

'E. B. Bogomolny, Phys. Lett. 91B,431 (1980).
G. 't Hooft, Phys. Rev. D 14, 3432 (1976).
S. Coleman, in The W'hy's of Subnuclear Physics, proceedings
of the International School, Erice, Italy, 1977, edited by A.
Zichichi, Subnuclear Series, Vol. 15 (Plenum, New York,
1979).

"L. E. Gendenshtein and I ~ V. Krive, Usp. Fiz. Nauk 146, 553
(1985) [Sov. Phys. Usp. 28, 645 (1985)].

25E. Wit«n, Nucl. Phys. B196, 509 (1982).
B.Harrington and H. Shepard, Phys. Rev. D 17, 2122 (1978).


