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Lie groups with the same Lie algebra as the standard model but different global topology are con-
sidered, and the possibilities are reduced to four viable alternatives for the true symmetry group of
the standard model: SU(3) X SU(2) XU(1), U(3) X SU(2), SU(3) X U(2), and S(U(3) X U(2) ). It is
demonstrated that the last three groups require hypercharge quantization for their allowable repre-
sentations, and that S(U(3) XU(2) ) is the most likely candidate for the true symmetry group of the
standard model because it offers the best explanation of the observed hypercharges of the elementa-

ry fermions. Explicit S(U(3) XU(2)) tensor representations of the quarks and leptons are given and
are compared to the standard SU(5) assignments. The spontaneous symmetry breaking of
S(U(3) XU(2) ) to an electrostrong U(3) is briefly discussed, and electric charge quantization follows
from weak hypercharge quantization and the existence of the standard Higgs doublet with nonzero
vacuum expectation value. Lastly, it is shown that combining the conditions imposed by anomaly
cancellation with the S(U(3) XU(2)) hypercharge quantization condition uniquely determines the
ratios of the hypercharges in a standard quark-lepton family.

I. INTRODUCTION

In this article, Lie groups with the same Lie algebra as
the standard model but different topological structure are
considered for the position of the true symmetry group of
nature.

There are thirteen connected Lie groups' with the
same Lie algebra as SU(3)XSU(2)XU(1). Four of these
are noncompact:

1. SU(3) X SU(2) XR,
2. [SU( 3 ) /Z3 ] X SU(2 ) XR

3. SU(3 ) X [SU(2) /Z2 ] XR

4. [SU(3)/Z3] X [SU(2)/Z2] XR

and there are nine that are compact:

5. SU(3) X SU(2) X [R /Z] =SU(3) X SU(2) X U(1),
6. [ [SU(3 ) X U( 1 ) ] /Z3 I X SU(2) =U(3 ) X SU(2),

7. SU(3) X [ [SU(2) X U(1)]/Z2 I =SU(3) X U(2),

8. [SU(3)X SU(2) X U( 1 ) ] /(Z3 X Z2 )

= [SU(3)X SU(2) X U(1) ]/Z6 =S(U(3) X U(2) ),
9. [SU(3)/Z3]XSU(2)XU(1),

10. SU(3) X [SU(2)/Z~] XU(1),

11. [SU(3)/Z3] X [SU(2)/Z2) XU(1),

12. U(3) X [SU(2)/Z2],

13. [SU(3)/Z3 ] X U(2) .

We can eliminate choices 1 —4 by demanding that the
gauge group be compact. Choices 9—13 may be removed

from consideration by using the fact that the true non-
Abelian group of the quarks and leptons in the standard
model is SU(3) X SU(2), since color triplet and weak dou-
blet representations exist in nature. Note that the sim-

ply connected universal covering group of all 13 groups
above is SU(3) X SU(2) XR, while SU(3) XSU(2) XU(1) is
the covering group for groups 5 —13.

As discussed previously by O'Raifeartaigh, there then
remain four possible true symmetry groups for the stan-
dard model:

1. SU(3) X SU(2) XU(1),
2. U(3) X SU(2),

3. SU(3) XU(2),
4. S( U(3) X U(2)) .

The four groups above will each be discussed in this ar-
ticle. It will be shown that the allowable single-valued
representations of the groups U(3) X SU(2), SU(3) XU(2),
and S(U(3) XU(2)) must have quantized hypercharge.
Hypercharge is quantized in nature, and a possible ex-
planation of hypercharge quantization could be that the
true group of the standard model is U(3) X SU(2),
SU(3) X U(2), or S(U(3) X U(2) ). It will be shown that the
group which best explains the hypercharge assignments
of the quarks and leptons is the last alternative, the group
S(U(3) XU(2)). It will therefore be the focus of attention
of this article.

The organization of this paper is as follows. Hyper-
charge quantization is shown to be required for the three
groups U(3) X SU(2), SU(3) XU(2), and S(U(3) XU(2)).
The quantization conditions for the groups U(3) X SU(2)
and SU(3) X U(2) are demonstrated as being inadequate to
explain the various hypercharge assignments of the
quarks and leptons, whereas the quantization condition
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for the group S(U(3) XU(2)) offers a simple explanation
of the hypercharges based upon the given SU(3) X SU(2)
representations of the elementary fermions. Explicit
S(U(3)XU(2)) tensor representations of the quarks and
leptons are then given. Because S(U(3) XU(2)) is a sub-
group of SU(5), it is shown brieffy how the S(U(3) XU(2))
representations fit into the 5+ 10 representation of SU(5).
It is also demonstrated that S(U(3) XU(2)) is spontane-
ously broken to an electrostrong U(3) by the standard
Higgs doublet with nonzero vacuum expectation value
(VEV), and the electrostrong U(3) tensor representations
of the quarks and leptons are presented. Lastly, it is
shown how the conditions imposed by anomaly cancella-
tion and the S(U(3) XU(2)) hypercharge quantization
condition yield uniquely the ratios of the hypercharges in
a standard family of 15 left-handed (LH) fermions (a new
result).

It should be understood from the beginning that the
groups U(3) X SU(2), SU(3) X U(2), and S(U(3) X U(2) )
yield the same perturbative quantum field theory as
SU(3) X SU(2) X U(1), since perturbative effects depend
only on the Lie algebra. Whether or not the four groups
lead to di6'erent nonperturbative eftects is to the author' s
knowledge still an open question. The group
S(U(3) X U(2) ) still has three coupling constants and
many other free parameters, but has the advantage of
ofFering a possible explanation for the quantization of hy-
percharge and the hypercharge assignments of the ele-
mentary fermions (in conjunction with anomaly cancella-
tion).

This work was based in part on conclusions by
O'Raifeartaigh about the global nature of the standard
model. He suggested that the true symmetry group of
nature was S(U(3) XU(2)) and that the unbroken symme-
try group was U(3) and not SU(3) XU(1). However, it
was incorrectly stated that S(U(3) X U(2) )= [SU(3)X SU(2) XU(l)]/Z5, and no details of the
S(U(3) X U(2) ) theory were presented. The details of the
S(U(3) XU(2)) theory are worked out explicitly here and
the argument that the groups U(3) XSU(2), SU(3) XU(2),
and S(U(3) XU(2)) actually require hypercharge quanti-
zation is presented.

II. CONVENTIONS

In this paper we will only be dealing with left-handed
fermion fields. Right-handed fields will be represented by

the left-handed part of the charge-conjugate field, and
will use the same symbol as the left-handed part, but with
an overbar to denote charge conjugation. This conven-
tion is used to avoid writing a lot of superfiuous sub-
scripts and superscripts.

The results of this paper are the same for all three gen-
erations so we will use the first family symbols to
represent the corresponding elements of any of the fami-
lies. Explicitly: e stands for e, p, or ~; v for v„v„, or v;
d for d', s', or b' (the prime denotes the Kobayashi-
Maskawa mixture of mass eigenstates ); and u for u, c, or

We will work in natural units (fi=c = 1) and the con-
vention for hypercharge ( Y) is given in Table I below.
Note that the convention for hypercharge is half that of
some other references. In this paper we will only consid-
er the standard model with three generations and no
right-handed neutrinos.

III. THE GROUP SU(3) X SU(2) X U(1)

The group SU(3) X SU(2) XU(l) is the covering group
for the groups U(3) X SU(2), SU(3) X U(2), and
S(U(3) XU(2)) in the same way that SU(2) is the covering
group for SO(3). It is well known that each element of
SO(3) corresponds to two elements of SU(2). Similarly,
each element of U(3) XSU(2) corresponds to three ele-
ments of SU(3) X SU(2) XU(1); each element of
SU(3) X U(2) corresponds to two elements of
SU(3) X SU(2) X U(1); and each element of S(U(3) X U(2) )
corresponds to six elements of SU(3) X SU(2) X U(1). The
details will be presented shortly.

Because SU(3) X SU(2) X U(1) is the covering group for
the other three groups, any allowable representation of
the other groups must correspond to a unique single-
valued representation of SU(3) X SU(2) X U(l). However,
every representation of SU(3) X SU(2) XU(1) may not be
an allowable representation of the other groups, as we
shall see in the following sections.

The most general representation of
SU(3) X SU(2) X U(1) has the following index structure
and transformation law [under an arbitrary
SU(3) X SU(2) X U(1) transformation]:

I I I I I I I IIa
&

. a. A
&

. . . A —a
I

—a. —bl —b~ —A
l

—A —Bl —B
~ I S 1,'= U, U, 'U „, U, V „V„'V, V ', [exp(iyg'y)]'gb

1 k 1 q
1 J bk q 1

a. AI . A

The s in Eq. (1) is an arbitrary real number, y is a real
nonzero normalization constant to be determined later,
and g' is the hypercharge coupling constant. The U's
above are elements of SU(3); the U's with an upper
primed index are the inverses of those with a lower
primed index:

U', Ub. =5b and U,'Ub =6b with a, a'=1, 2, 3 .

(2)

Likewise, the Vs are elements of SU(2) and the Vs with
an upper primed index are the inverses of those with a
lower primed index:

VAA VB —6BA, and VAA, VBA 6BA with A, A'=4, 5

(3)

As indicated above, lower-case latin indices run from 1 to
3, and capital latin indices run from 4 to S [to avoid con-



43 GLOBAL STRUCTURE OF THE STANDARD MODEL, . . . 2711

fusion and facilitate later comparison to the SU(5) theory
of Georgi and Glashow]. The tildes over U's and Vs
denote the condition that they have unit determinant;
when dealing with unitary matrices with nonunit deter-
minant, the tildes will be dropped. As is apparent from
Eqs. (1)—(3), we will be using a tensor method in the fun-
damental representations of the unitary groups. It is well
known that there is no real distinction between upper and
lower SU(2) indices because one can raise and lower in-
dices with the SU(2)-invariant two-dimensional Levi-
Civita symbol. ' However, we will make the distinction
in (1) since we will be dealing shortly with the group U(2),
which does not preserve the two-dimensional Levi-Civita
symbol, and gives opposite U(l) charges to upper and
lower indices.

A field with hypercharge P must be transformed by a
factor exp(ig'Yy) under a U(1) transformation, so that
we see the field in (1) has hypercharge

(4)

Since the group SU(3) X SU(2) X U(1) allows s to take on
any real value, we see that hypercharge is not necessarily
quantized in general if the true group is
SU(3) X SU(2) X U(1).

To summarize, every allowable representation of the
groups U(3) X SU(2), SU(3) X U(2), or S(U(3) X U(2) ) must
be given by a representation of SU(3) X SU(2) X U(1), with
a transformation law of the form (1).

cov3(g)=k —j . (10)

Using (4) and (10), we see that the quantization of hyper-
charge for the group U(3) X SU(2) is given by

Y(g)=y[ —cov3(g)+3m], m =0, +1,+2, . . .

With our conventions, hypercharge of the known
quarks and leptons is quantized in units of —,

' (see Table I),
so that in order to have (11) agree with the known assign-
ments we would have to pick y =+—,

' in (11). The hyper-
charge quantization condition (11) only depends on the
way the field g transforms under SU(3), so that the hyper-
charges of the color singlets (leptons) are quantized, but
unexplained and somewhat abitrary. We then conclude
that the group U(3) X SU(2) is not a satisfactory choice
for the true symmetry group.

The group U(2) = [SU(2) XU(1)]/Z2 results from iden-
tifying the two elements of SU(2) X U(1)

i2m( j—k —s)/3
7

which implies that s is quantized:

s = —(k —j)+3m, m =0, +1,+2, . . . .

It will turn out to be convenient to define the net 3-
covariance of the field P, which is just the number of
lower (covariant) minus the number of upper (contravari-
ant) indices:

IV. THE GROUPS U(3) X SU(2) AND SU(3) XU(2)

The group U(3) = [SU(3)X U(1)]/Z3 results from identi-
fying the three elements of SU(3) X U(1)

(ei2rrm/3U a'
e i2rrm/3eiyg'—y) m =0 1 2a ~

—i 27m� /2 I/A' i2rrn/2 iyg'ry) —0~e

as a single element of U(2):

I/A I/ A iyg'gr
( I/ A')( iyg y)'

A

(12)

(13)

as a single element U; of U(3):

Ua' U
a' iyg rp (

i2'rr/3U a')( —i2nl3 iyg y)'
a ae a

i4rr/3U a')( —i4rr/3 iyg'p)
a (6)

If the true group is U(3) X SU(2), then the three group
elements in (5) together with an element of SU(2) corre-
spond to the same group element of U(3) X SU(2), and no
physical field can have a representation which may tell
the di6'erence between the three group elements; other-
wise the true group of the physical fields would not be
U(3) X SU(2). Thus the only allowable representations of
the group U(3) XSU(2) are those which transform the
same under the three elements in (5). A field has the
same transformation property under the three elements
in (5) if and only if it is invariant under the following glo-
bal SU(3) X SU(2) X U(1) transformation:

zp a' &a' ZZ A' —i27T/2gA' iyg'g i27T/2e —e (14)

As before, upon substituting (14) in (1), we obtain the fol-
lowing condition' on s:

i 2'(, q
—P +s) /2

which yields a quantization condition for s:

By the same argument as before, if the true group is
SU(3) XU(2), then no representation must be able to dis-
tinguish between the two group elements in (12). Thus its
transformation law must be the same for both elements.
This condition is equivalent to the invariance of the field
under the following global SU(3) XSU(2) XU(l) transfor-
mation:

U
a' i27I./3ga' y A' gA' iyg'y —i27I. /3
a a (7)

s = —(q —p)+2n, n =0, +1,+2, . . . (16)
This is just using the fact that a subgroup H of a group G
acts as the identity element for the quotient group
G/M. " If we substitute (7) in (1) and demand that the
field P be invariant, we then obtain the following condi-
tion on s:

Analogously to (10), we define the 2-covariance

cov2(f) =q —p . (17)
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TABLE I. SU(3) X SU(2) X U(1) assignments of a family.

Field

LH quark doublet (d )

Color

triplet

Weak Isospin
I IN

3

+-
1

2

+—

Q=I3+Y
+-

1

3

LH anti-"down" quark d antitriplet

LH anti-"up" quark u antitriplet —2
3

—2
3

LH lepton doublet (,') singlet

+-
1

2

1

2

LH "positron" e singlet

Higgs doublet (~+ ) singlet 1

2

+-
+- +1

0

With this definition, and using (4), we see the quantiza-
tion of hypercharge for the group SU(3) X U(2) is given by

Y(it/) =y [ —cov2(p)+2n], n =0, +1,+2. . . . (18)

To agree with the observed hypercharges of the quarks
and leptons, we would have to take y =+—,

' again. How-
ever, this quantization condition sheds no light on the
different hypercharge assignments of the quark and lep-
ton doublets, nor on the different hypercharges of the
left-handed antiquarks. On the other hand, if there were
no quarks, and we took y =+—,', then we would have a sa-
tisfactory explanation of the different hypercharges of the
leptons. As both quarks and leptons exist in nature, we
see that the group SU(3) XU(2) gives an unsatisfactory
explanation of the various hypercharges of the elementa-
ry fermions.

In summary, we see that the groups U(3) XSU(2) and
SU(3) XU(2) require weak hypercharge quantization, but
do not seem to offer much insight into the various hyper-
charges of the quarks and leptons and are thus unsatisfac-
tory choices for the true symmetry group.

V. THE GROUP S(U(3) XU(2) )

iyg'cp —i 2m/6
(20)

which is just the statement that the group Z6 must act as
the identity of the group [SU(3)X SU(2) X U(1)]/Z6, since
the transformation in (20) is a generator of Z6 transfor-
mations.

Upon inserting (20) in (1) and demanding that the field

g be invariant, we obtain the following condition on s:

i 2~[s +2(k j) 3(q —p)—]-
exp

6
=1, (21)

which implies that s is quantized:

s = —2(k j)+3(q —p)+—6h, h =0,+1,+2, . . . . (22)

Using (4), (10), and (17), the quantization of hypercharge
for the group S(U(3) X U(2) ) is given by

Y(g) =y[ —2 cov3(g)+3 cov2(it/)+6h ],

der the following global SU(3) X SU(2) X U(1) transforma-
tion:

U a = i2'I}/3gg' g~ g' —i2vr
a e

The group S(U(3) XU(2)) = [SU(3)X SU(2) XU(l)]/Z6
is obtained by identifying the following six elements of
SU(3) X SU(2) X U(1):

h =0,+1,+2, . . . . (23)

i2mp/3U a' —i2vrp/2I/ A' —i2mp/6 iyg y)'ye a ~ A ~

p =0, 1,2, 3,4, 5 . (19)

In order that the quantization condition above yield hy-
percharges in units of —,', we must take y =+—,'. We make
the convention that y =+—'. Equation (23) then becomes

If the true symmetry group is S(U(3) X U(2) ), then the
six SU(3) X SU(2) XU(1) group elements in (19) corre-
spond to the same element of the group S(U(3) XU(2)),
and any allowable representation of S(U(3) XU(2)) must
have the same transformation property under all six ele-
ments in (19). This is equivalent to the condition that al-
lowable representations of S(U(3) X U(2) ) be invariant un-

Y(g) = —
—,'cov3(iti)+ —,'cov2(g)+h,

h =0,+1,+2, . . . . (24)

If we insert the expression (22) for s and y =+—,
' into

(1), after a little manipulation we obtain the following
transformation law for the field f:
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a1 . a A1
,~=U, . U, 'U, . U, V„V„'V,' . V,'(detU) gi,

'
. . . b'~' . . . ii',

1 k 1 q
I j 1 k 1 P 1 q 1 k 1 q

(25)

where

Ua' ig'y/3U a' y 3' —ig'cp/2y 3'
a e —e

detU=det(U; )=(detV) '=[det(V„" )] '=e's",

From (26) we see that any element of
[SU(3)X SU(2) X U(1)]/Z6 is an element of S(U(3) X U(2));
it is also true that any element of S(U(3) XU(2)) is an ele-
ment of [SU(3)X SU(2) XU(1)]/Z6 and may be written in
the form (26), so that the two groups are equal. For ex-
ample, an element of S(U(3) X U(2) ) that is not obviously
of the form (26) is

Ua' e I2~/5ga' V
A'

e i2~/5$ &3', det U det

However, the choices

(28)

UQ QQ yA gA s (29)

inserted in (26) yield (28). This result can be used in the
proof of equality of the two groups. The element in (28)
actually generates the Z5 center of SU(5) under the
embedding discussed in Sec. VII below.

(26)

and the inverses are defined by taking relations (2) and (3)
to hold without the tildes.

Note that S(U(3) XU(2)} is defined to be the group
which consists of an element of U(3) and an element of
U(2) such that the determinants cancel:

S(U(3) XU(2)) = [ UHU(3), VHU(2)
~
detU det V = I] .

(27)

VI. S(U(3) X U(2) ) TENSOR REPRESENTATIONS
OF THE ELEMENTARY FERMIONS

It is natural to define S(U(3) X U(2) } tensors to be quan-
tities which transform as (25) with h =0. Quantities
which transform as (25) with h having a nonzero integral
value are defined to be S(U(3) XU(2)) tensor densities' of
weight h. For S(U(3)XU(2)) tensor representations
(h =0), Eq. (24) means the following.

(1) Each upper U(3) index carries a hypercharge of
+ 1

(2) Each lower U(3) index carries a hypercharge of —
—,'.

(3) Each upper U(2) index carries a hypercharge of
1
2'
(4) Each lower U(2) index carries a hypercharge of + —,'.
With the above rules, finding the hypercharge of a ten-

sor representation of S(U(3)XU(2)) is a matter of just
counting indices. The group U(3) describes a hyper-
strong force, and the group U(2) describes a hyperweak
force. In a sense, the U(1) belongs to both the strong and
weak interactions in a very symmetrical manner.

It is a simple exercise to show that the leptons, quarks,
and Higgs doublet may be represented as S(U(3) X U(2) )
tensors of rank 1 or 2. These representations are given in
Table II below.

A few remarks about the representation given in Table
II are in order. Note that the lepton doublet is represent-
ed as a 2 of U(2) and the quark doublet as a 2. Under
SU(2) the 2 and 2 are equivalent, but under U(2) they car-
ry opposite hypercharges. The inequivalence of the 2 and
2 under U(2) is due to the fact that the two-dimensional
Levi-Civita symbol is invariant under SU(2) but not un-
der U(2) (it is a tensor density, as is well known from ten-

TABLE II. S(U(3) X U(2) ) tensor representations of the quarks, leptons, and Higgs doublet.

Field

LH anti-"down" quark

LH lepton doublet

S(U(3) X U(2) )
representation

I"=(e,—v)

COV3 COV2 Y = ——coU3+ —cov21 1

3 2

1

2

LH anti-"up" quark —C~ [ab] ~abc ~ —2
3

LH quark doublet
Qg

CAa
=

a
+-

LH "positron"
e[ AB) e~AB

or
e

' ' =eEabc

Higgs doublet +-
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VII. COMPARISON TO THE SU(5) THEORY
OF GEORGI AND GLASHOW (REF. 14)

The group S(U(3) X U(2)) may be embedded in SU(5) in
the following way:

U 08'=
0 & CSU(5) since detW=detU detV=1 .

(30)

The generators of S(U(3) X U(2) ) may be written as
5X5 matrices. We would have the eight SU(3) genera-
tors in the upper left-hand corner with zeros everywhere
else, the three SU(2) generators in the lower right-hand
corner with zeros everywhere else, and the additional
5 X 5 traceless diagonal generator:

1 0
3

0 0 0

0 O 0

o —
—,
' oo (31)

0 0

0 0

0 —,
' 0

0 0

The 24th generator of SU(5) is usually taken to be pro-
portional to (31).

The LH anti-"down" quark and the lepton doublet

sor calculus).
Note also that it is necessary to multiply the LH "posi-

tron" field by a Levi-Civita symbol to be able to write it
as a tensor; otherwise it may be written as a scalar densi-
ty of weight +1. It is not hard to show that any allow-
able tensor density may be represented as a tensor by ap-
propriate outer multiplication with one or more Levi-
Civita symbols, so that with no loss of generality we
could only consider S(U(3) X U(2)) tensors.

The + —,
' hypercharge of the quark doublet follows sim-

ply from the fact that + —,
'= —

—,'+ —,'. The reasons that
the LH antiquarks have diferent hypercharges comes
from the fact that under SU(3) there are two equivalent
ways to write a 3 (or a 3) by use of the SU(3) invariant
three-dimensional Levi-Civita symbol. However, under
the group U(3) these two representations are inequivalent
(the hypercharges differ by a factor of —2) since the
three-dimensional Levi-Civita symbol is not invariant un-
der U(3) transformations (it is a tensor density)

We thus see that the group S(U(3)XU(2)) provides
simple reasons for the various hypercharges of the quarks
and leptons, as opposed to the group
SU(3) X SU(2) XU(1), which is mute on the subject of hy-
percharge quantization and assignments.

As for the gauge bosons, it is well known that the ad-
joint representation of a given group transforms under
the symmetry group with its center quotiented out. As
the center of SU(3) X SU(2) X U(1) is Z6, we see that the
gauge bosons also transform as S(U(3) X U(2) ) tensors.

We thus come to the conclusion that every physical
field may be represented as an S(U(3) XU(2)) tensor of
appropriate rank.

may be embedded in the 5 of SU{5):

P'=(d' l")=(d ' d d 1 l )=(d ' d d e —v),
(32)

where in this section lower case latin indices from the
middle of the alphabet run from 1 to 5.

The LH anti-"up" quark, the LH quark doublet, and
the LH "positron" may be embedded in the 10 of SU(5):

ij +ji and

+ab [ab]& +aA ~aA & +AB I'(AB]

or more explicitly:

(33)

u
—2

u 1

—d 1

u' —u' u' d'
—1 2 d2

0 u d
—u —u 0
—d —d —e 02 3

(34)

When the Higgs field has a nonzero vacuum expecta-
tion value (VEV) proportional to (&), the unbroken gen-
erators are those of SU(3) and the electric charge genera-
tor:

Q= Y'+I =diag( ——' ——' ——' —' —')

+diag(0, 0, 0, —,', —
—,
'

)

=diag( —
—,', —

—,', —
—,', 1,0) . (35)

The unbroken SU(3) generators and the electric charge
generator above generate the following subgroup of
SU(5):

0 0
0 0
0 0, where UEU(3) .

0 0 0 (detU) ' 0
0 0 0 0 1

(36)

The above group is just S(U(3)XU(1)), which is iso-
morphic to U(3) by taking the upper left-hand corner.
Therefore the unbroken group' is an electrostrong U(3),
and by the results of Sec. IV the electric charge is quan-
tized in units of —,'e [note that this already followed from
hypercharge quantization and the definition (35) of elec-
tric charge].

We see that the group in (36) would treat the 5th com-
ponent of a contravariant or covariant U(2) vector as a
scalar, and leave invariant the hyperstrong U(3) index
structure. It turns out that all the known quarks and lep-
tons may be written as either hyperstrong U(3) tensors
with no hyperweak U(2) indices, or as 5th components of
hyperweak U(2) vectors with possibly other hyperstrong

Since the group S(U(3) XU(2)) does not mix leptons and
quarks, perturbatively there is no proton decay, and there
are also still three independent coupling constants.

VIII. SPONTANEOUS SYMMETRY BREAKING OF
S(U(3) X U(2) ) TO AN ELECTROSTRONG U(3)
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TABLE III. Electrostrong tensor representations of the elementary fermions.

Field

LH "down" quark

Electrostrong
U(3)

representation

d.

Relation to S(U(3) XU(2))
representation

da =9'as

LH "up'* quark [ab]
[ab] [ab]5 — abc 5B

9'cB

uc
abc 54 abc

LH anti-"down" quark d' d'

LH anti-"up" quark 0 [ab] 0 [ab]

LH "electron" e [abc]

g A
[abc] & [abc)5 ~abc 5 A

=& b &541 =& b (+ 1)e =e& b,

LH "positron" —[abc)e

—[ abc) — 1 abc A B—
e[AB]

l &abcCABe& e&abc
AB

LH neutrino

eh e&B and e eabc AB (37)

These symbols are used extensively in Table III to derive
equivalent representations of the S(U(3)XU(2)} tensors
from which the electrostrong index structure may be easi-
ly deduced.

For electrostrong U(3) tensors, we have the simple rule
for the electric charge of the representation: each upper
electrostrong U(3) index carries an electric charge of + —,

'

and each lower electrostrong U(3) index carries an elec-
tric charge of —

—,'.

indices. The resulting electrostrong U(3) index structure
of the elementary fermions is presented in Table III.

We have already remarked that the three- and two-
dimensional Levi-Civita symbols are not invariant
S(U(3) XU(2)) tensors. However, from the properties of
Levi-Civita symbols, ' it may be shown that the following
two outer products of the three- and two-dimensional
Levi-Civita symbols are invariant S(U(3) X U(2) ) tensors:

IX. ANOMALIES

There have been arguments in the literature for charge
quantization based on anomaly cancellation' rather
than on group-theoretical considerations. It is the pur-
pose of this section to combine the constraints imposed
by anomaly cancellation with the hypercharge quantiza-
tion condition (derived in Sec. V) to show that the ratios
of the hypercharges of a family are then uniquely deter-
mined.

We assume that we have a family of 15 LH fermions
(no RH neutrino) with the following SU(3) X SU(2) X U(1)
representations:

(3,2, Y(q)), (3, 1, Y(d)), (3, 1, Y(u)),
(38)

(1,2, Y(I)}, (1,1, Y(e)),
where we are using the same symbols for the fermions as
before. The Witten global SU(2) anomaly is automatical-
ly satisfied because the family in (38) contains an even
number of SU(2) doublets.

We then impose the vanishing of the gauge and mixed
gauge-gravitational anomalies' within the family:

[SU(3)] U(1):
[SU(2) ] U(1):
[U(1)]:
[graviton] U(1):

2Y(q)+ Y(d )+ Y(u ) =0;
Y(l)+3Y(q) =0;
6Y(q) +3Y(d) +3Y(u) +2Y(l) + Y(e) =0;
3(2Y(q)+ Y(d )+ Y(u ) )+2Y(l)+ Y(e ) =0.

(39)

The four equations above have two types of nontrivial
solutions

Y(q)WO, Y(d ) =2 Y (q), Y(u ) = —4Y(q),
(40a)

1'(l) = —3Y(q), Y(e ) =6Y(q);
Y(q)= Y(l)= Y(e)=0, Y(d)= —Y(u)WO . (40b)

In solution (40a), we have defined d to be the field with

i

the smaller absolute hypercharge of the pair d and u.
Solution (40a) is proportional to the standard hyper-

charge assignments of a family (see Table I), and is com-
patible with the hypercharge quantization condition for
the group S(U(3) XU(2)) (see Secs. V and VI and Table
II). However, the solution (40b) is not compatible with
the S(U(3) X U(2) } hypercharge quantization condition,
which is the main result of this section.
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exactly as in Table II. The hypercharge quantization
condition IEq. (23)] then tells us that the hypercharges
are given by

Y(d ) =y( —2 cov3(d )+3 covz(d )+6h, ) =y(2+ 6h, ),
h, EZ,

(42)
Y(u ) =y( —2 cov3(u )+3 covz(u )+6h ) =y( —4+6h2),

Together with (40b), this implies that (using the fact that
y is nonzero)

h, +h~=- —,
' (43)

which is impossible since h& and h2 are integers. Solu-
tion (40b) is thereby eliminated on group-theoretical
grounds. We thus see that anomaly cancellation together
with the S(U(3) X U(2) ) hypercharge quantization condi-
tion uniquely specifies the ratios of the hypercharges
within a family.

If we normalize hypercharge as in Sec. V, we see that
anomaly cancellation and the S(U(3) XU(2)) hypercharge
quantization condition allow the following hypercharge
assignments for the quark doublet in a family:

Y(q)=, k EZ, (44)

with the hypercharges of the other members of the family
given by (40a). There is no a priori reason why all three
families in the standard model must have k =0. Some
other condition is needed to eliminate the nonzero k fam-
ilies, or one may impose a "generations as copies" rule.

The incompatibility of solution (40b) and the hyper-
charge quantization condition is most easily seen by con-
sidering the fields d and u. By use of the Levi-Civita sym-
bols, they may be represented as tensors or tensor densi-
ties with the following covariances:

covz(d ) =covz(u ) =0, cov3(d ) = —1, cov3(u ) =2,
(41)

Clearly, quark mixing is only possible if all three families
have the same value of k.

X. SUMMARY AND DISCUSSION

We have seen that of the four viable Lie groups with
the same Lie algebra as SU(3) X SU(2) XU(1), the group
S(U(3) XU(2)) provides the best explanation of hyper-
charge and electric charge quantization, and offers the
most insight into the different hypercharge assignments
of the elementary fermions.

We have also seen how the index structure of the
S(U(3)XU(2)) tensor representations makes it obvious
that SU(5) can contain the standard model, and the fitting
of the elementary fermions into the 5+ 10 of SU(5) seems
less miraculous.

We have seen that the unbroken symmetry group of
nature is not SU(3)„~,„XU(1), , but an electrostrong
U(3)„=[SU(3)„~,„XU(1), ] /Z3 for which electric
charge must be quantized.

Lastly, we have seen how the S(U(3) XU(2)) hyper-
charge quantization condition together with the con-
straints imposed by anomaly cancellation uniquely deter-
mine the hypercharge ratios within a family.

Even though the group S(U(3) XU(2)) is a convincing
candidate for the true symmetry group of nature, it gives
the same perturbative quantum field theory as the group
SU(3)XSU(2)XU(l). Should non-perturbative effects be
different for the two groups, observation of such effects
could be used to experimentally determine the true sym-
metry group.
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