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Spectroscopy with multiple field configurations
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The effect of field configuration copying on both fermion and fermion-antifermion pair correla-
tion functions is studied in detail in a simple quantum-mechanical model. It is found that, with
very few exceptions, the copying procedure results in a large correction to the corresponding
effective masses. In particular, this correction leads to an oscillatory behavior of the effective
masses, similar to that observed for mesons in recent lattice QCD calculations. It is argued that
the copying technique is unlikely to be useful as a spectroscopic tool.

I. INTRODUCTION

Over the last decade the following technique has been
frequently applied in lattice calculations: time size of a
lattice is artificially enlarged by copying gauge config-
urations several times in the time direction.! =% These
enlarged lattices are then used to calculate hadronic cor-
relation functions. By using this trick one could hope to
obtain a wider separation between a source and a sink
corresponding to matter fields. In doing so, however,
one should be aware of a distorting effect this procedure
might have on correlation functions, and, consequently,
on the measured particle spectrum. Indeed, an unex-
pected behavior of the pion propagator found in the re-
cent high-statistics QCD simulation® is believed to be due
to such an effect. Similar indications can be found in non-
relativistic QCD calculations.? While the analysis of this
phenomenon in QCD itself appears to be a difficult task,
some useful information may be obtained from much less
complicated models. In a recent Rapid Communication®
we considered a simple quantum-mechanical example and
showed that an oscillatory behavior of the fermion effec-
tive mass may arise from copying the background Bose
field configuration. In the present work the study of the
configuration copying in this model is carried out in more
detail. In Sec. I the fermion propagator is dealt with in
all the copies. We also consider the effect of the nonzero
bare fermion mass. In Sec. III we study an extension of

C1(r) = Tr(cte ™ ce=(1=7H)
=exp [A_Z (w(l —7)+ e~w(l-7) _ 1
w?2

(the meaning of the subscript 1 will be clarified in the
following). The fermion effective mass is customarily de-
fined as a logarithmic derivative of Cy(7):

N (1 _ e—w(l——r))2

1—ew

the model with two fermionic degrees of freedom. This
allows us to observe the configuration copying effects in
the fermion-antifermion bound-state (“meson”) correla-
tion function. We then discuss the meaning of our re-
sults and their implications for other models (Sec. IV).
The Appendix contains the description of our numerical
method.

II. ONE-FERMION CASE

Let the problem be described by the Hamiltonian
H =wala — [Ma+ a') + plcle, (1)

where a and ¢ correspond to boson and fermion degrees
of freedom, respectively: [a,al] = {¢,ct} = 1. This is in
fact a problem of a particle moving in harmonic-oscillator
potential with its spin -% coupled to a magnetic field. The
latter is a linear function of the oscillator coordinate. The
oscillator frequency w is assumed to be positive, and so
is the fermion bare mass px. In order to simplify the
notation, we shall assume all the dimensionful quantities
to be given in temperature units. One can verify the
following expressions for the partition function

14 X/t

Z=Tre H =
l—e v

(2)

and for the fermion correlation function

eﬂw)+uu_rﬂ 3)
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sinh(w/2)
(4)
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where

2
= L . (5)

w
The quantity M + p is an energy gap associated with
the fermion. It clearly represents the energy penalty
for the spin pointing against the field direction. The
time-dependent term in Eq. (4) is a finite-temperature
correction apparently coming from the excited states of
both the oscillator and the spin. In the low-temperature
regime (w > 1) this contribution is negligible if both 1—7
and T are large compared to w™!, i.e., everywhere in the

interval 0 < 7 < 1 except close vicinities of its edges.

Our purpose is to study the time evolution of the
fermion (c,c!) interacting with the replicated Bose field
(a,at). This is usually done in three steps. First we rep-
resent the partition function Z as a functional integral
over the anticommuting and the c-number fields corre-

J
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sponding to the fermion and the boson, respectively. The
fermions are then integrated out, resulting in an effec-
tive interaction between the c-number fields. Finally, the
fermion propagator is averaged over the Bose background
configurations. In our previous work on the subject® we
followed these three steps explicitly. Here we give a sim-
ple alternative derivation which is most easily generalized
for more than one fermionic degree of freedom. Taking
trace over the fermionic states in the partition function
we see that

Tre H# = Trp{exp(—wa'a)
+exp[-wala+ Aa+at)+ 4]},  (6)

where the subscript B denotes a trace over the bosonic
states only. Using the resolution of unity in terms
of eigenstates of a we then obtain the following path-
integral representation for the partition function:”8

n n-—1 n-—1
P 5 5. , S
Z = (271') /Hdzmdzm 1+ exp p+ng+fZ(zJ+z]) e’B | (7

m=0 ji=0

with the definitions ¢ = (2)%(ew + e~ — 1), f =
2(1—e~*), and € = n~1. Here the unit imaginary-time
interval is split into n subintervals with pairs of complex
c-number variables z, Z corresponding to the intermediate
points. In order for Eq. (7) to reproduce Eq. (2) periodic
boundary conditions in time are to be assumed for z, z.
The pure bosonic action reads

n-—1
Sp =Y (6“Zmt12m — Zmzm) - (8)
m=0
The prefactor of e5# in Eq. (7) is generated by the

|

fermions. Note that € is not assumed to be small, i.e.,
Z as given by Eq. (7) is independent of n and coincides
with Eq. (2). The same should be true for the fermion
correlation function, but, as will be shown in the follow-
ing, using repeated field configurations leads to devia-
tions persisting in both the continuum (¢ — 0) and the
zero-temperature (w, p, M — oo) limits.

The path-integral form of the fermion correlation func-
tion Cy(7) is derived in precisely the same way, with
Tre~H replaced by Tr(cte="Hce~(1~")H)  Assuming for
the definiteness 0 < 7 = el < 1 we have

n n-—1 n—1 i
Ci(7) = e(1=7)n (-217}-) /":!.;Iodzmdfmexp g(n-——l)-l—fZ(Ej +2j)—fZ(Ej +Zj._1)+SB . (9)

ji=0 ji=1

Comparing Eq. (9) with Eq. (7) we find the expression for the fermion propagator in a given z field background:

exp (—-r(,u + ng) — fZ;ﬂ(ij + Zj—1))

Hl(TvzaE) =

1+ exp

—(n+ng+ FP2E +2)|

(10)

We are now in a position to write down the fermion propagator in the repeated N times z field configuration. It is
obtained from Eq. (10) if we replace n by nN while retaining the periodic boundary conditions with unit period on
z fields. Representing the lattice time separation [ as kn + [(modn) (k is an integer) we have

exp (—T(u +ng) —kf Y00 (5 +2) — F o™ (5 + z,»_l))

HN(t,Z,E) =

1+ exp [‘N (/‘ +ng+ f Yo% + Zi))]

(11
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The corresponding correlation function Cn(7) can now
be obtained by averaging Il over the z field configura-
tions with the weight as given by Eq. (7). In the N =1
case the result Eq. (3) is recovered upon the integration
over Z, z, and the dependence on the lattice spacing ¢
disappears. Once Cy(7) is known, Cn(7) for an arbi-
trary value of N may be found indirectly. To this end we
notice that the averaging over different Fourier compo-
nents of the z field can be performed independently and
that II,y differs from II; only in its dependence on the
zero-frequency component. Thus Cn/C is just the ratio
of one-dimensional integrals:

Cn(r) _ _Fn(1)
Ci(r—k)  Fi(r—k)’

where

(12)

_ 1+ ehtng+2bu
FN(T) = /dul + eN(u+ng+2bu)

X exp ((N-—‘r)(,u+ng+2bu) - ﬁuz) (13)

with the definitions u = %ng Z;-:;(Zj +2zj) and b= %
The ratio Eq. (12), as well as C(7) itself is in general n
(or €)dependent. From now on we restrict the discussion
to the continuum limit € — 0. In the latter case ¢ must
be replaced by 0 and b = VM. As a consequence, the
Gaussian factor in Eq. (13) becomes e’

The correlation-function and the effective-mass correc-
tions following from Eq. (12) will now be studied analyt-
ically for limiting values of M and u. This study will be
complemented by a numerical analysis for intermediate
values of these parameters using the method described
in the Appendix. Before doing so, a number of remarks
should be made. First of all, we note that the oscillator
frequency w does not appear in the continuum limit of
Fn. The configuration copying yields corrections to meg
whose finite-temperature scale is M rather than w [cf.
Eq. (4)]. We can therefore fix w with no loss of general-
ity. Second, our analysis is equally valid for any N > 1.
For the purpose of illustration we choose w = 5.5 and
N = 4. Finally, it should be noted that we find a per-
fect agreement between the analytical and the numerical
results wherever the comparison is possible.

Consider the massless (¢ = 0) fermion first. In the
high-temperature (M < 1) limit the Gaussian is the
most rapidly varying factor in the integrand of Eq. (13),
and Fn(7) can therefore be computed by the steepest-
descent method, giving

62(N—1)\/Hu
Fn(r)y=Fi(7) + /dum—

= \/;61‘4(1""-)2 + T

- 162,(1-—7')\/1\_414-—112

ol (55) - (7).
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3

x(§N+%+k~%)]. (14)

It follows that the corresponding correction to the
fermion effective mass in this regime depends only on
k, the integer part of 7:

Ameg = M (N —1-2k) . (15)
This means that the shape of meg(7) in every system
copy is as given by Eq. (4) for N = 1 up to a constant.
The size of this constant (a multiple of M) is precisely as
needed to ensure the continuity of meg(7) across a copy
boundary. The high-temperature regime is illustrated
by the M = 0.01 curve of Fig. 1. Note that Ameg is
generally of order M. The only exception is vanishing
Ameg in the [(N + 1)/2]th copy for odd N.

A completely different behavior occurs in the low-
temperature (M > 1) limit. If 7 is deep inside the inter-
val [1, N], the integrand of Eq. (13) is non-negligible only
for u of order M~1/2, With the zero-frequency compo-
nent of the z field driven to the close vicinity of 0, the
fermion propagator [Eq. (11)] becomes a periodic func-
tion of the time separation, and so does Cn (7). To make
this argument more quantitative we note that this time
the Gaussian in Eq. (11) is a slowly varying function and
may be safely replaced by 1. Therefore

() = g e (r 5 s (r=2=1)].
(16)

This amounts to a negligible (of order M ~1) relative cor-
rection to the fermion effective mass. The major correc-
tion to meg(T) comes only from Fi(r — k), namely, in
this case

Ameg(r) =2M (r—k —1) . (17)
Superposing this correction with meg(r — k) as given by
Eq. (4) we find that the fermion effective mass oscillates
around zero. It is not difficult to show that the amplitude
of these oscillations monotonically grows from 0 to M as
the oscillator frequency w varies from 0 to co. If 7 is
within the first copy (0 < 7 < 1), Fy and F) are roughly
equal. Indeed,

(18)
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FIG. 1. Fermion effective mass curves at g = 0 for

M = 0.01 (solid curve), 0.25 (dotted curve), and 100 (dashed
curve).

and the correction to F} is exponentially small for large
M. This in turn means that the fermion effective
mass in the first copy is given by Eq. (4) to a good
approximation. The M = 100 curve of Fig. 1 re-
flects the low-temperature behavior of the effective mass.
The intermediate-temperature case is represented by the
M = 0.25 curve of the same figure; it combines the k-
dependent copy shift with a tendency towards oscilla-
tions.

Similar simple estimates apply to a more general case
of a nonzero fermion bare mass. If the latter is small com-
pared to the dynamically generated one (i.e., p < M),
it will have very little effect on the correlation function.
If, however, the opposite condition holds, the dynamics
of the fermion is dominated by the bare mass term, the
interaction being a small perturbation. Technically this
means that we can replace the integrand of Fn(7) by its
approximate form in the vicinity of the Gaussian peak:

Fn(1T) = Fi(7) . (19)
The corresponding correction to the effective mass is
therefore

Ameg = —2kM . (20)

This behavior is similar to the one we found in the mass-
less high-temperature case, only this time the effective-

Ci(r) = Tr(cT_c.,.e_THcL_c_e_(l")H)

4)2

_ p—w(l-7))2
=exp [-—7 (e—w(l—T) —1+4 (_1__6____)__6~w
w

1—ev
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FIG. 2. Effective mass curves for massive fermions: p =

200 (solid curve) and 10° (dashed curve). In both cases M =
100.

mass correction vanishes in the first copy. As expected,
the correction is small compared to the exact energy-gap
value. A typical large-p effective mass curve is shown in
Fig. 2 (# = 10%). Also shown is the meg curve for the
moderately heavy (1 = 200) fermion; note that the bare
mass is sufficiently large to suppress the oscillations in
the second, but not in the third and the fourth copies.

III. FERMION-ANTIFERMION PAIR CASE

Having in mind possible implications for lattice QCD,
we would like to study time evolution of fermion-
antifermion bound states rather than that of individual
fermions. To this end we extend our simple model in or-
der to accommodate such a state. The following discus-
sion parallels that of the preceding section, and technical
details will therefore be given less explicitly. Consider
the Hamiltonian

(21)

where the two fermionic degrees of freedom are denoted
by c+. The energy level structure of H is obvious. The
ground state is annihilated by cy, cl,and a + -3- The

H =wa'a+ [Ma+a")+ p](01+0+ —ctel),

particle-hole excitation (called meson in the following)
is created by applying cB_c_ to the ground state and is
separated from the latter by a gap 2u. The corresponding
correlation function is

) +p(1 - 21')] (22)
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and the meson effective mass is given by LS e
d sinh[w(% — 7)]
Mef = ——— In C =4M———2— 4 2. [
off dr 1(7) sinh(w/2) +em Lol
(23) [
Again, as in the one-fermion case, meg(7) at low tem- 3 L
peratures approaches the meson energy gap if 7 is far T} 05 I
enough from both 0 and 1. E L
The derivation of Cn(7) for the meson exactly follows r
the preceding section [Egs. (9)-(13)]. As a result, we 0.0 —
obtain in complete analogy with Eq. (12), r
CN(T) GN(T) : B
= (24) ol e b
Cl(‘r - k) Gl(r - k) ’ 0‘50 1 5 3 4
where, in the continuum limit, i
e FIG. 4. Effective mass curves for mesons with nonzero
Gn(T) = / du 1+ cosh(2v Mu) fermion bare mass: u = 500 (solid curve) and 2 x 10° (dashed
1+ cosh(2NV Mu) curve). In both cases M = 100.
xeZ\/lTl-(N—Z'r)u—(ta—-u/Z\/ﬁ)2 . (25)

Again, the limiting cases are most easily understood. We
begin with the g = 0 limit, where the meson energy
gap should vanish. At high temperatues we obtain, by
applying the steepest-descent approximation to Gy,

Ameg = 4M(N — 1 — 2k) (26)

in a close analogy with Eq. (15). This type of behavior is
illustrated by the upper curve of Fig. 3. Note that only
two copies out of four are shown because the mesonic
meg(7) 1s an odd function of 7 — N/2 for p = 0.

At low temperatures the Gaussian factor in Eq. (25)
may be replaced by 1 for % <T<N-— -é— In this range
of 7 values we obtain, closely following Eq. (17),

Ameg(r) = 4M (21 — 2k — 1) . (27)

A_Lllill‘
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T T N
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FIG. 3. Meson effective mass curves at u = 0 for M =
0.006 25 (upper curve), 0.25 (medium curve), and 100 (lower
curve).

This correction leads to an oscillatory behavior famil-
iar from the one-fermion case. Note, however, that this
time the oscillations set in already in the first copy. This
is hardly surprising: one would expect a similar result
even for an uncorrelated fermion-antifermion pair, as can
be shown by superposing the fermionic low-temperature
effective mass meg(7) with its antiparticle counterpart
—meq(1l — 7). The Ameg correction becomes negligibly
small only if 7 < 4 or 7 > N — 1 [cf Eq. (18)]. The
lower curve of Fig. 3 corresponds to the large-M case.
The medium curve of the same figure shows the meg(7)
dependence for M far from both extremes; it shares to
some extent the features of the two limiting cases.

Finally, we consider the heavy-fermion case (u > M).
Here, as we have discussed earlier, G is dominated by
the vicinity of the Gaussian peak. It follows that

Ameg = —8kM . (28)

Again, this is the only case where the copying yields a
relatively small correction. An example of this situation
is given by the u = 2 x 103 curve of Fig. 4. The second,
1 = 500 curve of this figure shows partial suppression of
the oscillations by a smaller bare mass.

IV. DISCUSSION

We have studied in detail the effect of field configura-
tion copying on both fermion and fermion-antifermion
composite state correlation functions in a simple
quantum-mechanical model. One could hope that the
configuration repetition would allow a reliable extraction
of low-lying excitation energies in a wider range of values
of the time separation. This, however, does not turn out
to be the case, unless the interaction can be neglected
compared to the fermion bare mass term. Instead, we
obtain a variety of possibilities for the effective mass be-
havior, depending on the temperature and the bare mass
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value. For light fermions at high temperature the effec-
tive mass correction is constant within a copy but has a
discontinuity on a copy boundary. On the other hand,
the correlation functions at low temperatures develop an
oscillatory behavior. The fermion correlator in the first
copy remains unaffected by the oscillations. In the meson
correlator, however, the oscillations penetrate even into
the first copy for 7 > % Altogether, we find no region in
the parameter space where the configuration repetition
is useful for spectrum measurements. There is at best a
single copy where the one-copy results are approximately
reproduced.

A natural question arises as to what extent the re-
sults presented here should be expected in other models.
In quantum mechanics the effective mass oscillations are
likely to follow from the background-field configuration
repetition. Indeed, a propagator I'(7) in the periodic
background potential V(r) should obey the Euclidean
equation of motion

(d%— +p+ V(T)) I(r) = (7). (29)

Obviously, the effective mass in a fixed background con-
figuration includes an oscillating term V(7). This prop-
erty of the propagator will survive averaging over con-
figurations as it does in the example given here, unless
some miraculous cancellations occur. Recent QCD cal-
culations on replicated lattices seem to fit into a similar
scenario. In particular, one of them finds an oscillatory

oo 1
Fn(m) = e~ K 1AM Z Z(—l)k[eP:(k)zerfc(Pq"’(k)) + qu—(k+l)2erfc(Pq"(k + 1)),

k=0¢=0

where

+ - H

PE(k) = VM(EN % (1 — q)) Wi
and erfc denotes the complementary error function. This
alternating series is convergent for all values of 7 because
exp(—z2)erfc(z) o 27! for large positive z. Obviously,
the convergence slows down for small M. We use Ce-
saro’s summation by arithmetic means to improve the
convergence in our numerical computation of Eq. (A2).
Truncating the series after the eighth term yields a 3%

(A3)

Gn(r) = N\l/JT/I—

k=1 g=-1

where

(1) = 2 g
QE(k) = VM [(kF DN = (27— ¢ QM)} .
As in the Fjy case, individual terms in this alternating
series decrease as k~! for large k. However, the conver-

(A5)
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behavior of the pion effective mass beginning shortly af-
ter 7 = 0.5. If the origin of these oscillations is common
to QCD and our simple model, so must be the conclu-
sion: replicating lattices does not increase the amount
of useful spectroscopic information that can be extracted
from correlation functions. Therefore this technique is of
doubtful value for hadron spectroscopy calculations.
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APPENDIX:

In this appendix we describe the method used to calcu-
late the Fiy and Gy integrals numericaly. For the sake of
brevity we concentrate on the continuum limit, in which

1+62mu (N-—-r)2\/X/I_-u—(u-—u/Z\/M)2
Fn(r) = / du NV '

(A1)

Expanding the denominator of the integrand in Eq. (A1)
in powers of exp(2NvVMu) for u < 0 or its inverse for
u > 0 and integrating over u we find

(A2)

f

error in Ameg relative to M in a wide range of all the
involved parameters for N = 1 (where the exact value of
Ameg is 0), 2, or 4.

A similar method is applied to calculate Gn(7) of
Eq. (25). Here, however, a straightforward expan-
sion of the denominator in powers of exp(£2N+v/Mu)
does not lead to convergent series expansion. The lat-
ter is obtained by first integrating by parts to replace
cosh™2(Nv/Mu) with tanh(Nv/Mu). The resulting ex-

pansion reads

emH 1AM (4 + i(—n’c 21: (2 — ¢2){2 — VA MEN[e9F * erfe(QF (k) + eQJ(k)Zerfc(Qq_(k))]}> ,

(Ad)

[

gence is much slower this time, especially for small values
of M. We overcome this difficulty by using the power-
ful Euler’s summation method. With the eighth term
included, this gives the result as accurate as in the Fiy
case.
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