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Distribution of the color fields around static quarks: Lattice sum rules
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A lattice Monte Carlo study of the color fields in the sector of static qq pairs is reported. Lattice
sutn rules relating these observables to the qq potential are tested in detail A.s a by-product the P
function of the SU(2) Yang-Mills theory is determined with high accuracy.

I. INTRODUCTION

For many years lattice gauge techniques have provided
a simple and appealing picture of confinement based on
Aux-tube formation around color charges. The early
simulations concentrated on global quantities such as the
vacuum energy in the presence of the static sources
which gives the heavy-quark potential. Improved numer-
ical techniques and computing power allow now a study
of local quantities, i.e., chromoelectric and chromomag-
netic Aux, in considerable detail. These studies are close-
ly related. The work required to pull a quark-antiquark
pair apart to a distance A, as measured by the potential
V(R ), must show up in the form of chromoenergy densi-
ty. Hence a physical constraint on these studies is in the
form of a sum rule which states that the sum of this ener-

gy density over all space must in turn give the potential
back.

The Aux problem on the lattice was first studied in
1983 by Fukugita and Niuya, ' and later by Flower and
Otto and Sommer. ' Michael and co-workers have
made extensive studies of the pure gauge sector. ' In a
series of papers Markum and co-workers have studied a
number of aspects of the heavy-quark problem, including
the chiral condensate and the quark-polarization
effects. " ' de Forcrand, Linke, and Stamatescu have
also studied the breakup of the string caused by dynami-
cal fermions. ' Caldi and Sterling' obtained precise re-
sults in 2+1 dimensions. Campostrini et al. ' and Dun-
can and Mawhinney' saw that by cooling the
configurations some features of the flux tube survive
when quantum Auctuations are artificially suppressed, at-
tributing the features to classical configurations. The
quality of current simulations may soon allow for a quan-
titative test of various analytical models of the confining
tube. The seminal work on this problem goes back to the
paper of Nielsen and Olesen who have first found the vor-
tex solution of the Abelian Higgs model. ' In another
fundamental approach, Liischer, Miinster, and Weisz
have studied the bosonic string model of the effective
tube. ' ' Baker, Ball, and Zachariasen have obtained the
explicit solution of the effective dual formulation of the
Yang-Mills theory. ' Also, recently, Bagan has proposed

a model of the chromoelectric Aux tube which is inspired
by the Shifman-Vainshtein-Zakharov (SVZ) sum rules.

Our study of the Aux started in 1987 when we first ob-
tained the distribution of the E component for large qq
distances. In the present simulations we measure
rather precisely the complete energy and action distribu-
tions. These data are then extrapolated to the infinite-
time extent of the Wilson loop in order to minimize the
effect of the creation and annihilation of static quarks.
The techniques employed to get high-precision Aux data
also gave accurate Wilson loops, i.e., the potential.
Therefore, we are able to give the first direct test of the
Michael sum rules relating the potential to the sum over
energy density. This is done in this article. In a separate
paper we look in detail at the spatial behavior of the
aux. 28

II. SIMULATION

The computations were done on the FPS AP264 array
processor at LSU. Our lattice size was a 17 X20 hyper-
cube with helical boundary conditions. Updating was
done checkerboard fashion, which requires space dimen-
sions odd and the time dimensions even. For SU(2) over-
relaxation is microcanonical, and hence the Metropolis
method is needed to sample configurations with different
energies and/or actions; hence, we alternated the two-hit
Metropolis method with overrelaxation, which gave a
good sweep-to-sweep decorrelation. We measured after
each five sweeps and grouped our data into bins of five
measurements each. We ran at three values of P: 2.3, 2.4,
and 2.5.

A. Wilson loops

We introduce static sources via R X T Wilson loops.
Quantum mechanically, the Wilson loop provides the
projection onto the qq sector of the Hilbert space. Pro-
jection onto the ground state of the qq state is obtained
only when the time extent of the loop tends to infinity.
On the other hand, the interest lies in the shape of the
Aux tube for large space separations. However, the large
space and time separations are very difficult to achieve
simultaneously because of the exponential suppression of
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the signal with the area of the loop. For that reason the
straightforward measurement of these quantities would
lead to prohibitive computer time or intolerable errors.

A very effective way to reduce fluctuations in these
quantities is to do as many integrations analytically as is
practical. This is the analytic version of the multihit pro-
cedure proposed by Parisi, Petronzio, and Rapuano.
For example, the one-link integral can be evaluated using

I2(Pb )

I, (Pb )

We measured most rectangular loop sizes R X T from
1 X 1 to 6 X 9 and, in one case, R =7, as shown in Table I.
The 1XT loops have notably larger errors than, for ex-
ample, 2X T loops. This is because the analytic methods
to suppress the fluctuations were not employed for the
1XT case.

B. Flux

The lattice observable needed to measure the flux
is 1 —4, 23 —28

where K is the sum of six "staples" coupling to a given U

in the action, and I„(x) is the modified Bessel function.
The sum of SU(2) matrices in the j=

—,
' representation is a

multiple of an SU(2) matrix which we denote by V:

f" (x)= a' &w&

&Wr~ WI& &-

&w&

(3)

(4)

E =bV, b—= (detK)'~ (2)

The effect of Eq. (1) when applied to a simulation is to re-
place a link U occurring in the Wilson loop by a corre-
sponding sum of "staples" V. This is indicated in Fig. 1.
Since K involves 18 links, one can expect the fluctuations
of the ensemble of K's to be suppressed compared to a
single link U in each measurement. As one goes to larger
values of P, the corresponding correlation length in-
creases and there is less cancellation of fluctuations over
the 18-link structure. We indeed find the suppression
more effective for smaller values of P.

This result is useful as long as subsequent analytic in-
tegrations do not involve one of the links in K. For ex-
ample, this will work for those links that make up the
sides of a Wilson loop of size 2X2, or larger, as long as
one link at each corner is left in its original form. Ana-
lytic treatment of all links was done by generalizing Eq.
(1) to more complicated structures. The cases of four
links in a plaquette and two links that form corners have
been derived by Bunk. ' Figure 1 shows which staples
are relevent in the analytic integrations. These two cases
cannot be given in closed form, but can be expressed by a
rapidly convergent character expansion.

link integral corner integral

plaquet te integral

Wilson loop

FIG. 1. Links involved in link, corner, and plaquette in-
tegrals.

where 8'is the Wilson loop, P" is the plaquette located
at x, and a is the lattice spacing. In the classical continu-
um limit

a~0f"' ~ ——((F" )')—
2 qq

—vac '

where the notation (.. . ) „„means the difference of
the average values in the qq and vacuum state. From
now on we shall be using field components in Minkowski
space and hence

Correspondence between various components and f" is
standard: Space-space plaquettes are magnetic, and
space-time plaquettes are electric. The energy and action
densities are, respectively,

e = i (E2+Il2)

i (E2 I12)

Since, however, the magnetic contribution turns out to be
negative, there is a strong cancellation between the two
terms in the energy, while they are enhanced in the ac-
tion.

Because of the large amount of data generated and be-
cause of the difficulty of getting good statistics, the data
were folded on rectangular symmetry planes. We also
limited the measured flux to a fiducial volume consisting
of a closed volume surrounding the Wilson-loop four lat-
tice spacings in every direction. We measured all six
components of the flux.

Some enhancements in the signal to noise is vital to
measure the flux. In addition to the Wilson-loop analytic
integrations, another enhancement is almost trivial, but
contributed significantly in reducing errors. That is in-
dicated in Eq. (4) in which the Aux is measured relative to
a distant refe'rence point xz. This does not change the
lattice average, but the main fluctuations of PR' which
are due to the Wilson loop itself, cancel when the
difference [Eq. (4)j is computed configuration by
configuration. By taking for xz a point where the corre-
lation vanishes, the two forms in Eq. (3,4) are equal. In
practice, we take for x~ a corner of the hypercubic fidu-
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TABLE I. Wilson loops, (a) p=2. 3. 0, 195 meas; f, 240 meas. (b) p=2. 4. 0, 200 meas; f, 540 meas; g, 230 meas; 0, 140 meas. ( )

P=2.5. +, 180 meas; t, 200 meas; f., 210 meas.

0.602 421
0.000 036

0.180240*
0.000 054

0.088 931*
0.000 049

0.035 334
0.000 038

0.044 600*
0.000 039

0.014 564*
0.000 026

(a)

0.022 473*
0.000 028

0.006 082*
0.000 017

0.011 343
0.000 019

0.002 552*
0.000 011

0.005 729*
0.000 012

0.001 077*
0.000 007

0.002 895*
0.000 008

0.000 454
0.000 005

0.001 420
0.000 005

0.000 179
0.000 002

0.005 046
0.000 017

0.001 784* 0.000 634
0.000 010 0.000 007

0.000 229*
0.000 004

0.000 083*
0.000 003

0.000 029t
0.000 002

0.000 535*
0.000 006

0.000 162*
0.000 004
0.000 043*
0.000 002

0.000 050
0.000 002

0.000 013*
0.000 002

0.000 016
0.000 002

0.000 002$
0.000001

0.000 004
0.000 001

(b)

0.630 044
0.000 016

0.424 987*
0.000 074

0.222 5541
0.000 029

0.291 168*
0.000 089

0.123 709~
0.000 030

0.059 244
0.000 027

0.200 229*
0.000 096

0.069 9734
0.000 026

0.029 4564
0.000 021

0.013 1701
0.000 016

0.137 838
0.000 102

0.039 7941
0.000 020

0.014 829
0.000 015

0.006 011~
0.000 011

0.002 511$
0.000 007

0.094 917
0.000 106

0.022 672
0.000 015

0.007 499
0.000 011

0.002 766
0.000 007

0.001 062
0.000005

0.000 417
0.000 003

0.065 296
0.000 107

0.012 925$
0.000 011

0.003 799
0.000 007

0.001 277
0.000 005

0.000 4524
0.000 003

0.000 165
0.000 002

0.005 608
0.000 002

0.044 902*
0.000 107

0.007 370$
0.000 008

0.001 927
0.000 005

0.000 592
0.000 003

0.000 194$

0.000 002

0.000 063
0.000 002

0.000 019
0.000 002

0.030 941
0.000 107

0.004 101~
0.000 076

0.000 958
0.000 007

0.000 271
0.000 004

0.000 083
0.000 003

0.000 027
0.000 002

0.000 007
0.000 001

0.651 998
0.000 022

0.456 541*
0.000 074

0.324 792
0.000091

0.231 935*
0.000 100

(c)

0.165 751* 0.118494*
0.000 107 0.000 112

0.084 762*
0.000 114

0.060 682*
0.000 114

0.043 368*
0.000 114

0.258 078
0.000 045

0.1S4 839~
0.000 048

0.094 577~
0.000 045

0.058 085~
0.000 038

0.035 737$
0.000 030

0.022 006$
0.000 023

0.154 9851
0.000 049

0.083 249~
0.000 049

0.046 3751
0.000 043

0.026 051$
0.000 033

0.014 741~
0.000 025

0.008 355~
0.000018

0.094 714
0.000 045

0.046 378~
0.000 043

0.024 055
0.000 036

0.012 644~
0.000 025

0.006 726~
0.000 018

0.003 588~
0.000 013

0.058 205
0.000 038

0.026 160~
0.000 034

0.012 730'
0.000 027

0.006 311$
0.000 018

0.003 183~
0.000 013

0.001 614$
0.000 009

0.035 8361
0.000 031

0.014 823
0.000 026

0.006 7941
0.000 020

0.003 184$
0.000013

0.001 525$
0.000 009

0.000 737$
0.000 006

0.022 081
0.000 024

0.008 418
0.000 019

0.003 643'
0.000 014

0.001 615$
0.000 009

0.000 739~
0.000006

0.000 343~
0.000 004

0.013 609
0.000 018

0.004 784
0.000 013

0.001 957
0.000 010

0.000 849
0.000 006

0.000 357$
0.000 004

0.000 159~
0.000 003

0.008 3891
0.000 014

0.002 722
0.000 009

0.001 053
0.000 006

0.000 436
0.000 004

0.000 172~

0.000 003
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cial volume as the "point at infinity. "
In the vectorized code, we save the long vectors of Wil-

son loops (or fat Wilson loops) corresponding to all loca-
tions of the loop and similarly for all locations and orien-
tations of the plaquette. We then calculate the cross
correlation between these two long vectors. To do a
naive correlation measurement, an estimate of computer
time t gives

lat tice ~fiducial

whereas if one employs fast Fourier transforms, we ob-
tain

C(T)=ln Ro+ g R, e
i ~1

(13)

For large T, C( T) is independent of T; hence plotting the
left-hand side (LHS) of Eq. (12) vs 1/T would show
directly how important are higher states and how big is
the required extrapolation. Figure 2 shows such a graph.
Indeed, the 1/T dependence is almost linear and higher
states show up only for largest 1/T. As expected, for
larger R the asymptotic linear regime starts at smaller
1/T values. The extrapolated intercept values agree well
with the "time-dependent" estimates of the energies

~lattice g2( ~lattice ) (10) aE"(R)=In[( 8 (R, T))/( W'(R, T+1)) ] .

Given the size of our fiducial volume, the fast Fourier
transform was essential to beat down computer time.

The fast Fourier transforms give all the correlations,
not just those in the fiducial volume. However, when the
fat operators indicated in Fig. 1 get too close together,
the analytic expressions, derived for the case of nonover-
lapping links, break down. Therefore, one must recalcu-
late those correlations, dropping the analytic integrations
as necessary. Plaquettes that share a link with Wilson-
loop links had the least Auctuation suppression. We cal-
culated plaquette correlations in all cases using the max-
imum number of analytic integrations allowed by the
one-link, corner, and plaquette integrals mentioned
above. This meant dropping one or two of the analytic
one-link integrations when the plaquette touched the Wil-
son line.

III. POTENTIAL

The qq potential was extensively studied in the litera-
ture, ' ' ' and the following discussion is intended to
demonstrate the consistency of our new and more precise
results with earlier works. Second, it is required for the
completeness of the subsequent discussion of our local
measurements of the energy density.

As usual, we obtain the energy of the static qq pair
from the largest eigenvalue of the lattice transfer matrix
projected onto the qq sector of the Hilbert space. To this
end one fits the time dependence of the average value of
the Wilson loop W(R, T) to the expression

Table II summarizes the results of fitting ( W(R, T))
with the expression Eq. (11). Two or three states were
used, and the T;„was also varied to check the stability.
Errors on the parameters are standard MINUIT errors;
i.e., they correspond to the change of y by 1. They
should be regarded with some caution since no correla-
tions between Monte Carlo data points were included.
Both Eo and E, are stable under the variation of T;„
and the number of states used in the fit. Resulting values
agree rather well with other authors. ' '

In order to push for larger distance, we have also fitted
our loops for R =7a —9a, interpreting the shorter dimen-
sions as a time. This brings us to probing qq distances
—1.5 fm. However, in this case the T interval available
for fitting is reduced and the values of the slopes E; are
consistently overestimated due to the inAuence of excited
states. This explains the deviation of the rightmost
points from the common curves shown in Figs. 3 and 4.

To check for scaling, we merely plotted Eo(R) in phys-

ical units for all three f3 values [cf. Fig. 3(a)]. In trans-
forming from lattice to physical units, we used the values
of the running lattice constant a(P) quoted in Refs. 4

9 7 5

2.0

( W(R, T) ) = g R, e

where R;= ~(0 S~i )j characterizes the ability of the
~ ~

operator S (here the spacelike string of U's) to excite the
state ~i ). To extract reliability the ground-state energy
Eo(R ), one needs the large-T limit of ( W(R, T) ). With a
shorter T interval available, more excited states contrib-
ute to the sum. To get an idea of how important various
contributions are, and how far we are from the T= ~
limit, we rewrite Eq. (11):

(12)

1.0

I

0.5,—

l

0.1

I

0.3 0.5

with
FICx. 2. Testing domination of the lowest state for

( W(R, T) ).
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and 10; cf. Table III. [Since our Eo(R) agrees so well
with Sommer's on axis potential, we would have obtained
the same values for a(p) had we repeated the analysis of
Sommer or Michael. ] It is evident from Fig. 3(a) that our
lattice string tension scales in accordance with the a(p)
quoted in Table III. Another confirmation of the con-
sistency comes from the values of the self-energy. The
ground-state energy of the static qq pair is conveniently
parametrized by

Eo(R)=—+oR+0.' c(p)
R a(P)

where c/a is the ultraviolet-divergent self-energy of the
pointlike sources. This term prevents Eo(R ) from scal-
ing. However, the shape of the R dependence remains
the same for all p. This is readily seen from Fig. 3(a).
From the amount of the shift required to bring the three
curves together [Fig. 3(b)], we get, for the corresponding

TABLE II. Results of the fits of the time dependence of the Wilson loops.

2.3

Ro

0.6818(06)
0.6806(35)
0.6820(21)
0.4562(14)
0.4508(95)
0.4563(45)
0.3019(18)
0.2849(67)
0.3020(53)
0.2061(19)
0.192(17)
0.2065{55)
0.123(29)
0.1153(47)
0.1231(73)
0.0844(89)
0.067(23)

Eo

0.6827(03)
0.6825(09)
0.6828(06)
0.8645(07)
0.8629(34)
0.8645(18)
1.027(02)
1.020(02)
1.027(03)
1.192(03)
1.182{18)
1.192(06)
1.328(42)
1.319(09)
1.328(14)
1.487(28)
1.68(11)

Rl

(a)
0.2147(27)
0.168(76)
0.243(27)
0.3354(52)
0.229(40)
0.340(33)
0.3971(78)
0.179(66)
0.400(44)
0.3960(99)
0.15(12)
0.449(62)
0.27(12)
0.183(19)
0.282(50)
0.286(60)
0.61(14}

El

1.799(02)
1.68{16)
1.838(73)
1.873(04)
1.685(92)
1.877(73)
2.104(06)
1.67(19)
2.107(80)
2.400(76)
1.89(15)
2.437(88)
2.31(48)
2.086(19)
2.32(11)
2.66(10)
3.51{12)

3
2
2
3
2
2
3
2
2
3
2
2
3
2
2
2
2

Tmin Tmax

2—8
3—8
2—8
2—8
3—8

2—8
2—8
3—8
2—8

2—8

3—8

2—8

2—8
3—8
2—8
2—6
2—6

X /&DF

0.030/I
0.012/2
0.037/3
0.074/1
0.012/2
0.076/3
0.321/1
0.139/2
0.323/3
0.125/1
0.051/2
0.061/1
0.277/1
0.209/2
0.279/3
0.194/1
0.055/1

2.4 0.8910{04)
0.6589(02)
0.6587(04)
0.6594(11)
0.4421(15)
0.4397(22)
0.4418{17)
0.2791(06)
0.2789(28)
0.2835(19)
0.1712(07)
0.1713(31)
0.1775(20)
0.1004(06)
0.1083(21)
0.0696(05)
0.0484(13)
0.0260(25)

0.3733(01)
0.5617(01)
0.5616(01)
0.5618(03)
0.6796(06)
0.6788(08)
0.6795(06)
0.7698(05)
0.7697(16)
0.7719(12)
0.8486(08)
0.8486(28)
0.8534(20)
0.9168(13)
0.9275(35)
1.010(02)
1.111(06)
1.153(20)

(b)
0.1168(13)
0.2016(10)
0.2077(16)
0.255(18)
0.373(23)
0.271{52)
0.362(21)
0.2480(21)
0.245(39)
0.385(21)
0.2078(20)
0.209(30)
0.352(19)
0.1702(18)
0.296(16)
0.2670(26)
0.283(23)
0.176(37)

1.892(01)
1.637(01)
1.636(01)
1.721(48)
1.800(03)
1.659(80)
1.785 (41)
1.655(02)
1.649(71}
1.855(40)
1.666(02)
1.668(66)
1.919(41}
1.685(03)
1.973(44)
2.141(03)
2.455(54)
2.38(13)

2—7
2—9
3—8

2—8

2—9
3—8
2—8
2—9
3—8
2—8
2—9
3—8
2—8

2—9
2—7
2—7
2—7
2—7

0.195/2
1.79/2
0.002/2
0.047/3
0.615/2
0.034/2
0.218/3
1.02/2
0.092/2
0.610/3
0.442/2
0.170/2
0.856/3
1.51/2
0.650/2
2.91/2
1.66/2
0.822/2

2.5 0.8871(03)
0.6541(65)
0.4411(19)
0.2859(26)
0.1906(22)
0.1241(19)
0.0797(16)
0.0546(10)
0.0375(08)

0.3355(01)
0.4841(16)
0.5656(08)
0.6235(16)
0.6822(20)
0.7331{27)
0.7800(37)
0.8357(38)
0.8949(50)

(c)

0.0940(11)
0.249(98)
0.346(17)
0.361(24)
0.357(28)
0.324(27)
0.270(23}
0.337(41)
0.368(52)

1.716(01)
1.62(28)
1.653(37)
1.680(50)
1.814(55)
1.905(58)
1.962(60)
2.307(73)
2.577(83)

2—7
2—7
2—7
2—7
2—7
2—7
2—7
2—7
2—7

0.135/2
0.028/2
0.089/2
0.274/2
3.44/2
4.20/2
5.60/2
5.07/2
5.05/2
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TABLE III. Running lattice constant a(P).

a(p)

2.3
2.4
2.5

0.171 fm
0.128 fm
0.089 fm

2.50

2.25

2.00

differences of the self-energies,

b.(2.5, 2.4)=0.38 GeV (0.36 GeV),

6(2.4, 2.3)=0.18 GeV (0.20 GeV),

where b(P„P2)=c(P, )/a(P, )
—c(Pz)/a(P2), which com-

pare favorably with Sommer numbers quoted in

parentheses.
Finally, our result for the energy of the first excited

state of the gluon field in the qq sectors is shown in Fig. 4.
Excited states were studied in detail by Perantonis, Hunt-
ley, and Michael' using combinations of the Monte Car-
lo and variational techniques. In contrast with Ep the
energy of the first excited state depends very weakly on
the qq distance R. This was also seen in Ref. 10 and is
reproduced by the bosonic string model. Our results
agree with theirs to within 15% for R ~6a. Small sys-
tematic differences are probably due to our effective
averaging over various representations of the discrete lat-
tice symmetry group of the qq state. Again, at R ~ 7a, E,
is overestimated because of too short a time extent of 8'
available for fitting.

The energy of the first excited state Et„more precisely
the energy difference A&=E& Eo controls the conver-
gence of our Aux measurements to their large-T limit and
will play an important role in the Aux analysis.

1.75 IV. SUM RULES

1.50
o

0

~ p
A. Processing the data

1.25

1.00

0.75 — ~

O. 50

0.25

0.00
0.00

I I I I I

0.20 0.'10 0.60 0.80 1.00
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Having established the consistency of our measure-
ments with earlier data, we will describe shortly the pro-
cedure to compute the ground-state averages of the ener-
gy density and gluon condensate (also referred to as the
action density). A more detailed discussion of this pro-
cedure can be found elsewhere.

Since the geometrical centers of each of the six pla-
quettes, P„(x), representing individual components of
f„,are di6'erent, some interpolation procedure is needed
before we can compute the energy or action densities.
We do it in three steps. First, we project out the ir-
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FIG. 3. Scaling of the ground-state energy of the static qq
pair. (a) Eo(R) in physical units for three values of P; (b) after
shifts accounting for the diA'erences of the self-energies.

FICx. 4. Energy of the first excited state in the qq sector,
@=2.4.
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relevant dependence on the aximuthal angle P (the qq axis
is chosen to be the z direction). This gives us the four
components E~~ EJ By and B

~~

as a function of the
transverse variable xt =(x +y )'~ and z. Next, the
value of any component at arbitrary x~ is obtained by
linear extrapolation, at fixed z, of the Monte Carlo data
measured at adjacent x~ points. Finally, the linear inter-
polation in z at fixed x~ was performed to bring various
components to the same longitudinal position. During
the interpolation, errors were propagated linearly assum-
ing the statistical independence of the measurements per-
formed at different points. Global quantities like the to-
tal energy and the action were obtained by integrating
numerically in x~ and then adding contributions from
different transverse slices. In spite of the apparent com-
plications, the interpolation procedure averages out sta-
tistical fluctuations, and as a consequence, our final distri-
butions are reasonably smooth and show rather small sta-
tistical errors. Only around the end points
x J 0 x g 5.5a, where the interpolation turns into ex-
trapolation, have we seen considerable buildup of the
propagated errors. This is expected from standard error
analysis.

The whole interpolation procedure was applied to our
correlations [Eq. (4)] measured with the time-elongated
Wilson loops 8 (R, T), as well as to the T= co space dis-
tributions which were obtained by fitting the T depen-
dence of f" (x,x4= T/2; T, R ) at each x. The
difference between the two measures the contamination
of the finite T data by the excited states.

B. Energy sum rule

1.6

1.2

1.0

0.8

e
~ ~

0.6

0. l

0.2

A=3a
+=7a

smaller statistical errors of Eq. (4) compared to Eq. (3).
This substantial reduction of noise was achieved at the
price of giving up the exact normalization of our densi-
ties. The reference point x~ was chosen at the distance
(R/2+4, T/2+4, 4, 4) from the center of W, and for
large Wilson loops, this separation was not enough to
guarantee the proper (vacuum) normalization of our den-
sities. In other words, precise measurement of the
diff'erence (4) detected small background values e~ for
e(x) at large xt or z. Thus the detailed test of the sum
rule must take into account the extensive contribution to
the total energy hE = Vydo&»if'g.

Figure 5 clearly confirms the above considerations. It
shows the energy contained in the cylindrical volume

The Michael sum rule for the energy reads

—,
' g [E(x) +B(x) ]=Eo(R), (16)

3.OO 3.50 %.00 %.50 5.00 5.50

Via

0.0 I I I I I

0.OG 0.50 l .00 1 .50 2.00 2.50

where both sides of Eq. (16) refer to the lowest quantum
state of the Yang-Mills field in the sector of the Hilbert
space, with the classical qq sources separated by the dis-
tance R. Two comments should be made before the de-
tailed comparison.

(1) We have measured f", and consequently e, in the
fiducial volume V„d„„,& surrounding the sources by four
lattice units in all directions. Beyond this distance the
signal is (a) very small, (b) very noisy, and (c) bookkeep-
ing much larger volume of observables is limited by the
storage capacity of our machine. We also note that our
procedure integrates effectively over the cylindrical
volume of radius xj ~ 5. Sa rather than summing the LHS
of Eq. (16) in the rectangular box x,y ~ 4a.

(2) The success of the whole project of measuring the
averages f" (x) [Eq. (3)] is entirely dependent on the
trick which replaces Eq. (3) with Eq. (4), where the
difference of 8'P" —O'P", for some distant reference
point xz, is computed configuration by configuration in-
stead of subtracting the averages. For large enough xz,
the averages given both equations are equal, but Auctua-
tions of the difference O'P" —O'P" are much smaller
(sometimes by two orders of magnitude), giving much

2, 2
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FIG. 5. Integrated, up to p, transverse profiles of the energy

density (GeV). Open circles show uncorrected and solid circles
show corrected cumulants; P=2.4.
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with radius p and the length R +8a, as the function of p,
for difFerent qq distances R. For small qq separations
(R ~ 3), the energy is contained in the first three units
and the cumulative distribution saturates. For larger R's
the transverse integration does not converge, giving the
p-dependent cumulant. The value of e~ can be extracted
from this residual p dependence or, alternatively, read
directly from the large-x ~ behavior of the density.
Corrected cumulants are also shown. They are nicely
constant, demonstrating the consistency of the subtrac-
tion procedure.

Finally, the test of the sum rule Eq. (16) is shown in
Fig. 6. For small R, errors of the sum, though very
small, are caused mainly by the uncertainties of the extra-
polation and correction. For larger distance statistical
fluctuations become equally important. Errors of the
RHS of Eq. (16) are negligible. The agreement with the
potential fits is satisfactory. Small ( —10%) deviations at
small R/a may result from the finite a efFect, i.e., too
large a grid for the precise description of the shape of the
distribution around the small tubes.

C. Action sum rule

The action density y(x ) is much easier to measure
since it acquires positive contributions from all six com-
ponents of f"; cf. Eq. (4). Consequently, the large Tex--
trapolation of the densities is much more reliable and less
dependent on the choice of T;„and number of states
used in the fit, also for the larger qq separations. This is
clearly seen from Fig. 7, where the integrated transverse
profile of the gluon condensate is shown. The upper band
denotes the variation of the extrapolated (to T= oo )
values with the details of the fit (number of states and
T,„). Similarly, the background contribution is better

E (R) ~(P)
P

c(P)
Q a a

(17)

by difFerentiation with respect to R. At sufficiently large
qq distances, the Coulomb contribution to Eo(R) can be
neglected and we get

o~=—— g [E(x) —B(x) ]=—P o . (18)

The comparison shown in the Table IV gives a somewhat
larger value for the ratio o. z/o. . Nevertheless, it is still
compatible with the uncertainty of the current estimates
for the p function, —pd lna /dp=7. 7+1.0.

It is apparent from Eq. (17) that the self-energy contri-
bution to the total action is not enhanced by the

l 1 .00

controlled in this case. Corrected distribution is nicely
saturating and depends rather weakly on the initial distri-
bution, i.e., whether we start with the T=7a, 8a or, ex-
trapolated to T= ~ data, we end up within the lower
band shown in Fig. 7.

Typically, the action density is larger by the factor 7—9
than the corresponding energy densities. This agrees well
with the main enhancement factor pd lna/dp=7. 7 also
quoted in Ref. 4. The same number is also seen when we
compare the string tension and the condensate tension-
the amount of action stored in the unit length of the mid-
dle section of the tube (cf. Table IV). The corresponding
transverse sum rule can be obtained from the action sum
rule (an overdot denotes d /dP)

A (R)—=—g [E(x) —B(x) ]
12.
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FIG. 6. Energy sum rule. Open circles show the integrated
density; solid circles show the potential plus the self-energy.
Solid line corresponds to the fit [Eq. (14)j;P= 2.4.

FIG. 7. Integrated, up to p, transverse profiles of the action
density (GeV). Open circles show T=7a and solid circles show
T=8a data. Upper band represents the extrapolated to T= ~
cumulants and the uncertainty of the fit. Lower band gives
values corrected for the nonzero background. P=2.4.
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TABLE IV. Energy and the action, in GeV/fm, stored in the transverse middle slice and normalized

to the unit length of the tube.

Energy
Condensate

Energy
Condensate

0.68(06)
7.37(08)
0.76(12)
7.40(10)

0.94{11)
7.55(11)
0.68(20)
8.12(20)

0.86(17)
8.12(17)

9.6(1.7)

0.72(07)
7.88(10)
0.82(17)
8.34(20)

—/3d lna/dP factor. It remains approximately at the
same absolute level ' and is given by the last term in Eq.
(17). This effect can be seen more directly in our data.
Figure 8 shows the longitudinal profile of the
energy/action density. Indeed, the energy profile is more
peaked around the sources than that of the condensate.
More quantitatively, the height of the peaks about the ap-
proximately Hat, confining background, is the same, while
the ratio of the action and the energy densities, at the pla-
teau, is roughly given by —I3d lna/d/3. For the distribu-
tions extrapolated in T, agreement is even better. On the
other hand, the absolute values of the self-energy, as ex-
tracted from the potential fits, seem rather large com-
pared to the energy stored in the direct vicinity of the
sources. The large self-energy part has a dramatic effect
on the global action sum rule. It turns out that after sub-
tracting c/a from Eo(R), the RHS of Eq. (17) is much
too small to account for the sum of our action density.
Since our "experimental uncertainties" are much smaller
for the action than for the energy, we feel that the action
sum rule is the good place to determine independently the
P function, the self-energy, and the self-action entering
Eq. (17). To this end we have fitted our data for A(R )

with the formula (17), treating g = —13d lna /d P and
z = gE„«+ A„«—(E„«:c/a and A—„,r—:—Pc/a ) as
free parameters, and taking Eo(R ) from the potential fits.
The results are shown in Fig. 9 and Table V. The best
value for g agrees very well with the one quoted in Ref. 4
and has much smaller errors. However, the only in-
dependent combination of the self-energy and self-action,
namely, z, is smaller almost by the factor of 2. This is ex-
actly the effect we have mentioned earlier. With the
value quoted by Sommer or Michael (0.87 GeV) for E„,&
and A„,&=0.51 GeV (as read from Fig. 4 of Ref. 4), the
action sum rule is inconsistent.

A possible explanation of this discrepancy is the opera-
tional definition of the self-energy adapted in Refs. 4 and
10. To account for the lattice artifacts in fitting the po-
tential, one has to use the lattice propagator instead of
the Coulomb one. On the other hand, derivation of the
sum rule requires splitting of the qq energy into scaling
physical potential and the remainder defined as the self-
energy.

An alternative explanation is that our semiclassical
definition of the energy momentum tensor is too
simplified; cf. Eqs. (3)—(5). This form was being used in
all simulations mainly because of the low precision of the
available Monte Carlo data. It is conceivable that for the

128—

z/cc

(b)—

z/a

FIG. 8. Longitudinal profiles of the (a) energy and (b} action
densities, in GeV/fm, at x~=0. Typical error is also shown.
R =5a, T=7a, and f3=2.4.
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I O. 00 TABLE V. Results of fitting the action sum rule.

9.00

B.00

d Ina

dP
7.76(11)

Z — gEself + A self

—3.45(9) GeV

7.00
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S.oo

'I.00
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0.00 I.00 Z. 00 F 00 'I. 00 S.00 6.00 7.00

FIG. 9. Action sum rule. Open circles show integrated ac-
tion density; solid circles represent the RHS of Eq. (17) as de-
scribed in the text; P=2.4.

first time we have achieved the accuracy which allows
one to distinguish between the semiclassical and full
quantum definitions which was recently proposed.
We are looking forward to studying this problem in de-
tail.

V. SUMMARY AND CONCLUSIONS

We attempt rather extensive Monte Carlo study of the
distribution of the chromoelectric field around the static
qq pair. In this article we discuss the global quantities,
i.e., the potential and sum rules involving fully integrated
space distributions. In the companion paper we will
concentrate on the local properties of the distributions.
Many tests performed on simpler observables (Wilson
loops and qq potential itself) have shown consistency of
our data with the results of other authors. ' '

Compared with the last ' year, we have improved
measurements of the fields in the close vicinity of the
sources. This allows for direct tests of the lattice action
sum rules, which were derived some time ago.

The energy sum rule does not have any free parame-
ters. The three-dimensional (3D) integral of the indepen-

dently measured energy density should be equal to the to-
tal energy of the static qq system. For larger qq distances
R =4a —6a, the sum rule is very well satisfied. For small
R the summed energy is systematically smaller ( —10%%uo)

than the total energy of the qq state. The discrepancy is
statistically significant and is bigger than the systematic
uncertainties of our procedure. We think it is caused by
the a /R eff'ects, i.e., too coarse a lattice for an adequate
description of the small tubes.

The action sum rule relates the space integral of the
gluon condensate to the scaling part of the qq energy.
Since both observables can be measured quite accurately,
this relation allows for very precise determination of the
SU(2) P function and the quark self-energy. It turns out
that, for the optimal choice of these parameters, the sum
rule is well saturated for all available values of R /a. The
value of the 13 function, obtained in this way, is in good
agreement with the one measured independently by other
authors who used different approaches. However, the
quark self-energy is significantly lower than the one ob-
tained from the potential fits. In our opinion this is
caused by the two, not necessarily equivalent, definitions
of the self-energy used in the literature.

Recently, Caracciolo et al. in a series of very interest-
ing papers have presented and discussed the full quantum
definition of the energy-momentum tensor on the lat-
tice (see also Ref. 37). The accuracy of our data,
especially for the gluon condensate, offers a possibility to
distinguish it from the simple semiclassical definition
used until now. It is possible that the small deviations we
are observing can be accounted for by this difference.
This subject requires further study, especially adapting
their approach to the qq sector of the Hilbert space.
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