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Gauge-fixing conditions in canonical quantization of solitary-wave classical solutions
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We develop a canonical quantization formalism of solitons that can eliminate all infrared diver-
gences associated with the zero-frequency translational mode. The gauge-fixing condition on the
field Auctuation and the constraint on its conjugate momentum are chosen such that undesired ad-
mixture of divergent components in the continuum meson wave functions are excluded in the
normal-mode expansion of the field variables. A systematic perturbation expansion is made in the
coupling parameter g. The quantization is performed in terms of the normal modes of the g -order
Hamiltonian. The resulting Hamiltonian possesses a meson-soliton linear coupling of order g and a
quadratic coupling of order g . We show that the sum of the first-order meson-soliton scattering
amplitude coming from the quadratic interaction and the second-order amplitude induced by the
linear interaction exactly reproduces the Born term. We also show by explicit calculations that in
the conventional gauge the Born term is attributed to completely different origins. We find that a
correction due to the soliton recoil plays an important role in the conventional gauge. Another pos-
sible form of the canonical transformation is also investigated.

I. INTRODUCTION

f dx y,'(x)11„(x,t) =0. (1.2)

The quantum mechanics of solitary classical solutions
of nonlinear field theories was studied by Dashen,
Hasslacher, and Neveu' using WKB method, and by
Goldstone and Jackiw using the Kerman-Klein method.
At the same period of time, a considerable body of litera-
ture appeared concerning quantization of classical solu-
tions. Gervais, Jevicki, and Sakita developed the
path-integral collective-coordinate method, and Tom-
boulis derived the same result (except for the reordering
term) in the canonical operator formulation. In these
studies a classical solution is interpreted as an extended
particle, the soliton, and the position of the soliton is add-
ed as an extra degree of freedom. A subsidiary condition
is imposed to preserve the number of degrees of freedom
of the original Lagrangian. The system is an interacting
system of a particle and a field with constraints. A
gauge-theoretical approach due to Dirac is widely used
for quantizing constrained Hamiltonian systems, and is
developed by Hosoya and Kikkawa and Gervais, Jevicki,
and Sakita for soliton quantization. In gauge theory we
have to fix a specific gauge so that physical observables
can be computed explicitly. Although an arbitrary
choice of gauge should lead to a consistent description of
the system, almost all the authors choose a gauge-fixing
condition so that the quantum fluctuation y is orthogonal
to the zero-frequency eigenfunction P', (P, is the classical
solution and a prime denotes differentiation with respect
to x):

f dx Q,'(x)y(x, t)=0 .

It is also a common practice to define the conjugate
momentum H T that is subject to the constraint

As a result, the zero mode is excluded from the eigen-
function expansion of the fluctuation and its conjugate
momentum.

Recently Verschelde' '" has proposed an alternative
gauge-fixing condition, a nonrigid gauge condition, for a
description of rotating Skyrmions. ' The present au-
thor' developed the nonrigid quantization method for
the translational motion of solitons in two spacetime di-
mensions. In these investigations, a linear gauge-fixing
condition

Q = f dx f(x)y(x, t) =0 (1.3)

is imposed on the fiuctuation, where f is a real function
of x. In contrast with the conventional gauge condition
(1.1) in which f is identified with P'„ f contains all com-
ponents from a mathematically complete set of meson
wave functions [ Q„ I, solutions of the free field equation

f (x)=gg„i'„(x) . (1.4)

On the other hand, the constraint on IIT is chosen to be
the same as (1.2). Namely, in the nonrigid quantization
the field Auctuation and its conjugate momentum are not
put on an equal footing. From the physical point of view,
the nonsymmetrical treatment of the field variables is un-
desirable. The gauge condition (1.3) is motivated by the
fact that the continuum meson wave function gk(x) in
the limit of the meson energy cok =0 is dominated by the
term proportional to the zero mode:

g„(x)=— P', (x),
Mo

where Mo= Jdx tt,
' is the soliton mass. The coefficient

gk is given by the Fourier transform of the zero mode, '

and has a double pole at cok =0 [see Eq. (5.2) below]. The
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admixture of the divergent component proportional P,
' in

the meson wave function is unavoidable since all eigen-
functions, solutions to a Schrodinger-like equation, are
inevitably coupled to each other. A meson in the contin-
uum propagates making virtual transitions to intermedi-
ate states that include the zero-frequency state. The in-
frared singularity in the meson propagator is rejected in
the meson wave functions. The gauge condition (1.3) is
devised to eliminate such divergences from the quantum
fluctuation y. In contrast with this, the constraint on IIz-
removes the zero mode but does not aA'ect the singular
terms in the continuum wave functions. In a recent pa-
per, ' we have proposed a new canonical transformation
that makes both X and Hz. orthogonal to f, and therefore
allows us to eliminate all divergences associated with the
zero mode in a symmetrical way. In the present paper we
describe our method in full detail.

In Sec. II we present our canonical transformation. In
Sec. III, the Hamiltonian is quantized and a systematic
perturbative expansion is developed. In Sec. IV, correc-
tions brought about by the soliton recoil are discussed.
In Sec. V, meson scattering off'solitons is studied. In Sec.
VI, a comparison with the standard quantization method
is made. In Sec. VII, another possible form of the sym-
metric quantization is investigated. A brief summary is
given in Sec. VIII.

H=H, — y P+ f dx H,X'1
(2.9)

so that F is reduced to fdx P,'Hz. . Then, as in the stan-
dard quantization formalism, II&- is expanded in terms of
the complete set [g„} and go=/,'/QMo is discarded.
However, as remarked in the Introduction, continuum
eigenfunctions are plagued with undesired contamination
of the zero-frequency eigenfunction. The constraint
Jdx P,'Hz =0 cannot remove the singularity in the con-
tinuum meson wave functions. Instead of (2.9), we want
a canonical transformation that would lead to the con-
straint

F = f dx f (x)II (x, t) =0 . (2.10)

For this purpose, we follow Gervais, Jevicki, and Sakita
and assume that II is decomposed into Hz- and the
remainder that is proportional to f,

is satisfied. Under the Poisson-brackets relation (2.3), the
gauge-fixing condition (1.3) does not commute with Fbut

(Q, F}iB=f dx fC&'=Mx . (2.8)

The constraint F =0 is quadratic in fields but in princi-
ple constraints which are nonlinear in field variables can
be linearized by a change of variables. In the previous pa-
pers, ' "" Hz- is defined by

II. CANONICAL TRANSFORMATION H=H, —Wy, (2.1 1)

We consider a generic two-dimensional field theory of
a single scalar field N characterized by a Lagrangian den-
sity

and demand that F becomes Jdx fHz. . Then A is

uniquely determined to give

X =
—,'(c' '—@') —U(@) (2.1) H=H, — y P+ f dx H, (C' —y)

1

x
(2.12)

with the field potential U. The Hamiltonian is given by

H= —,
' f dx(II +4& )+f dx U(@), (2.2)

( @(x,t), H(y, t) }i,ii
=5(x —y) . (2.3)

where H=4 is the canonical momentum conjugate to N,
satisfying the Poisson-brackets relation

In this way the canonical momentum H becomes the sum
of two components that are orthogonal to each other,
whereas the two components in (2.9) are nonorthogonal.
Gervais et al. , however, identified f with P,

' and did not
exploit this transformation any further.

Under the constraint Jdx fHz-=0, Eq. (2.12) becomes

We introduce an additional variable X as a collective
coordinate and consider a canonical transformation from
the original canonical variable + to X and fluctuation y:

H=H, — y p+ f dx y,'H,1

X

where

(2.13)

C&(x, t)=p, (x —X)+X(x —X, t) . (2.4)

The Q condition (1.3) is imposed on X but for the moment
we leave f unspecified and proceed with the general de-
velopment. The canonical momentum conjugate X,

P =Xf dx N —f dx X4', (2.5)

p =P+ f dx H,X (2.14)

is the soliton momentum operator. Equation (2.13) can
also be derived using the standard procedure: From (2.5)
we obtain

satisfies the Poisson-brackets relation

[X,P}p,——1.
The conjugate momentum P should appear such that the
constraint

X= P+ f dx(X XX')4&'—
Mo+o-

where

g'o= f dx p', X' .

(2.15)

(2.16)

F =P+ f dx HN'=0 (2.7)
On the other hand, from H =X—XN' = H r —Af it fol-
lows that
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j' —XX'=IIz+XP,' —Af . (2.17) We can write (2.28) using fdx fIIr =0 as

Substituting this into (2.15) determines A and yields
(2.13). There exists another form of the canonical trans-
formation that brings F into fdx fIIr. Such a possibili-

ty will be discussed in Sec. VII.
Under the Poisson-brackets relation

From Eqs. (2.23) and (2.28), we obtain j' in the form

y=H+XN',

(2.30)

(2.31)

[X(x,t), llz-(y, t)}pB=5(x y),
the constraint Q =0 is second class since

(2.18) which is the direct consequence of the differentiation of
N with respect to time, 4=g —XN'. It is straightfor-
ward to prove that

[Q,F}ps=f dx f (x)—:M (2.19)

[X(x,t), IIr(y, t) }DB=5(x—y) — f (x)f (y) .
1

M
(2.20)

The Hamiltonian (2.2) is written in terms of new
canonical variables as

is nonvanishing. The second-class constraint can be elim-
inated by altering the original Poisson-brackets relation
as the Dirac brackets:

F= [F,H }DB=O,

Q= [Q,H}DB=O,

(2.32)

(2.33)

so the subsidiary conditions are independent of time. The
Hamiltonian (2.21) is not manifestly relativistic (even the
Galilean invariance is violated unless f =P,'). In Appen-
dix A, we show that the equations of motion (2.23) and
(2.24) have the classical solution that has the correct
Lorentz-invariant form.

M 2
H=M, +, p+ f dx y,'11,

2M~

+p dx IIT+g + dx Ug~ c

where

U(X, P, ) = U(P, +X) XU'(P,—)
—U(P, )

The equations of motion for g and H ~ become

(2.21)

(2.22)

and

i [P,X]=1 (3.1)

III. QUANTIZATIGN

Quantization of the classical Hamiltonian (2.21) can be
achieved by replacing the classical Dirac brackets by
quantum commutators

X=tX,H},=II+, e' p+ f dx y;II,M
M~

(2.23) i [Ilr(x, t),X(y, t)]=5(x —y) — f (x)f (y).
1 (3.2)

and

II,= [II„H},
=X"—U'(X, y, )+, II' p+ f dx y', 11,

x

—Mf fdxf X"—U'(X 4, )

+ H' p+ dx,'HTM

M~

where

(2.24)

It is straightforward to show that Eqs. (3.1) and (3.2) lead
to the commutation relation of the original field vari-
ables:

i [II(x, t), @(y,t) ]=5(x —y) . (3.3)

11=11,——,
' fM p+ f dx y', lI,

Because of the nonlinear nature of the canonical transfor-
mation (2.13), we have to be careful about operator order-
ing. Two order prescriptions, from Tomboulis and Ger-
vais and Jevicki, ' give the same result. Following Tom-
boulis we symmetrize the noncommuting factors in
(2. 13):

(2.25) + p+ fdxy,'ll, M f
L

(3.4)

Il =11',— f' p+ fdxy', 11,1

x

U'(X, P, )=U'(P, +X)—U'(P, ) .

The equations of motion for X and P are

X= [X,H},=, p+ f dx y;II,M

M~

P= [P,H}DB=O .

(2.26)

(2.27)

(2.28)

(2.29)

Inserting Eqs. (2.4) and (3.4) into the Hamiltonian, we
write H in terms of new quantum variables as

2

H=M, +-,'M p+ f dx y', II„. M

+ —,
' fdx(IIr+X )+fdx U(X, p, ) —,'Mr f dx f—

(3.5)

Because of the constraint fdx fII&=0, a meson-soliton
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linear coupling proportional to f dx fII T disappears,
whereas Jdx P,'IIT becomes nonvanishing.

We expand the Hamiltonian in powers of fluctuations.
To do this, we note that the normalization of f is at our
disposal. We fix it by

We thus see that g plays the role of the Planck constant,
and MD=0(g ), M=O(g ), and /=0(g '). Consid-
ering quantum fluctuation around the classical solution
leads to a perturbation expansion in powers of g. We ob-
tain a meson-solution linear coupling of 0 (g),

f dx fP', =MD .

Then

(3.6)

(3.7)

M
H, —= p, dx P,'IIT2M

and a quadratic interaction of order 1:

M
Hrr = dx qIIT

2M0

(3.15)

(3.16)

g=fdx fx'. (3.8)

In the conventional gauge with f =P'„g is reduced to go
as is defined by (2.16). Retaining terms up to quadratic in
fields, we get

The neglected terms are smaller than the leading-order
terms by 0(g ). The other higher-order interactions are
trivially obtained. The cubic and quartic interactions are
given by

H =Ho+Hr+Hir

where

(3.9)

and

, . fd y,'11„.fd y,'ll, , g
4M0

(3.17)

II, =M,+,p'+ f dx[ ,'II', -+-,'X'+-,'X'U"(y, )]
0

(3.10)

is the Hamiltonian of a soliton and that of the free meson
field, while Hr and H rr are the interaction Hamiltonians
that are linear and quadratic in field operators, respec-
tively. They are explicitly given by

, . f dx y, 11„.f dx y', 11,, g'
4M 0

2

+ . d- '. H'
8M0

A. Normal-mode expansion

(3.18)

HI — P, dX qlIT ~ P, P,
0 0

and

(3.11) The quadratic part of order 1 in H0 yields the equa-
tions of motion

(3.19)

M8„=, f dx y,'ll,
0

M
4M0

II,=X"—U"(y, )X— ' ff dx f[X"—U"(p, )X] .

M
p, f dx P,'IIT, ( . .

4M0

+
8M ["]'+4M I'I"]]

0 0
(3.12)

Eliminating H T we obtain the free field equation

x+~x — f&f1~Ix& =o .
1

M

(3.20)

(3.21)

1
d 2

1 —2(+3/
8M'

(3.13)

A systematic perturbation expansion is carried out by the
field potential U(g;4) scaling with respect to the cou-
pling constant g as

U(g; &0) = U(1;g@).1

One sees that the classical solution is 0(g ') and the
classical action associated with this solution is of 0 (g ).

(3.14)

The last term in Eq. (3.5), the reordering term, is also ex-
panded as

——'M dx

Here K = —d /«+ U"(P, ) and

& f lit lx &
= f« f&x . (3.22)

Itx„—
M f&flI: lx„&=~'„x„.1 (3.23)

Multiplying Eq. (3.23) by f and integrating, it is easy to
prove that X„(except for Xo) is orthogonal to f:

&fix. &= fd fx. =o,
as is required. We define the projection operator onto the
space orthogonal to f:

(3.25)

The eigenvalue equation to be solved for the normal
I CO

mode g=y„e ' becomes
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Then the solutions (n %0) to (3.23) are those of

~1( PXn ~nXn ~ (3.26)

In the neighborhood of ek =0, double-pole terms dorn-
inate,

where we have used the orthogonality condition of y, to
f, namely, PX„=X„. In the strong-coupling theory, Par-
mentola' discussed a similar equation. This equation has
a zero-frequency solution f. After normalization it be-
comes

2

(3.37)

Xo(x)= f (x) .1

M
(3.27)

(3.38)
The completeness relation for the set IX„j of solutions to
the free field equation reads

and hence

g'X„(x)X„*(y)=6(x —y) — f(x)f(y ),1

n

(3.28) Xk—=4k —
M

0',
0

(3.39)

where the primed sum is to omit the zero mode.
The zero-frequency solution g0 is a localized state:

Since we have chosen the normalization of f as in Eq.
(3.6), (0 is given by QMO, i.e.,

which is orthogonal to f and free from the divergence as-
sociated with the zero mode. Moreover, one finds

(3.40)

(3.29)
which also follows from replacing yk by e'

(y,'lX„)—= J dx e'" P,
' . (3.41)

A11 the results of the standard quantization formalism
can be recovered by putting $„=0 (n&0). By making
use of the form of g„derived in the previous paper, '

g„=—Jdx e '""P,'= —(n lP,'), (3.30)

we obtain, at x =+co, n

(3.42)

Equation (3.40) is valid only in the limit of cok =0. By
taking the limit cok~~, we gain (Mo/M)—gk. The
completeness property (3.28) implies a sum rule

(3 3 1) where we have used

so that f and Xo fall off rapidly at large x. As a result, the
continuum eigenfunction yk obeys asymptotically the
same equation as the normal mode gk, Kpk =cokgk,
without the orthogonality-condition term. Therefore gk
is written in terms of pk as

M —Mo=y'lg„l . (3.43)

Clearly, (3.40) violates this sum rule by the factor Mo/M.
To be consistent with (3.42), we approximate the overlap
integral as

' 1/2

1
Xk @k p f f I&lxk

M cok E—
From the orthogonality of Xk to f, we obtain

(3.32)

(3.33)

(3.44)

which will be of much avail in evaluating matrix elements
of the interaction Hamiltonians. It is noted that
M =2M0 since

(3.45)

where we have used

(3.34)

which follows from the orthonormal condition
( g„ l g ) =5„. (We use the box normalization. See Ap-
pendix B.) Inserting (3.33) into (3.32) leads to

(3.35)

Furthermore we have

X(x, t)=g'
k 2' k

I+kXk(x)e +akXk(x)e "
)

and
(3.46)

where the completeness of the plane-wave states was
used. To clarify the physical meaning, we retain M un-
less stated otherwise.

We now expand the field variables as

~k (f l I/(~k &)lf)—(3.36)

COk —leo~ i f + l col t
IIT(x, t) = ig' —[akXk(x)e &kXk(x)e ]-

"(/ 2ci)k

(3.47)
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so that y satisfies the gauge-fixing condition (1.3) and II&
satisfies the constraint (2.10). It is straightforward to
check that the conjugate variables satisfy the canonical
commutation relation (2.20) if we assume the usual com-
mutation relations

and, for meson absorption,

p+k dx,'rr, k,p =i
' 1/2

(3.52)
k k' l ~kk'

I~k +k'~ =
l. ak ak' j =o . (3.48)

Corresponding to "in" and "out" scattering solutions,
there exist "in" and "out" creation and annihilation
operators related by the S matrix: namely, (u

r+ Jd~ nn" p)-p+rz'&z„lx'„&-p,
n

(3.53)

where we have used (3.44). The soliton momentum
operator p can be replaced with the c number since we
have the matrix elements

k, in kk' k', out
k'

k'

(3.49)

(3.54)

Either of these two can be used in the normal-mode ex-
pansion. Throughout this paper, we drop the "in" or
"out" label, and +i e in the meson propagator.

B. Interaction matrix elements

Here we have used the fact that the wave function yk is
infrared finite, and we can make an approximate
&yklg'k &=ik. Th—e matrix element of 0, between the
meson-soliton state and the soliton state can be evaluated
using (3.51) and (3.52) as

1/2
Both of the interactions H, and H» contain

f dx P,
' II r which is nonzero owing to the condition

f dx fII &- =0, or

k M(2p I&') 0

M k

(3.55)

Idx P,'Ilr = —g'g„J dx Q„II&. . (3.50)

This has nonvanishing matrix elements for meson emis-
sion,

1/2

&p+klH, k,p&=i
+2cok

1/2
M(2p+t ) Mo

2m,' k

(3.56)

k,p —k dx,'H~ p = —i
M

(3.51)

For computing matrix elements of H», we insert one-
soliton states and meson-soliton states between
( fdx P,'Ilr) to obtain

J, ~H„~IJ),=, «, ,z fd*p;n, P)(~ fd y;n, I,~)2M0

+, q' dh,'n, kP k', P' d~,'rr, p, (3.57)

where P =p +k =p'+k' and P'=p —k'=p' —k are the
momenta of intermediate solitons. Substituting (3.51)
and (3.52) leads to and

&Xklg,"&-=—iI g (3.60)

COkl COk

& I ',p'lH„lu, p &
=

0 2ci3k 2cok
(3.58)

(3.61)

For computing matrix elements of H», and H», we
need matrix elements of g:

so that

«,p —~lglp &—=—
0

(3.62)

&a,p —I lglp &=— (3.59)

The overlap integral in the right-hand side consists of
two parts:

As the first example of perturbative calculations, we
compute the self-energy of the soliton in the presence of
one spectator meson. We calculate the second-order con-
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/
/

I 1

r r

FIG. 1. Time-ordered diagram for the second quantum
correction to the soliton energy. The solid line and the dashed
line represent soliton and meson, respectively, while the black
dots represent the meson-soliton linear interaction H&.

tribution to the soliton energy, as indicated in Fig. 1, and
retain only a term proportional to p to find a correction
to the soliton kinetic energy:

We have performed the exact sum using the complete-
ness relation (3.42). Note that the identical result follows
from the approximate matrix element (3.44). Since H„ is

of order 1, higher-order graphs that involve both H& and

H» contribute to the soliton energy of O(g ). Among
third-order graphs, those indicated in Figs. 2(a) —2(c) con-
tribute the kinetic-energy corrections, each of them being
predicted as

Q n m

(3.64)

&"'(p)=—,p'g'I&&', Ix„&I'=—,p'g' Ig. I' .
0 n Q n

(3.63)

(a)
FIG. 2. Time-ordered diagrams for the third quantum

corrections to the soliton energy. The open squares represent
the meson-soliton quadratic interaction H».

mass of the collective motion difFers from the static one.
The transitional invariance of the theory in the no-meson
sector is proved in Appendix A. For the case of one
meson present, the discrepancy can be resolved by the
self-energy correction which is added to the collective ki-
netic energy to obtain

0 n m n m

(3.65) E =Mo+ p +X(p)=Mo+
0 0

(3.71)

&',"p = .p'&'g'
Q n m

(3.66)
In this way, the translational invariance is restored in the
one-meson one-soliton sector.

The graph indicated in Fig. 2(d) gives the contribution IV. RECOIL CORRECTION

&,")(p)=,p'g'
Q n n m

(3.67)

which is exactly canceled by wave-function renormaliza-
tion. The final result of the third-order energy reads

0 n m

(3.68)

We continue the computation of higher-order graphs that
can be performed much more easily with Feynman dia-
grams. The Nth-order correction is given by

We have defined the basis functions [X„J by the free
field equation in lowest order in g. Since the free Hamil-
tonian contains the term of O(g ), there arises a recoil
correction of O(g ). Inclusion of the soliton kinetic-
energy term leads to the equations of motion

(4.1)

II =X"—U"(P, )X—
M f f d~ f tX"—U"(P, )X j

y(x)( )
2 y~Ig I2

N —1

(3.69)
+ M, p, lI, —'ffd fII, -. (4.2)

Summing up the corrections to all orders, we eventually
find the kinetic-energy correction

The soliton momentum p is a conserved quantity in
lowest order: Using the equations of motion (3.19) and
(3.20) we have

y(p) —y(&)(p)+y(3)(p)+. . . — p2yiIg I2
1

Q n

(3.70)

where we have used (3.43). In Eq. (3.10), the dynamical

p= f dx(X'X —XX') .

Substituting the eigenfunction expansion of y,we get

p = 2'~k &X.IX' &
=0-

k

(4.3)

(4.4)
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With the aid of p =0 in the correction terms in (4.1) and
(4.2), we can eliminate IIT to obtain

(4.11)

1
&Xk — f & f l&lxk &+v,,xk =~kxkM

where

(4.5) in the limit of cok =0. Inserted into (4.10), the first term
gives the energy difference similar to (4.7) and the second
term gives rise to the meson-soliton scattering amplitude

M, 1
v„,Xk =~i~k 2P Xk Mf &f Ixk &

M
(4.6)

pk
Mo

(4.12)

It is easy to find that lowest-order perturbation theory
predicts the energy shiftM, M
&Xk lv„„lXk & =2i~k, p &Xk lXk & —= —2~k, pk (4 7)

Mo Mo

which coincides with that resulting from the Klein-
Cxordon operator —8 /lent —fl,

2
M 2 M 2 2 M

2M 2M Mp ~k p ~k= ~i (p+p)k

The significance of this term will be made clear in Sec.
VI.

V. MESON-SOLITON SCATTERING

k lu (k)l
0 Mocok

(5.1)

With the systematic perturbation theory developed in
the preceding section, we now calculate the meson-
soliton scattering amplitude. From (3.58) we find the
first-order amplitude

(4 g) where we have used

(4.9)

This leads to the shift

&it„lv«, lg„&=2ico„M &P„lP'k & .
0

(4.10)

In Appendix 8 we have derived

with p' and p being the momenta of the soliton before
and after meson absorption [because of anticommutation,
2p in (4.7) should be interpreted as p'+p]. The recoil
correction in the present quantization scheme does not
entail any important modification. Especially, the matrix
element & P,

'
lxk & is unaffected by the recoil to leading or-

der.
The situation is different in the conventional gauge.

The recoil term gives rise to the interaction (cf., Jacobs' )

0

.k
u (k)

COk

(5.2)

u (k)= —f dx e '""0 P, (x), (5.3)

where 0 = —d /dx +p, and p is the meson mass.
Next we compute the second-order term induced by H, :

l+2co„&p +i lH, k,p & l'
T(2)

~k —Ep+k+E,

l+2co„&k,p kla, lp &
i'—

nk —E +E
Using (3.55) and (3.56), we obtain

(5.4)

as derived in the previous paper. ' Here u (k) is the field
form factor defined by the Fourier transform of the
source function for the classical meson field:

T(2)= (2p +k)
col,

—E +k+E cok —E +E k 4M0

(2p +k)
cok —Ep+k +Ep

(5.5)

The second term produces the fourth-order scattering
amplitude generated by the meson-soliton vertex u. With
the aid of (5.2), we write the first term as

cok —E +k+E ~, —E, +E, , (5.7)

T(2)= (Ei, +k Ep)—
~k —Ep+k+Ep

(E E„)—
~I, —E +E

lu(k)l'
2

Ct) p

(5.6)

which exactly reproduces the direct and crossed Born
terms generated by the meson-soliton vertex u.

In the previous paper, ' it is shown that the T matrix
coming from the background scattering,

Collecting from T"' and T' ' all terms that contain u

twice, we arrive at the result

~=r& kl lP„v&, (5.g)

has the zero-mode contribution, where v = U"(P, ) —p
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and P„ is the solution of the equation

&0» =«'+v)4k =~»A .

In fact, t& can be written as

r, =(klvlk)+y
COk CO~

(5.9)

(5.10)

~ = 1X=II,— y,
' Jdxfll, ,

0

11 =x"—U"(4, )x,
so that the free field equation becomes

x+&x+
M y,'&f1&Ix&=0.

0

(5.19)

(5.20)

(5.21)

Therefore, in the limit of cok =0, t& is dominated by the
n =0 mode contribution The normal mode is given by the equation

2
COk

1

0
(5.1 1)

&x.—M 0,'&f1&Ix. &=~'.x. ,
1

0
(5.22)

(klvlqo&= —&kin'le) = co2»gk .
QMo

(5.12)

where we have used the Schrodinger-like equation (5.9):
which has the zero-frequency solution Xo=go and the
solutions that are orthogonal to f. This equation can be
solved using KP', =0 as

(5.23)
In the symmetric quantization approach we have
developed, the zero mode does not contribute to scatter-
ing. The scattering amplitude tx obtained from (3.23) is

given by

From (f lX» ) =0 it follows that

Consequently we obtain

(5.24)

Inserting (3.32) into the first term leads to
k

xk Pk M 4c
0

(5.25)

Cgk K

One can prove directly that gk satisfies the equation
(5.22). It is also immediately seen that Xk satisfies the
completeness property

& k lf & &f II~ lx & . (5.14) g'g„(x )X„*(y) =&(x —y) — f(x )P,'(y ) .
1

n 0
(5.26)

Since gk is given by the Schrodinger equation (5.9), one
finds

The T matrix is calculated from

(y„~~f ) =(k~~f )+(k u, f) .
Q)k K

Substituting this into (5.14) leads to

(5.15)
tr =

& klvlxk & M

&klan,

'
&&f IKlxk &

0

=&klvlX» &+
1

M0

Substituting (5.25) yields

(5.27)

(f l
I I( ' &)

l f)—
(5.16)

(k lvly,')+
M0 0

(5.28)

where we have used ( pk lf ) =/» and (3.33). Taking the
limit cok =0, we have (3.38), whereby the last term in Eq.
(5.16) becomes

Owing to the identity ( k l vlf,
' ) =roke» the last two terms

cancel each other, and we obtain t+=t&. The zero mode
contributes to scattering in the nonsymmetric quantiza-
tion.

(fll/( '„—&)lf ) Mo
(5.17)

VI. CONVENTIONAL GAUGE

i [IIT(x, t),X(y, t) j =5(x —y) — f(x)$,'(y) .
1

0

The equations of motion are

(5.18)

Consequently, the zero-mode contribution in t& is exactly
canceled out.

In the previous nonsymmetric quantization
method, ' '"' the canonical variables satisfy the commu-
tation relation

Although gauge independence of physical observables
is guaranteed, no one has succeeded in showing by expli-
cit calculations the existence of the Born term in the con-
ventional gauge. ' In this section we give a rigorous
derivation of the Born term and make clear the relation-
ship with the nonconventional gauge condition we have
developed. The quantized Hamiltonian is obtained from
(3.5) by putting f =P,', Idx P,'IIT =0, and M =Mo
+Co:
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+H, +Her . (6.2)

The translational invariance of the obtained Hamiltonian
is manifest up to O(g ), namely, to nonrelativistic order
and there is no need of calculating the self-energy correc-
tion to get the correct soliton energy. This corresponds
to the fact that the meson-soliton linear coupling starts
from the term of 0 (g ):

1
, tP IP 40I I .
0

On the other hand, the quadratic interaction becomes

(6.3)

1 2 1
~it =, IP Col'+, IP IP 00I )

0 0

(6.4)

H=M, +,M, Ip, (M, +g, )-)I'+,' f dx(II', +y')

+ f dx U(y, p, ) —8)(M0+g0)'f dx ))),", (6.1)

where g0 is defined by (2.16). Up to terms quadratic in
fields,

2

H=M, + p + f dx[ ,'II',—+-,'y'+ ,'y'U—"(p,)]
0

As we have shown in the preceding section, the zero-
mode part of the background scattering contributes to
the amplitude by the amount

T0=, =
I «p+k —

&p ) «—
p

F—
p k)—1

k'[u(k)i' iu (k)i'

u k=(«p+k Fp )' —«, ——
&p —k)'j (6.13)

The sum of T"', T' ', To, and T„, recovers the full Born
term. We have to be aware that the computation of T'"
and T' ' as well as T„, is valid only to order quadratic in

In evaluating T' "and T' ', we have replaced the sol-
iton momentum operator with a c number but its matrix
element has an additional term (see Appendix B),

(6.12)

Another important distinction between the conventional
gauge and the present approach is the recoil correction.
As shown in Sec. IV, the recoil term produces the scatter-
ing amplitude T„,as given by (4.12):

2pk'~u(k) i'
Sec 2 4cvf OQ)k

The computation of the meson-soliton scattering ampli-
tude proceeds as follows: Both of the interactions H& and

Hii involve g0 which has the matrix element

k,, ~+ Jd. n„k,,)
=, +k+;&q, ~q„)

0
(6.14)

(k,p —kig'0ip ) = i—1

+2' k

(6.5)
VII. ANOTHER FORM OF

CANONICAL TRANSFORMATION

(%~4,"&—= &Xk~k,"&—= —)k4 .

The quadratic interaction H&& has the matrix element

(6.6)

Taking the limit cok =0, we can use (3.39) to calculate the
overlap integral To be complete, we inquire another possible form of

the canonical transformation that linearizes F as

f dx f IIT, and at the same time has the same form as the
conventional gauge:

&k,p~a„~k, p &= 1

2ct7k

k (12p +k )

4M 0

(6.7)
II=IIT—Ap,

' . (7.1)

The condition P + fdx IIr = f dx fIIT fixes A and gives

so that the first-order scattering amplitude induced by
H&& is given by

(6.g)

II=II,— y', P+ f dx 11,(e —f) . (7.2)
1

0 0

Under the constraint f dx fIIr =0,

The second-order amplitude induced by the linear in-
teraction H& is evaluated using the matrix elements

1II = II r — P,
'

p + f dx P', II T
0 0

(7.3)

and

k (2p —k)
4M

(k,p —kiII, ip) = i—1
+ 2' k

( i ~k )
. 1 k(2p+k)

p i tp

(6.9)

(6.10)

This is di6'erent from the standard canonical transforma-
tion only in the presence of fdx ))t', IIT which does not
vanish because of the condition fdx fII T =0. The
Hamiltonian is given by

r 2

H=m, +—,'m, q+ dx, II„M,+,
Substituting (5.2) we find

(, ) (,+k —,)'
EI +r, +EJ

(Q —Q )

uk —E +E
[u (k)i

4
COk

,'M, . f dx y,'r„l—.—p+fdx y,'II, , (M, +g, )-'

+ —,
' f dx(112+~2)+ f dx U(y, y, )

(6.1 1) —
—,)(M0+g0) f dx Q,

" (7.4)
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If we put fdx P,'IIT=0, we regain (6.1). Expanding H
as before in terms of the field variables, one sees that the
linear coupling of O(g) is canceled out so that the in-
teraction H, is unchanged, whereas the quadratic interac-
tion has additional terms

AH„— Idx lI)', IIT
1

0

1
dx 0'IIT ko l

4M0
(7.5)

r
/ r

The interaction of order 1 emerges again but with the op-
posite sign to (3.16). Since the free-field equation is iden-
tical with (3.23), the quantization can be performed by its
eigenfunctions Iy„ I rather than [Q„ I .

We now repeat the computation of the meson-soliton
scattering amplitude. The first-order term induced by
H» and the second-order term induced by H& are the
same as in the conventional gauge because the matrix ele-
ment

FIG. 3. Feynman diagrams for meson-soliton scattering in-
duced by the quadratic interaction.

(k,p —
k~go~p &

= i—1

+2o'
(7.6)

With the relation (3.45) we find

is the same to leading order. The contributions from
AH» consist of two parts: From the order-1 term con-
taining ( f dx iI),'IIT) we obtain the correction to the
first-order amplitude:

J(cok ) =Mo+o~k g'
n COn @Ok

Substituting this into (7.9) yields

(7.1 1)

k iu (k)i
a 2

M0COk
(7.7) 4 2 2~k n ~n ~k

(7.12)

From the 0 (g ) term that contains fdx P,'IIT we find

aZ'"=2~ k
b ~k ~2 k (7.&)

which coincides with the recoil-correction term in the
standard gauge. If AT,'" had the opposite sign, the sum
of T"', T' ', AT,'", and AT&" would have led to the Born
term. We recall that the background scattering described
by yk does not contribute to the Born term.

The minus sign in AT,"' prevents us from deducing the
Born term with lowest-order perturbative calculations.
Yet, the full scattering amplitude has a relation with the
Born term. To see this, we sum up the sequence of Feyn-
man diagrams, as indicated in Fig. 3, that contain repeti-
tions of the order-1 quadratic interaction and which
therefore give rise to poles in the integration over one-
meson intermediate states. The sum can be performed
exactly with the result

2k
0

p — +i[k/
2p

(7.13)

For the case of pseudoscalar coupling, we take
u (k) =const X k to obtain

2k

p+ +i[k/
2k

(7.14)

which agrees with (7.13) in the neighborhood of o~z =0.
With the use of (5.2), we have

,/(co„) =g n iu(n)i
CO„(CO„COg )

which can be decomposed as

(7.15)

Recall that cok in the denominator has +i e implicitly. In
the point-source limit, we take u (k) =const and carry out
the integration:

where

k'~u (k) ~'

M0COk
2

&(o~l, )—1+
0

(7.9)
k2

Wrok )=I(0)+ 2 [I(cok ) I(0)], —

where

(7.16)

&(oiq ) =g'
n COn CO/

(7.10) I(col, ) =g [u (n)i2

6) 6)k
(7.17)



2646 KOICHI OHTA 43

k'Iu(k)l'
M„e)k

k J(coi, )—1+
M„

(7.18)

where

We renormalize the soliton mass as M„=Mo I—(0).
Then AT, becomes

Hamiltonian AH&& has the same strong-coupling limit as
the repetitions of the Born term. The approximate coin-
cidence of the sequential sum of the Born terms and the
strong-coupling theory is clarified by Goebel.

If we apply the strong-coupling theory to a one-
dimensional scalar field, the scattering consists of
transmission

J(coq)=
~ [I(coi, )

—I(0)] .1

COk

(7.19) 2iplkl
p+i Ikl

(7.26)

If we ignore —1 in the denominator in Eq. (7.18), we ob-
tain

Iu(k)l' Iu(k) '
co~ J(co) J (~i, )

—&(0)
(7.20)

in complete agreement with the celebrated result of the
strong-coupling theory. ' The integral (7.17) is con-
vergent without u (k). For the point source of scalar cou-
pling,

and reAection

2iplkl
p+i kl

(7.27)

(7.28)

with equal strengths, i.e., the incident meson Aux is
transmitted and rejected with equal probabilities. The T
matrices satisfy the one-meson unitarity relations

2i lk

p+ilkl
(7.21) Imr =— (7.29)

This coincides with (7.13) near co& =0 except for
—cok/2p in the denominator. In soliton models, the
mass Mo and the coupling u always appear in the form of
the product (I/QMO)u of order 1. In the strong-
coupling theory, in which the target mass and the cou-
pling are taken to be large, however, the two parameters
are varied independently. The neglect of —1 that lead to
(7.21) corresponds to taking the limit u ~~ while M, is

kept finite.
We compare this with the consequence of the multiple

scattering caused by H» we have derived in Sec. III. The
sum of the diagrams in Fig. 3 leads to

k'u(k)' +1+
Mo 2k Mo

(7.30)

which leads to (7.27) in the strong-coupling limit). We
compare this with the background scattering amplitude
of the sine-Gordon equation

4iplkl (7.31)
p+i lkl

We have seen that the order-1 quantum Hamiltonians de-
rived in this paper predict these results with an appropri-
ate limiting procedure (the T matrix for reflection is
given by

k u(k)
Mocuk Mo

which has the point-source limit for scalar coupling,

(7.22) Despite the apparent similarity to the result of the
strong-coupling theory, their physical contents are
different. Equation (7.31) describes pure transmission, ~~

and there is no reIIected wave (r =0).
2k

2

p+ +ilkl
2p

and, for pseudoscalar coupling,

2k
2

@COk
p — +ilkl

2k

(7.23)

(7.24)

With the modified M„=MO+ J (0), T is cast in the form
—1

k J(coi, )

M,
k'Iu (k) I'

M, cok
(7.25)

Ignoring +1 in the denominator leads to (7.20). Either
of the order-1 quadratic interactions with different signs
leads to the same strong-coupling limit. Since H» in Sec.
III has the matrix element that coincides with the Born
term to leading order, the multiple scattering caused by
H» is that of the Born term. It is thus confirmed that the

VIII. SUMM&RV

We have presented a new form of canonical quantiza-
tion of solitary-wave classical solutions in two space-time
dimensions. The gauge-fixing condition and the con-
straint imposed on the field fluctuation and its conjugate
momentum are treated symmetrically in such a way that
the infrared-divergent terms contained in the meson wave
functions are eliminated. The resulting Hamiltonian
possesses a linear meson-soliton interaction of 0 (g) and a
quadratic interaction of order 1. The emergence of these
interactions is the most important consequence of the
present quantization formalism.

We showed that the sum of the first-order amplitude of
the quadratic interaction and the second-order amplitude
of the linear interaction exactly reproduces the Born term
of the meson-soliton scattering amplitude. The scattering
amplitude produced by the quadratic interaction is found
to be identical with the zero-mode contribution to meson
scattering off the soliton background. In the strong-
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coupling limit, we have shown that the zero-mode term
of the background scattering coincides with the
classical-field contribution to scattering. ' ' In the
present approach, we have defined the normal modes that
are free from infrared divergences so that the background
scattering does not develop the double pole at cok =0, and
hence does not contribute to the Born term, while in the
previous nonsymmetrical approach" ' the full Born
term is explained as a sum of the zero-mode term from
the background scattering and the second-order term in-
duced by the linear coupling proportional to fdx fIIT.
One thus sees that whether the background scattering
contributes to the Born term is highly dependent on the
choice of gauge. There has been a controversy about the
origin of the meson-soliton Yukawa coupling. It is
argued that the classical part, and therefore the zero-
mode part, is unlikely to contribute to quantum scatter-
ing. In the present quantization method, the Born term
is produced fully quantum mechanically by the meson-
soliton interaction Hamiltonians H, and H&&.

To demonstrate the advantageous features of the
present quantization formalism, we investigated the
meson-soliton scattering in the conventional gauge. The
Born term is deduced from the first-order amplitude of
the 0 (g ) quadratic interaction, the second-order ampli-
tude of the O(g ) linear interaction, the zero-mode con-
tribution of order 1, and the recoil correction of O(g ).
Compared to the present formalism, the derivation is in-
direct and the Born term emerges from various origins.
The gauge invariance of physical scattering amplitudes is
ensured by gauge theory, and it is not surprising to find
that the Born term is deduced from different origins in
different gauges. The present approach is advantageous
in that only quantum Auctuations are responsible for
meson scattering and yet reproduce the Born term with
the classical mass and the classical vertex function. It is
also very effective for computing higher-order scattering
amplitudes. We have investigated another form of the
canonical transformation that makes both g and HT or-
thogonal to f, but it turned out that the relationship with
the Born term is only through a very remote way and it is
not suitable for perturbative calculations.

APPENDIX A

obtain

m.0= —Xy0,
X"—U'(X, p, )+Xm~() =0 .

(A3)

(A4)

At this stage the gauge function f disappears so that the
Lorentz-invariant classical solution follows immediately.
In fact, eliminating a0, we find the equation for y0,

Vo' —U'(Vo) —X 0o'=0,
which has the solution

(A5)

yo(x —X)=P,
1 —X

(A6)

Multiplying (A3) by po and integrating we find the well-
known relation

X= ~, = ~ &1—X'.
f dx qo' Mo

(A7)

The Lorentz-invariant form for the soliton energy follows
from Eo =Mo+1 —X . It should be emphasized that the
result is independent of the gauge-fixing condition.

APPENDIX B

In the limit of vanishing cok, we have shown that the
normal modes Xi, and g& are related by (3.39), or

(Bl)

&x~lx~ &
—

& q. l@~ &+
LM0

(B2)

For finite co&, the extra term of 0 (L ') can be ignored iil
the large-L, limit but for vanishing ~k, it makes a
difference. We insert a normalization constant Nk and
write

where L is the length of the box (in the text we have
dropped the normalization factor 1/VL for notational
simplicity. ) We note that (Bl) entails a modification of
normalization:

C(x, t) =go(x —X),
II(x, t) =~o(x —X),

(A 1)

(A2)

Gervais, Jevicki, and Sakita recovered, in the conven-
tional gauge, the relativistic form for the soliton energy
by summing all tree graphs. The Lorentz invariance is
guaranteed by the gauge-theoretical formalism, and it
should not depend on the choice of gauge. Here we
check that independently of the gauge function f, (2.21)
has the classical soliton solution which has the correct
Lorentz-invariant form. To see this, we look for a time-
independent solution for the equations of motion. Name-
ly, we seek for a solution of the form

xa- ~k 0

Normalizing Xi and gi to unity, we find

X —1+

We now calculate using (B3) the integral

& @a l W. &
-

a & xu lxx &+ ~— & xa IW, &&L M0

(B3)

(B4)

(B5)
which depends on time only through X, i.e., g=0 and
IIT=0. From (2.23) and (2.24) with (2.28) inserted, we

0

We have seen that in evaluating overlap integrals between
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gk and localized functions such as P,', we can approxi-
mate yk —(1/&L )e'" . We find

(Ltok) '. The reason for this is the following: The be-
havior of 1(k(x) in the vicinity of tak =0,

(86)
0

(810)

(87) was deduced from its Fourier transform

Making use of these results and Eq. (84), we get (811)

(88)

Since &gk ~g'k & =ik+0 (L '), we are led to the result

&1tk qk& —&xklxt, &
—tk +o(L ') . (89)

LMO

The overlap integral can be calculated directly using
explicit forms for gt, in specific models. The extra term
in (89), however, cannot be obtained from the resulting
integral which is of th form (L tak )

' rather than

by retaining the infrared-divergent term in the half-ofF-
shell T matrix

&pltlk &-ta~ttto(p)Po(k)= —
ta~ Jdx e 't' P,'(x) .~ LMO

(812)

The limit (810) into the unphysical region of k cannot be
reached directly from the wave function 1ltk(x) given in
the physical region. One should follow the steps as we
have taken.
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