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In the conventional functional Schrodinger quantization of field theory, the background space-
time manifold is foliated into a set of three-surfaces and the quantum state of the field is represented
by a wave functional of the field configurations on each three-surface. Although this procedure may
be covariantly described, the wave functionals generally fail to carry a representation of the com-
plete spacetime symmetry group of the background, such as the Poincaré group in Minkowski
spacetime, because spacetime symmetries generally involve distortions or motions of the three-
surfaces themselves within that spacetime. In this paper, we show that global spacetime symmetries
in the functional Schrédinger picture may be represented by parametrizing the field theory —raising
to the status of dynamical variables the embedding variables describing the spacetime location of
each three-surface. In particular, we show that the embedding variables provide a connection be-
tween the purely geometrical operation of an isometry group on the spacetime and the operation of
the usual global symmetry generators (constructed from the energy-momentum tensor) on the wave
functionals of the theory. We study the path-integral representation of the wave functionals of the
parametrized field theory. We show how to construct, from the path integral, wave functionals that
are annihilated by the global symmetry generators, i.e., that are invariant under global spacetime
symmetry groups. The invariance of the class of histories summed over in the path integral is
identified as the source of the invariance of the wave functionals. We apply this understanding to a
study of vacuum states in the de Sitter spacetime. We make mathematically precise a previously
given heuristic argument for the de Sitter invariance of the matter wave functionals defined by the
no-boundary proposal of Hartle and Hawking. The treatment is largely formal, but a brief discus-
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sion of anomalies is given.

I. INTRODUCTION

Many kinematical issues in quantum field theory as-
sume a particularly transparent form in the functional
Schrédinger picture.! There, the quantum state of the
field is represented by a wave functional of the field
configuration on a surface of constant time, and evolution
of the state is governed by the functional Schrodinger
equation. One of the appeals of this method is that many
field-theoretic problems assume the form of elementary
quantum-mechanical problems. This method has been
profitably applied, for example, to Yang-Mills theory and
Chern-Simons theory.? It has also been of great use in
quantum field theory in curved spacetime, especially in de
Sitter space, where it affords a convenient method of
studying vacuum states.>”’

Perhaps the main drawback of this method, however,
is its lack of covariance, or at least the manifest exhibi-
tion thereof. This apparent lack of covariance stems
from the fact that quantum states in the functional
Schrodinger formalism are represented by wave function-
als of the fields on spacelike surfaces, and to discuss these
it is necessary to break the manifest covariance of the
theory by foliating the spacetime into spacelike slices.
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Although the field configurations on a spacelike surface
typically carry representations of internal symmetry
groups, and of isometry groups of the surfaces them-
selves, they generally fail to carry complete representa-
tions of the symmetry groups of the background space-
time, such as Poincaré symmetry. This is because space-
time symmetry groups typically involve motions or dis-
tortions of the surfaces themselves in the spacetime, but
the fields on the surface generally carry no information
about the location or orientation of that surface with
respect to the background spacetime. This complicates
the search, in the functional Schrodinger picture, for
quantum states of the field invariant under spacetime
symmetries.

Because the functional Schrodinger quantization is de-
rived most directly from the Hamiltonian formulation of
classical field theory, various attempts have been made to
develop alternative Hamiltonian formulations of classical
field theories which avoid breaking covariance.® ! One
particular formulation, due to Dirac, is known as
parametrized field theory.!® The basic idea is that one
raises to the status of dynamical variables the so-called
embedding variables X describing the location of the
three-surfaces in the spacetime background. In the quan-
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tized theory, the wave functionals are functions of the
field configurations on a spacelike surface, and the
embeddings X% One can then talk about symmetry
groups that involve motions of the three-surfaces them-
selves.

The prime aim of this paper is to explore some of the
virtues of taking the quantized parametrized field theory
seriously as a way to do quantum field theory in curved
spacetime. In particular, we shall argue that it is not
only useful, but in some situations essential, in discus-
sions of global spacetime symmetries in the functional
Schrodinger picture.

Work on parametrized field theory has previously been
inspired by studies in quantum gravity, as a result of vari-
ous formal similarities.!! For example, the algebra of the
constraints of the parametrized field theory—the Dirac
algebra—is identical to the algebra of the constraints of
the Hamiltonian and momentum constraints of general
relativity.!"'? The emphasis of the present paper, howev-
er, is rather different.

Two particular related issues motivated the present
work, and will form the ultimate focus of our discussion.

(i) In Ref. 13, the derivation of the operator constraints
of the Dirac quantization procedure from the path-
integral representation of the wave function was con-
sidered, for a broad class of theories with symmetry.
That work was primarily concerned with local sym-
metries, and in particular, with the derivation of the
Wheeler-DeWitt equation and momentum constraints for
the wave function of the Universe. A more detailed
treatment of the case of constraints arising from global
symmetries is called for. In particular, for the case of
global spacetime symmetries, it turns out that the opera-
tor constraints on the wave function cannot be derived
from the path integral using the wusual functional
Schrodinger formalism. A covariant method, such as the
one described in this paper, is needed.

(ii) In Ref. 14, the quantum state of matter fields in de
Sitter space defined by the no-boundary proposal of
Hartle and Hawking'® was studied. A heuristic argument
for the de Sitter invariance of this state was given. How-
ever, a more formal version of this argument is definitely
called for, and this can be achieved through the introduc-
tion of the embedding variables.

We begin, in Sec. II, by describing some basic proper-
ties of the embedding variables, and discussing the Ham-
iltonian formulation and quantization of standard scalar
field theory in an arbitrary background spacetime. Not-
ing the shortcomings of the standard approach, we then
discuss the Hamiltonian formulation and functional
Schrodinger quantization of the parametrized field
theory, in which the embedding variables (essentially the
spacetime coordinates of the three-surfaces) are adjoined
to the matter fields as basic dynamical variables. Various
technicalities, such as the algebra of the constraints of the
parametrized field theory, are discussed in Sec. ITI.

In Sec. IV, we discuss global spacetime symmetry
groups, and construct their generators. A wave function-
al of the parametrized field theory is said to be invariant
under a global spacetime symmetry if it is annihilated by
the appropriate generator. In Sec. V, we recall the results
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of Ref. 13, in which it was shown how to generate wave
functions satisfying global and/or local constraints from
a path integral. These results are elaborated on, paying
particular attention to the case of global symmetries. In
Sec. VI, we use the results of Sec. V to demonstrate that
wave functions of the parametrized field theory generated
from a path integral will satisfy various operator con-
straints. The invariance of the class of paths summed
over is identified as the source of the global invariance of
the quantum state. We also emphasize the necessity of
using the embeddings to derive constraints in the case of
global spacetime symmetries. In Sec. VII, we apply the
understanding gained to a discussion of vacuum states in
de Sitter space. We use the embeddings approach to
make more mathematically precise a previously given ar-
gument'# for the de Sitter invariance of the state defined
by the “no-boundary” proposal of Hartle and Hawking.'

The level of this paper, like that of Ref. 13, is largely
formal, in that we do not directly address the issues of
operator ordering, regularization, etc. However, in Sec.
VIII, we offer some heuristic remarks about anomalies in
the algebra of the various constraints. Our conclusions
are presented in Sec. IX.

It was in fact Dirac who, in the case of field theory in
Minkowski spacetime, first realized that the functional
Schrodinger picture may be made manifestly Lorentz in-
variant using parametrized field theory.!® Parts of the
present work may be therefore thought of as a generaliza-
tion of Dirac’s ideas to more general curved-spacetime
backgrounds. As explained above, however, the main
thrust of this work is to study invariant states generated
from a path integral, and this was not discussed by Dirac.

II. HAMILTONIAN FORMULATION
OF PARAMETRIZED FIELD THEORY

We begin, in this section, by describing the properties
of the embedding variables, and the Hamiltonian formu-
lation and functional Schrodinger quantization of stan-
dard scalar field theory, and of parametrized scalar field
theory.

The first step in the construction of a Hamiltonian for-
mulation of a field theory is to foliate the spacetime mani-
fold M. To do this it is necessary to assume that the
manifold M is of the form M=RXZ. We will largely be
concerned with the case of closed three-surfaces =. If the
spacetime manifold has coordinates X¢, it is normally
foliated by taking the leaves of the foliation to be surfaces
of constant X°, and the intrinsic coordinates within each
surface to be the coordinates X!, X? X3 inherited directly
from the spacetime. More generally, however, the space-
time may be foliated in an arbitrary fashion by introduc-
ing the so-called embedding variables X. The embeddings
are maps X:2—J which take a point x in the surface =,
to a point in the spacetime, X*=X%(x,t), where ¢ labels
the leaves of the foliation. We need to devote some space
to summarizing the properties of the embedding vari-
ables. 16718

Using the embeddings X one may construct projec-
tions of spacetime quantities normal and tangential to =.
The tangential projections are defined by
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a
XP= aX. . (2.1
ax'
The normal to X is uniquely defined by the relations
no X =0, g%n ng=—1, 2.2)

where g% is the inverse spacetime metric and the signa-
ture of spacetime is taken to be (—,+,+,+). The nor-
mal depends on the embeddings, as may be seen from the
explicit expression

Ny =keqp, XEXT X7, (2.3)

where k is a factor ensuring the correct normalization
(see Appendix).

In terms of n, and X7, any tensor on the spacetime /i1
may be written in terms of its projections normal and
tangential to 2. For example, a spacetime vector ¥V'* may
be written

Ve=vyine+vixe, (2.4)
where

Vi=—n, Ve Vi=hlg XVE. 2.5)
Here, we have introduced the induced metric on X:

hy=XXPg.p . (2.6)

From here onwards, we will raise and lower indices on all
quantities using the metrics 4;; and g ,5.
The deformation vector of the foliation is defined by

0X“
at

Lapse and shift arise as the coefficients in the tangential
and normal projections of X %

N¢ =X,

(2.7)

if

X*=Nn*+NX? . (2.8)
One thus has
N=—n, X% N=Xxix<. (2.9)

By writing out the usual expression for the four-metric, it
is readily verified that it takes the familiar 3+ 1 form:

ds? ZgaBdX“dXﬁ
=gp(X °X Pdr®>+2X °XPdt dx'+ XX Pdx'dx/)

=(—N?+N;N)dt>+2Ndx'dt +h;dx'dx’ . (2.10)
From Eq. (2.8), it also follows that
ot ng, axi n, ; ;
L. =—2Ni4XI . 2.11
aX“ N’ 3ax* N “ @10
Finally, one has
a
V' —g(X)det X l =Nh'"? (2.12)
(x',t)
(see Appendix).

Now we may consider the Hamiltonian formulation of
scalar field theory in the spacetime J#{. For simplicity we
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consider only the case of a massive, minimally coupled
field. We take as our starting point the action

=1 [ 4*XvV—g(X) |ge8 9% 3¢ . 2.
S med XV —g(X) g0 oo tme
(2.13)
Foliating M as R X =, we rewrite this as
aX“ ——
S=—L1]dt| d*xdet — |V —g(X)
pfa ) dxae a(x’,t)] g
ot ot ; ot ax’ ;
X |g® ——¢2+2 —— ¢,
g ‘axa ax?? P axe axp %
axi axj 242
——0,;00;¢ | +m .
X" axP i99;¢ ¢ l
(2.14)

Using the above results, Eq. (2.14) becomes

2 i .
s=4 [ dt [ d*xnn'” %—2—2%&@

;i NINJ
hY— N2 ai¢aj¢~m2¢2]
= [d*xarL . (2.15)
Canonical momenta are defined in the usual way,
a.L h 172 .
T=—= (¢—N'9;¢) , (2.16)
2y =~ N (BN

and one readily obtains the Hamiltonian form of the ac-
tion

= 3 b —_ _— i .
S fRdthd x(¢m— NH—NH,) (2.17)
where
H=1h'"*h "' +hY3,43,;¢+m?*¢?) , (2.18)
H ;=007 . (2.19)

We note for future reference that when (2.16) holds,
(2.18) and (2.19) are projections of the energy-momentum
tensor

ﬁ:hl/znanBTaB’ ﬂi:hl/zX’anTaﬁ (2.20)
where
T o3 =0,0950— 18,5(g""3,43,6 +m*¢?) . (2.21)

In the usual functional Schrodinger quantization of
scalar field theory, the quantum state of the field is
represented by a wave functional W[¢(x),t ], a functional
of the field configuration ¢(x) on the surface = labeled by
t. The evolution of the wave functional along the folia-
tion is described by the functional Schrodinger equation

.9 _ A
zB;\P[(i)(x),t]—f2d3x(N?[+N7-[i)\I’[¢(x),t], (2.22)
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where # and 7/:[,- are the quantities (2.18) and (2.19) with
the momenta replaced by operators using the usual sub-
stitutions. For practical purposes the foliation is typical-
ly chosen so that N =1 and N'=0. Although this quanti-
zation scheme?® is covariant, in the sense that it does not
refer to a particular set of coordinates in the spacetime or
in the hypersurfaces of the foliation, it is important to
emphasize that the foliation is completely fixed. It may
be chosen arbitrarily, but once chosen it cannot be
changed. In particular, the Schrodinger equation (2.22)
describes only evolution along the fixed foliation: it tells
us nothing about the response of the wave function to a
change of foliation.

Recall that the primary concern of this paper is to un-
derstand how spacetime symmetries are represented in
the functional Schrodinger picture. Such symmetries will
typically not act transitively in the three-surfaces of a
given foliation; rather, they will generally involve distor-
tions or motions of the hypersurface in spacetime. Space-
time symmetries in the functional Schrodinger picture
will therefore be most transparently represented in a for-
malism which permits the foliation to be changed at will.

As outlined in the Introduction, there exists a formal-
ism in which this may be achieved, and is known as
parametrized field theory.!® The idea is that one returns
to the action (2.15), but one allows the embedding vari-
ables X¢ to become dynamical. Let us therefore repeat
the Hamiltonian analysis of (2.15), now regarding not
only ¢(x,¢) but also X*(x,¢) as dynamical variables. The
lapse, shift, and three-metric, N, N, and h;;, are regarded
as fixed functions of the embeddings, as described above.
The momentum conjugate to ¢ is as before, Eq. (2.16).
To find the momenta conjugate to the embeddings X*,
note that X ¢ occurs only through the lapse and shift, and
is linear in them. One thus has

_ 0L _ 3L ON 9L 9N’

“ 9X® ON3Xx* OoN'3X“
=nH—X. ¥, . (2.23)

There is therefore a primary constraint
N,=P,—n,H+X, H, =P, +H,~0. (2.24)

In the extended phase space (¢,7,X%P,) it is readily
shown that the canonical Hamiltonian vanishes, and the
Hamiltonian form of the action is therefore given by

S=fRdt f2d3x(¢ﬂ-+X ap —N°I,) . (2.25)
This action defines the parametrized field theory. Here,
N? is regarded as a Lagrange multiplier which is to be
varied independently of the rest of the variables. It is
only after extremization with respect to P, that it is
equated with X ¢, as in Egs. (2.7) and (2.8).

The constraints of the theory, (2.24), may be shown to
be first class. Indeed, their algebra is Abelian:

{T,(x),T4x")} =0 . (2.26)

The rather lengthy calculation necessary to demonstrate
this is outlined in the next section. Let us consider the
symmetry generated by these constraints. It is straight-

forward to show that under the transformations

F($,m,X%P, )= [ d*x eXx){F,I(x)} , (2.27)

SN =¢é%x), (2.28)

the action is invariant if €%(x,¢) is chosen to vanish at
both end points, t =t',t =1t"".

Equation (2.26) actually implies that the constraints
generate the algebra of four-dimensional diffeo-
morphisms, in the following sense.!® Suppose we smear
the constraints with a spacetime vector field U“ restricted
to the embeddings; i.e., define

)= [d*x U(XP(x)(x) . (2.29)
Then it immediately follows from (2.26) that
(o), Imvy}=-1mu,v), (2.30)
where [, ] denotes the Lie bracket:
(U, VvP=U*, VP—V=3,U". (2.31)
Equation (2.30) is essentially the algebra of four-

dimensional diffeomorphisms.

In the quantization of the parametrized field theory,
the quantum state of the field is represented by a wave
functional ¥[¢(x),X%(x)], a functional of both the scalar
field ¢(x) and the embedding variables X %(x) on a three-
surface. Because the theory is a parametrized field
theory, there is not explicit dependence on the time label
t, and the evolution of the wave functional is described
entirely by the operator version of the constraint equa-
tion (2.24):

f,(x)¥[é(x),X%x)]=0, (2.32)
which may also be written
SXB( W[A(x), X %)= H W[ $(x),Xx)] . (2.33)

Equation (2.33) has the form of a generalized Tomonaga-
Schwinger equation.’ The more familiar Tomonaga-
Schwinger equation is obtained by projecting (2.30) in a
particular direction. The Schrddinger equation (2.22)
may be recovered by projecting (2.33) along the deforma-
tion vector X ¢ and integrating over spatial coordinates x.
To do either of these things, however, would be to lose a
very desirable property of this quantization scheme:
Equation (2.33) describes the response of the wave func-
tion to arbitrary changes in foliation. In particular, un-
like their predecessors satisfying (2.22), the wave func-
tions W[ #(x), X% x)] may carry representations of space-
time symmetry groups.” We will go on to exploit this as-
pect of the parametrized field theory in later sections, but
first it is necessary to present some technical details.

III. POISSON-BRACKETS RELATIONS
AND THE CONSTRAINT ALGEBRA

It is now necessary to review and develop some
Poisson-brackets relations for the embedding variables,
and then to discuss the algebra of the constraints and re-
lated quantities.
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A. Poisson-brackets relations
We have the basic Poisson-brackets relations
{X%x),Pa(x")} =855(x,x") (3.1)
from which it follows that
{XH(x),Pa(x")} =838 ;(x,x") . (3.2)

The 8 function 8(x,x’) is scalar with respect to its first
argument and a density of weight one with respect to its
second. §;(x,x’) will always denote a derivative with
respect to the first argument. For convenience we record
the useful identity

S(x)8 (x,x")=f(x)8 ;(x,x ")+ f ;(x)8(x,x") . (3.3)
It follows from (3.1) that
{gaﬁ(X(x)),PV(x’)}=gaB’Y(X(x))8(x,x’) (3.4)

and from the definition of the induced three-metric 4,;(x)
one has

{h;(x),P,(x")}=2X,;(x)8 ;(x,x")

+8 o (X ()X ()X F(x)8(x,x")
(3.5)

where subscript parentheses denote symmetrization:
T(ab) 2%( Tab + Tba ).
J

(X1(x),Pg(x")} = (X5(x)X](X)+hUx)np(x)n,(x))8 ;(X,x") =g, (X (X)XH(x)n"(x)n,(x)8(x,x") .

Smearing Pz with &P this yields
(X5 (x),P(E)) = —n X n (&, +E,,) — Xp&l, .

From the definition of the normal, one finds

{ng,(x),Pg(x")}= —sz(x)nﬁ(x)ﬁ’i(x,x’)—%gHV,B(X(x))n"(x)n Y(x)n,(x)8(x,x")

and smeared with &7 this yields
{na(x),P(E)} =—non¥n§ ., —npth, .

The simplifications occurring in (3.12) and (3.14) when £*
is a Killing vector should be noted.

(3.14)

B. Covariant derivatives and Lie brackets

Next we record some useful results about the normal
and tangential projections of spacetime covariant deriva-
tives. For an arbitrary spacetime covector W, one has
the following projections of its covariant derivative, W .z
(Ref. 18):

n“nBWa;B=—-]178NWl—]—1\7—Wia,»N , (3.15)
Xa B . 1 j Wl

FnPW o= OnWi T KWt — N (3.16)
nXPW . p=— W, +K Wk, (3.17)
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We will need the Poisson brackets of the projected
embedding momenta:

P=n°P,, P,=X/P, . (3.6)

From Eq. (3.5) it follows that
{hy(x), Pr(x")} =2h; ;(x)8 ;(x,x")+h;; , (x)8(%,x")
(3.7

and
{hyj(x), P(x")} = —2K;(x)8(x,x") , 3-8

where K;;=n,X[; is the extrinsic curvature, and the
semicolon denotes the spacetime covariant derivative.

It is useful to define the smeared embedding momen-
tum

P(&)= [d*x EXX(x))P,(x) (3.9)

where £%(X(x)) is an arbitrary spacetime vector field re-
stricted to the embeddings. Smearing Eq. (3.5), one thus
obtains the useful result

(g (00, P = XX (St S -

Equation (3.10) implies, in particular, that P(£) has van-
ishing Poisson brackets with any function of the three-
metric if £% is a Killing vector field.

From (3.4) and (3.5) one may derive

(3.10)

(3.11)

(3.12)

(3.13)

X XPW =W, —W K . (3.18)

Here, N is the lapse, a vertical bar denotes the three-
dimensional covariant derivative with respect to the
three-metric 4;;, and

()
8xe

Using the above results one may derive the projections
of the Lie brackets between spacetime vectors U?% V¢,

Eq. (2.31). Its tangential and normal projections may be
shown to be

[U,VI=hUU'd;V'—V'3,U")+[U,V]

Sy=— [d’x N(x)n%x) (3.19)

+2n X PnV (U, V 0py=V,Uip) » (3.20)
(U, VI*=UD,Vt—Vvi3, Ut
—n°nPn (U, Vs =V, Upp) - (321

Here, [U, V] denotes the three-dimensional Lie brackets
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between three-vectors U, V', Again the simplifications
arising when U“ and V¢ are Killing vectors should be
noted.

C. The algebra of the constraints

Central to what follows is the Dirac algebra. For a set
of generators C(x),C;(x) it is

{Ci(x),C;(x")}=C;(x)8 ;(x,x")—C;(x")8 ;(x",x) ,

(3.22)

{Ci(x),C(x")}=C(x)8 ;(x,x") , (3.23)
{C(x),C(x")}=Ci(x)h(x)8 ;(x,x")

—C(x"hY(x")8 ;(x',x) . (3.24)

The Dirac relations are also conveniently written in
smeared form. Define

C(N)= [d*x N(x)C(x), C(N)= [d’x N(x)C;(x).
(3.25)

We will sometimes write C(N') instead of C(N). In
smeared form Eqgs. (3.22)—(3.24) become

{C(M),C(N)}=C([M,N]), (3.26)
{C(M),C(N)}=C(M3,N), (3.27)
{C(M),C(N)}=C(h"(N3,M—M2JN)) . (3.28)

By direct computation, using the results of Sec. IIT A,
it may be shown that the projected embedding momenta
P(x),P;(x) obey the Dirac relations. Similarly, by direct
computation, the scalar field Hamiltonians #(x),#;(x)
may be shown to obey the Dirac relations (3.26) and
(3.28), but not (3.27). Instead of (3.27), one has the result

{P(M)+FH (M), H(N)} =FH(M'3;N) . (3.29)

Consider next the constraints of the parametrized field
theory Il (x). Define the projected quantities

O=n°T,=P+%#,
I, =X°T,=P,+%, .

(3.30)
(3.31)

Then it readily follows from the above that the projected
constraints II(x),I1;(x) obey the Dirac relations. Finally,
one can use these results to establish the Poisson-brackets
algebra of the unprojected constraints. One finds

{I(x),g(x")}=0. (3.32)

This is most easily established by considering each pro-
jection of (3.32) and showing that it is zero, which follows
from the fact that the projected constraints obey the
Dirac algebra, and from the results of Sec. IT1 A.

IV. REPRESENTATION OF SPACETIME ISOMETRIES

One of our ultimate aims is to find quantum states in-
variant under the isometry groups of spacetime. A state
will be invariant if it is annihilated by an appropriate gen-

erator of the isometry. Our first task, therefore, is to con-
struct the generators of spacetime isometries.

A spacetime has an isometry if it possesses one or more
Killing vectors; i.e., vectors k “(X) satisfying

Kep+kpa=0. @.1)

We shall assume that the spacetime has n Killing vectors,
k%, A=1,2,...,n. They will obey the algebra

{kmk};]:KgBkc , (4.2)

where [ , ] is the Lie brackets and K §; are the structure
constants of the isometry group. de Sitter space is the
main example in mind, for which the isometry group is
SO(4,1), but we will not specialize to this case until much
later. '

A. Global symmetry generators

At the classical level, we seek the generators of the
isometry group acting on the enlarged phase space
(¢(x),7(x),X%x),P,(x)), and at the quantum level, we
seek their operator counterparts acting on wave functions
Y[d(x),X*%x)]. Because the quantities I1(U) defined by
Eq. (2.27) generate the full difffomorphism group, it trivi-
ally follows that the quantities —II(k ,) are generators of
the global spacetime isometry group, whose Poisson-
brackets algebra closes with structure coefficients K Gp.
However, these are not in fact the objects we need. There
are two more sets of generators on the enlarged phase
space. The first set is?

Ga=—[d*xk§(XxNP(x)=—P(k,),  (43)

for which it readily follows that
{G4,Gp}={P(k,),P(kg)}=—P([k,,kg])
=K 3G . (4.4)

These generators act only on (X%,P,), not on (¢,7). The
second set of generators, acting only on (¢, ), are

0= [d*x k(X (x)H(x)
= [ @3 xkG(X(x)nP(x)Tp(x) . 4.5)
These generators are of course the familiar conserved
charges constructed from the canonical energy-
momentum tensor, (2.21). Classically, one has Q , =G,
when the constraints II,=0 hold.

Let us now compute the algebra of the generators Q ,.
To do this, first note that Q , may be written

Q =H(k+FH(k,) . (4.6)

Using the fact that # and #; obey the Dirac relations
(3.26) and (3.28), and the relation (3.29), one thus obtains

(04,05} =H([k o, kpl'+h"(k 38,k —k5d;ky))

+H (ki d;kp—kpd,kY)
—{P(k o), H(kp)}+{P(kg), H(k{)}) . @7
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Consider the last two terms in (4.7). Because k 4 is a Kil-

ling vector, it follows from Eq. (3.10) that
{P(k 4),F(kg)} =0, (4.8)

where, recall, P(k,) is the embedding momentum

smeared with the four-dimensional vector k§. We may,
however, write
P(kA)=P(kj)+P(kA) , 4.9)

where the terms on the right denote the projected embed-
ding momenta P and P; smeared with k% and k, respec-
tively. Using (4.8) and (4.9), the last two terms in Eq.
(4.7) are therefore equal to

(P(Y), H (k) — [Pk, HEYY (4.10)

but these two terms cancel, because the Poisson bracket
{P(x),7(x ')} is ultralocal [see Eq. (3.8)].

Consider then the remaining terms in Eq. (4.7). These
terms cannot in general be equated with the quantity
F£,(x) smeared with the four-dimensional Lie brackets
[k 4,kp]. Itis for this reason that the Dirac “algebra” is
not a true algebra. Consider, however, the projections of
the four-dimensional Lie brackets, (3.20) and (3.21). For
Killing vectors k 4, kp one has the result

[k 4 kg V'=hU(k}3,ks—kpd;ki)+ ko ksl ,
(karkg)=k}dks—kpd;ky .

(4.11)
(4.12)

Comparing (4.11) and (4.12) with Eq. (4.7), one may see
immediately that

{Q4,0p} =H([k 4,kp ]l)"‘ﬂ([kmka]i)

= [dx[k 4,kp)"H, . (4.13)
That is, the Dirac relations do form a true algebra when
the smearing functions are projections of spacetime Kil-
ling vectors. We thus arrive at the desired result

{QA,QB]ZKSBQC . 4.14)

B. Invariance of the action

We study next the behavior of the action (2.25) under
the global transformations generated by G, and Q,.
These results will be needed when we come to study the
path integral in the next section. Consider first G ;. Any
|

8P, (x)+8FH (x)=€e4{T(x),0 4}

zeAfd3x’[{Ha(x),kﬁ(X(x’))}ﬂﬁ(x’)-i-{Ha(x),ﬂﬁ(x')}kﬁ(X(x'))] .

Evaluating the Poisson bracket in the first term and using
the fact that the II’s commute to simplify the second
term, one thus obtains

8P (X)+8F (x)=—ekh ,FHp— e {H(x),P(k 4)} .
(4.23)
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function F(¢,7,X% P,) changes under the global trans-
formation generated by G 4, according to

8F=¢€1{F,G,}=—€{F,P(k,)}, (4.15)

where €4 is a small arbitrary constant parameter. The
transformation on the Lagrange multiplier N is yet to be
determined. Because the transformation is canonical, the
change in the kinetic term in (2.25) is given by

8 [ d’xdt(X °P,+¢m)

G4
8P, (x)

=e| [d’x P,(x) -G, (4.16)
p
But this vanishes, because G, is linear in P,. The

change in the action (2.25) is thus given by
8S= [d’xdt[—8NP,+H,)— NP, +5%,)] .

(4.17)
From (4.15) it readily follows that
8P, =€"kh Py . (4.18)
Similarly,
8F = —€ —n H+X,H, Pk )} =eAkﬁ,a7{B
(4.19)

using Egs. (3.10), (3.12), and (3.14). It is then readily seen
that 8S =0 if the transformation of the Lagrange multi-
plier N¢ is taken to be

SN*=—ek sN” . (4.20)

The action is therefore invariant under the global symme-
try generated by G, (4.15) and (4.20).

Next consider the global transformation generated by
Q ,. For the kinetic term, again because the transforma-
tion is a canonical one, one has

8 [d*xdt(X °P,+¢m)
80,4

— 4 3

—Q4 , (421
v

but this is not zero, because Q , is quadratic in the mo-
menta 7(x). The change in the remaining part of the ac-
tion is again of the form (4.17), and one has

(4.22)

The second term in (4.23) we have, however, evaluated al-
ready in Eq. (4.19) [but note the extra minus sign in
(4.19)], and one discovers that the two terms in (4.23)
cancel, yielding the result

8P (X)+8H (x)=0 . (4.24)
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We therefore finally need to choose

ON*= (4.25)

for the other terms to vanish. The action is therefore
changed by no more than the boundary term (4.21) under
the transformation generated by Q ,, supplemented by
(4.25).

C. Quantum constraints

In the quantum theory, the quantum states of the field
are represented by wave functionals W[¢(x), X %(x)] satis-
fying the generalized functional Schrodinger equation
(2.32). An inner product between states may be intro-
duced. It has the form

(¥, %)= [ D¢ W [$(x), X*(x)]W,[ $(x), X“(x)] .

(4.26)

There is no integral over the embeddings, X%, in (4.26),
since they really play the role of a “‘many-fingered” time
parameter, rather than that of true dynamical variables.
A globally invariant state is one annihilated by the opera-
tor versions of G 4 or Q 4:

SW
G, v=i[d*xk$—=0 4.27
A lf XKy X )
or
A — 3 a
0,9= [dxk4H, | X%, — a¢ =0,  (4.28)

where, for the moment, we are ignoring operator order-
ing issues. Equations (4.27) and (4.28) are equivalent for
states satisfying (2.32). However, of these two it is only
through Eq. (4.27) that one may see directly the connec-
tion between the action of the isometries on the fields,
and the operation of the generators on the wave function.
For under a transformation generated by G 4, one has

8Xx)={X*x),eG 4} =—€k, 8¢(x)=0 (4.29)

for some constant parameter €4. The change in the wave
function under this transformation is

W[h,X+8X 1= W[4, X+ [ d*x6x2L

5x¢“
(l—teA@

Wi, X°] .
From this one clearly sees the connection between the
geometrical change in the foliation and the operation of
4 on the wave function. In particular, states which for
independent reasons can be argued to be independent of
such changes of foliation will be annihilated by @
No such immediate geornetrlc picture exists for the
more standard generator Q 4- Under a transformation
generated by it, one has

8X*x)=0, 8p(x)=€e{p(x),Q,} .

Because Q , is quadratic in the momenta 7(x), 8¢(x) in-
volves m(x) and it is not possible to relate directly the

(4.30)

(4.31)
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change in the wave function generated by 6¢ to the
operation of 0 4- It is, however, possible to do this in-
directly for wave functionals ¥ satisfying Eq. (2.32), in
that for such wave functionals, one has

0,¥=G, v (4.32)
and (4.30) may then be written
V[p, X —eke]=(1—ie'0 V[, X°] . (4.33)

Equation (4.33) concisely underscores the utility of the
embeddings in this context: the purely geometrical
operation of moving or distorting the hypersurfaces, on
the left-hand side, is equated with, on the right-hand side,
an operation on the wave function involving only the field

¢.

V. PATH-INTEGRAL REPRESENTATION
OF INVARIANT WAVE FUNCTIONALS

Our next task is the construction from a path integral
of wave functionals of the parametrized field theory that
satisfy the Schrodinger equation (2.33), and that are also
invariant under the global symmetry, i.e., satisfy (4.27) or
(4.28). What follows is a direct application of the general
results of Ref. 13. There, it was shown that for a very
general class of theories with global and/or local sym-
metries, wave functions generated by a path integral are
annihilated by the corresponding constraints provided the
path-integral construction is invariant under the symme-
try in question. Since it is central to what follows, we
now summarize and elaborate on the results of Ref. 13 as
they concern the present paper, and explain what is
meant by an invariant path-integral construction.

Reference 13 was concerned with a large class of
theories with symmetry for which the following two very
general requirements are true. First of all, the theory is
described by a configuration space consisting of »n coordi-
nates ¢’ which have nonvanishing conjuate momenta p;
and multipliers A® with vanishing momenta. This in-
cludes theories described by a Lagrangian action
S[q',A%] containing no more than first derivatives in
time, or described by a Hamlltoman action S{p;,q’ k“]
We shall write § [z 1] with z 4 being elther the set (g',A%)
or (p;,q',A%). For the case at hand, the ¢"”s are ¢(x) and
X%(x), the p;’s are m(x) and P,(x), and A% is N"‘(x). We
shall devote our attention almost exclusively to the Ham-
iltonian form of the theory.

The second requirement is that the theory must possess
a global or local invariance under which

zA 5z448z1 (5.1
where 8z “ depends linearly on m parameters €* and their
derivatives € %, with the €“ freely specifiable functions of ¢
in the case of local symmetries, and freely specifiable con-
stants in the case of global symmetries. Further, we re-
quire

8q'=efi(pina’)

for some functions £, which depend only on q and p; in
the Hamiltonian form or on ¢‘ and p,=p;(4‘,q’) in the

(5.2)
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Lagrangian one. In particular, 8¢’ is independent of any
multipliers or ¢ *. We assume that the action changes un-
der (5.1) by at most a boundary term independent of € “
and the multipliers. That is, S has the form

88 =[€e“F,(p;,q"] (5.3)

Condition (5.3) implies the invariance of the equations of
motion. It also implies the invariance of the action if the
conditions €*(¢')=0=¢€%(¢"") are imposed for those a for
which F, does not vanish identically. It is readily shown
that conditions (5.2) and (5.3) hold for constrained Ham-
iltonian systems, such as the parametrized field theory
discussed in this paper.

Now consider wave functions W(g') constructed as in-
variant path integrals of the form

Wg™)= [ Dz8(g'(1")—q")8(g 1) —q")

XAplz218[ @4z ) exp(iS[z4]) . (5.4)
The ingredients of this formula are as follows: The vari-
ables z 4 are the configuration-space or phase-space coor-
dinates defined above. S[z“] is the Lagrangian or Ham-
iltonian action satisfying (5.3). @ denotes the class of
paths that are integrated over. This integration includes
an integration over the initial and final values gq'(z'),
g(¢'). Tt is the surface & functions 8(g(z')—gq") and
8(g(¢"")—q'") that ensure that all paths end at the point
q(t"")=¢q"", which is the argument of the wave function,
and that they begin at the point g(z')=¢q". We have
chosen not to label the wave function by the initial condi-
tions ¢’ because they will eventually be set to particular
values. For definiteness we have fixed ¢(¢) initially, but
one could equally well fix other dynamical variables
there, such as momenta. Other choices of boundary con-
ditions are discussed at the end of the section. ®%z4)
are a set of gauge-fixing conditions and Ag[z 4] are asso-
ciated weight factors discussed below. In the case of
gauge theories they are Faddeev-Popov determinants.
More generally, they are integrals over the ghosts of the
exponential of a suitable ghost action and may not always
be interpreted as determinants.'* They are, however,
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determinants for the system considered in this paper.

In Reference 13 it was shown that if a path-integral
construction of the form (5.4) is invariant with a symme-
try satisfying (5.2) and (5.3) then the resulting wave func-
tion will satisfy operator constraints. To derive this, it is
necessary to assume that the action, measure, and class of
paths summed over satisfy the following four properties
under the transformation (5.1).

(1) The action S changes at the most by a surface term
of the form (5.3). It is thus strictly invariant under trans-
formations (5.1) where € vanishes at the end points.

(2) The class of paths, @, is invariant. This condition
concerns the ranges of integration of the Lagrange multi-
pliers, but in the case of global symmetries, it also con-
cerns the conditions at the initial point of the paths.

(3) The path integral (5.4) is independent of the choice
of gauge conditions ®“ in a class which includes those
generated from a defining ®* by a symmetry transforma-
tion, that is, at least all ®%[z “] of the form

Oz =0z 1+621] . (5.5)

(4) The combination of the measure and the gauge-
fixing weight factor transform under a symmetry trans-
formation (5.1) according to

Dz Az 1] > Dz AAQ,E[ZA] . (5.6)
In this paper, it will be sufficient to use the Faddeev-
Popov construction for gauge-fixing machinery, for
which requirement (3) certainly holds. Requirement (4)
may be shown to be a property of the Faddeev-Popov
construction, in the case where the transformation § is
the local symmetry transformation that the gauge-fixing
machinery is breaking, but we will need to check it in the
case of global symmetries.

In addition to these four properties characterizing the
invariance of the path integral we will also need to as-
sume the following about the implementation of the sum
over histories.

(5) Integrals of the form (5.4) weighted by functions of
p; and g’ on the final surface are equal to corresponding,
appropriately ordered operators acting on W(g'"). That
is, for given F(p;,q"),

" "

O 4" |lwig™ . (5.7)

dg

_l'

f@ﬂz AF(p,(1"),q" (1" )8(q (1" ) —q" ) Ap[z *18[ DUz ) Jexp(iS[z 1])=F

We shall also assume that a similar result holds for the initial surface, but with a crucial sign difference, namely, that p;
is effectively replaced by +i(3/3¢").

Requirement (5) is a property, for example, of a time-slicing implementation of the path integral. It will be assumed
without further comment. The task of the next sections will be to show explicitly that the other assumptions hold.

Now we briefly review the derivation of the constraints, paying particular attention to the case of global symmetries.
The idea is to perform a change of variables in the path integral consisting of a transformation (5.1), which, in the local
case, is taken to be such that €*(¢')=0, but with €*(¢"")70. The overall integral is unchanged because we are just per-
forming a change of variables. By requirement (1), the action changes by no more than a surface term of the form (5.3).
The class of paths € is unchanged because it is invariant, requirement (2). The measure and gauge-fixing machinery
change by no more than a change of gauge-fixing machinery, requirement (4), but by requirement (3), the path integral
is insensitive to such changes. One thus has

W(g")= f@fl)z A8(qi(t")+8q(t")—q")8(q'(t')+8q(t")—q " VA[z 18[ D%z *) Jexp(i(S[z 4]+ 86S[z 1])) . (5.8)
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Then subtracting (5.4) from (5.8) and expanding to first order in €%, one has

O=f@$z‘4 —aq"(t")i—sq"(z')%ﬁss 8(qgi(t")—q")8(q (t")—q" )Ay[z 18] DXz 1) ]exp(iS[z 1]) .
q

dq"”

Using (5.2), (5.3), and assumption (5), this may be written

0= —if@iDzA[e“(t")Aa(pi(t”),qi(t”))—ea(t')Aa(pi(t’),qi(t’))]

X8(g(t")—q"")8(g'(t')—q" ) Aplz *18[®*(z 1) ]exp(iS[z 4]) ,

where we have introduced

Ao(pi,a)V=fLpig i —Fo(pirg’) . (5.11)

For the case of local symmetries, recall that we are taking
€%(t) to be nonzero at t=t"’ but to vanish at t=¢'. Only
the terms at the final surface contribute in (5.10), and us-
ing assumption (5), we derive the constraints

A,(p;,q W(gH=0 (5.12)
in some operator ordering, where

p=—i2-, gi=g 5.13

pi= taq,-,@—q- (5.13)

For the case of global symmetries €% is a constant, and
we cannot dispose of the initial surface terms in (5.10) by
imposing suitable boundary conditions on €*. In cases
where one has evolution under a time-dependent
Schrodinger equation, assumption (5) applied to both end
points in (5.10) would lead to the conclusion that if ¥ is
an eigenstate of the operator 4, at t=t’, then it remains
so under time evolution. In this paper, however, we are
concerned with constructing wave functions invariant un-
der global symmetries; i.e., ¥ must be annihilated by A4,.
Clearly in the global case this can only be achieved if the
initial point of the class of paths summed over satisfies the
conditions

A (p;(t'),q(t"))=0. (5.14)

Then we derive constraint equations of the form (5.12) in
the global case also. The conditions (5.14) are in a sense
already subsumed under requirement (2) above—that the
class of histories be invariant—but it is useful to be expli-
cit about this to draw the distinction between the case of
global and local symmetries. We therefore identify the
invariance of the class of histories summed over as the
source of the invariance of the quantum state generated
by the path integral.

Finally, it will be important for what follows to consid-
er how the above derivation, and in particular Eq. (5.14),
may be modified with choices of initial conditions other
than fixed initial ¢’(#). To this end, let us divide the vari-
ables g’, where i =1, ..., m say, into (¢%q*), with conju-
gate momenta (p,,p,), where a=1,...,m and
s=m-+1,...,m. Let the variables fixed at the initial
point of the paths be p, and ¢°. In the path integral (5.4),
the action S is that appropriate to fixed initial and final
g’. However, with fixed initial p,, this action must be
modified by a boundary term, and one works with a new

2599
(5.9)
(5.10)
[
action
S=S+p,(t)gt") . (5.15)

It will also be necessary to make an assumption very
similar to (5.7), namely, that any function of g%(¢') on the
initial slice in the path integral may be replaced by the
same function of the operator —i(d/dp,). Like assump-
tion (5), this will hold in a time-slicing implementation.

Now consider again the derivation of the constraints,
but with this new set of boundary conditions. The
derivation is as before, except that the terms in the large
parentheses in (5.9) are now

—i[8qi(t")p;(t")—8q (¢t )p,(t')+8p,(t")g%t')—8S] ,
(5.16)

where we have used assumption (5) and the above exten-
sion of it to replace the partial derivatives with momenta
or coordinates. From (5.15), one has

85 =8S+8p,(t")q°(t" ) +p,(t')8qt") . (5.17)

The crucial point now is that the terms proportional to
8p,(t') cancel in Eq. (5.16), and the calculation is exactly
as before: we again set Eq. (5.14), even when some of the
momenta are fixed initially.

We conclude, therefore, that in the case of global sym-
metries we derive the constraints on the wave function
(5.12), provided that the combination of coordinates and
momenta fixed at the initial point of the histories are
such that (5.14) holds.

VI. DERIVATION OF THE CONSTRAINTS
FOR PARAMETRIZED FIELD THEORY

Now we apply the results of the preceding section, to
the path-integral derivation of global and local con-
straints on the wave functions of the parametrized field
theory. We begin by writing down a path integral for the
wave functions of the theory. It is

Wg"(x), X" (x)]

= [ D¢ D7 DXDP DN
X8[p(x,t")—¢"(x)18[ XU x,t"")— X (x)]
X[ DP*]Apexp(iS) . 6.1)
Here, S is the action
— 3 { v a _aTa
S fRdt fzd x(¢mr+X *P,—N°II,) . (6.2)
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. P Ol (x)
The sum is over the class of histories 8¢(x)=e“(x)fd3y W(y)ﬁ ,
($(x,0),7(x,),XUx,1),P,(x,8),N%x,1)) , 7;1y1 o (6.10)
X
’ ”" a — 3 P e .
<t<t" (6.3) sX“(x)=€%(x) [ d’y /3(y)5P6(y)

satisfying the final conditions
d(x,t")=¢"(x), XUx,t")=X"(x) (6.4)

(as enforced by the & functions) with 7(x,t"), P (x,t"),
and N%x,t"") free, and some initial conditions that we
leave for the moment unspecified. The measure in (6.1) is
the canonically invariant Liouville measure on
¢,m,X%P,, and the measure on N¢ is just the simple flat
measure. The gauge-fixing condition ®*=0 must break
the local symmetry generated by I, (2.27) and (2.28).

Because the algebra of the constraints is Abelian, the
construction of the Faddeev-Popov factor Ay is compara-
tively straightforward (in contrast with the case of gravi-
ty discussed in Ref. 13). Explicitly, it may be written

Ap= f@c“i)?aexp(nghost) , (6.5)

where c*(x,t) and C,(x,t) are anticommuting ghost
fields. The ghost action Sy, is given by

Sehost = J dx d1T,8,0%, (6.6)

where &, denotes a local symmetry transformation
(2.27),(2.28), but with the parameter €%(x,¢) replaced by
the ghost field ¢ *(x,¢).

Given this explicit path integral, we may now consider
the derivation of the local and global constraints on the
wave function.

A. Local constraints

We first use the local invariance of the sum over his-
tories to derive the generalized functional Schrodinger
equation (2.30). Recall that the action is invariant under
the diffeomorphisms generated by the constraints I1,,. In
particular, under the transformations

8F($,m,X%P,)= [ d’x e(x){F,1(x)} , 6.7)

SN*=e&Xx) , (6.8)

the action changes by an amount

85= | [d’xex,1)
SIT (x)
3 o
X fd yﬂ(y)—rr(y)
LU .
f y B y SPﬁ(y) a X tl

(6.9)

The action is therefore strictly unchanged if €*(x,?) van-
ishes at both end points. The changes in ¢ and X¢ are,
explicitly,

The transformation is therefore of the form (5.2),(5.3),
and we may apply the results of the preceding section to
derive the constraints.

Let us now consider whether requirements (1)—(4) of
the lemma are satisfied. (1) is satisfied by virtue of (6.9).
For the class of histories to be invariant, requirement (2),
the main restriction is that the Lagrange multipliers N
must be integrated over an infinite range [cf. Eq. (6.8)].
The measure is invariant because (6.7) is canonical and
(6.8) is just a simple shift of N* The independence of
gauge fixing, requirement (3), is a property of the
Faddeev-Popov construction. The only thing left to
demonstrate, therefore, is the invariance of the Faddeev-
Popov determinant, which we now do.

Under a transformation (6.7),(6.8) with parameter €,
denote it §,, the only change in Ay, Eq. (6.5), is in the
ghost action, for which the change may be written

8Sgnost = J d°x d1(T,8,8, D% +,[6,8,]10%) . (6.11)

Here, [ , ] denotes the commutator. The first term in
(6.11) is just a change of gauge-fixing function. Since ®“
can be any function of the dynamical variables, to calcu-
late the second term we need to find the commutator of
two local symmetry transformations on each of the
dynamical variables. One has

(6,8, IN*=5.0—8,¢%= (6.12)

and
(8,8, 1F(¢,m,X%P,)
=— [d*xd’ cx)eP(y){ {I1,(x),T14(y)},F} =0
(6.13)

by virtue of the Jacobi identity and the fact that the alge-
bra of the Il ’s is Abelian. The second term in (6.11)
therefore vanishes, so Ay changes by no more than a
change of gauge-fixing function and requirement (4) is
satisfied.

All the assumptions of the lemma are now satisfied,
and we therefore derive the constraint (5.12), which reads

N,¥[¢(x),X%x)]=|—i

+#H, \X“,cb, —i

R
5¢
(6.14)

G
XW[d(x),X4x)]=0 .

B. Global constraints Q 4

Next we consider the derivation of the global con-
straints corresponding to the symmetry generated by Q 4.

Recall that under a symmetry transformation generated
by Q , with parameter €, which we denote &, one has

S.F(p,m, X P, )=€{F,Q,}, (6.15)
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SN*=0 . (6.16)

Explicitly, the transformations on the configuration-space
variables are

- 50, -
= A a =
B =€t~ BXUx)=0,

so condition (5.2) holds. Under the transformation (6.15),
(6.16), the action changes by an amount

(6.17)

I

o)
fd3x1r(x) Q4 —Q4 ,
.

8m(x)

§S=¢ (6.18)
so condition (5.3) holds.

Now let us check the requirements of the lemma of the
preceding section. (1) holds by virtue of (6.18). Require-
ment (2) necessitates an important set of initial conditions
on the histories summed over, and is discussed below. As
before, (3) holds. The measure is invariant because (6.15)
is canonical, and thus to satisfy (4) we only need to
demonstrate the correct transformation properties of the
Faddeev-Popov factor Ag. As in the derivation of the lo-
cal constraints, this immediately boils down to the issue
of calculating the quantity [5,8,]® in (6.11). To this
end, one has

(8,5, IN“= (6.19)

and

(6.8, 1F($,m, X% P,)

—fd xc4x)e{{Q ,, (%)},

because {Q ,,I1,(x)} =0, by Eq. (4.24). A4 is therefore
changed by no more than a gauge-fixing term, as re-
quired. The quantity (5.11) for this case is readily calcu-
lated, and is found to be quite simply Q ,. We therefore
derive the operator constraints on the wave function,

0,4 ¥[4(x),X%x)]=0, (6.21)

provided that the histories summed over satisfy the initial
condition (5.14), which in this case turns out to be the
condition Q , =0 at t=¢".

F}=0 (6.20)

C. Global constraints G ,

Now we repeat the above derivation, but this time us-
ing the global symmetry generator G ,. We again denote
the symmetry transformation generated by G 4 as §.. Un-
der this transformation one has

S F(¢p,m, X% P, )=€*F,G,},
SN =—e"kg gNP .

(6.22)
(6.23)

The explicit transformations on the configuration-space
variables are

8G

m (6.24)

S5.4(x)=0, 5§ X%x)=¢" =—e1kq
so condition (5.2) holds. The action is strictly invariant
under (6.22) and (6.23): §.5 =0 with no boundary terms.
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Next we must check the requirements of the lemma.
(1) holds because §.S=0. Again (2) necessitates certain
initial conditions on the set of histories summed over. (3)
is a property of the Faddeev-Popov construction. As be-
fore, the main calculational issue is in requirement (4).
The measure D¢ D DX °DP, is again invariant because
(6.22) is canonical. The measure DN is not invariant,
however, because the transformation (6.23) is nontrivial
and a Jacobian factor arises.

Now consider the transformation of the Faddeev-
Popov term. Again we find we have to calculate the
quantity [5,,8,]®% One readily finds

(868, 1F(¢,m,X)=— [ d’x edc™(x)k ,{T(x),F} ,

(6.25)

where note that for simplicity we have taken F to be in-
dependent of P,. We are therefore restricting attention
to gauge-fixing functions ®“ independent of P, but this
is not a serious restriction. Introducing 8c?, defined by

ScP=e c“kB (6.26)
(6.25) may be written
(6,8, 1F=84.F , (6.27)

where 85, denotes a local symmetry transformation (6.7),
with parameter 8c. Similarly for N% one has

(8,8, IN*=€”(kf ., NT+Kf &) . (6.28)

The right-hand side may be equated with 5. N* once it is
observed that one may write N*=X % One may do this
because the P, integral in the path integral brings down a
8 function enforcing this equality, provided that, as we
have already assumed, the gauge-fixing function is in-
dependent of P,. We have now proved the result

(5,8, |P“=55D° . (6.29)

The term (6.29) appearing in the transformed ghost ac-
tion (6.11) may be eliminated by performing the change
of variables

c*—c*—8c?=c"—ecPkq 4 (6.30)
in expression (6.5) for Ag4, leading to a nontrivial Jacobi-
an factor coming from the measure Dc® Compare the
transformation (6.30) with the transformation on N¢, Eq.
(6.23), which also leads to a nontrivial Jacobian factor in
the measure DN The two transformations are in fact
identical. However, because the ¢ %s are anticommuting
variables, the Jacobian arising from (6.30) is precisely the
inverse of that arising from (6.23), and thus they cancel.
So although the measure and Faddeev-Popov factor do
not separately have the desired transformation proper-
ties, together they do—their combination changes by no
more than a change of gauge-fixing function and require-
ment (4) is satisfied.

The quantity (5.11) is readily calculated and is found to
be G, . Once again, therefore, we derive the operator
constraints on the wave function
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G, ¥Y[(x),X%(x)]=0 6.31)

provided that the histories summed over have vanishing
G 4 initially.

D. The importance of being embedded

Since it is perhaps not completely obvious from the
preceding discussion, it is important to emphasize the
necessity of using the embedding variables in the deriva-
tion of these constraints from the path integral. One
might, for example, have thought that it is possible to
derive the global constraints using the usual path-integral
representation of the wave function without the embed-
dings, on a fixed foliation. This path integral takes the
form

V(g (x),t]= [ Dp D 8[d(x,t")—¢"(x)]e’s,  (6.32)
where S is the usual action
S= [d’xdt(nd—NH—N#,) . (6.33)

Here the lapse and shift N and N' are totally fixed quanti-
ties which are not integrated over. In attempting to ap-
ply the lemma to derive the constraints, using the sym-
metry generated by Q , (since G 4 is no longer available)
one quickly discovers that although the measure is invari-
ant, the action is not, due to the noninvariance of the
Hamiltonian:

{Q 4, N(xX)H(x)+N(x)FH,(x)}

=— [dPy kGONP(y) [ Ho(x),Pa(y)}#0 . (6.34)
It is for this reason that one fails to derive the con-
straints.

Is the noninvariance of the action (6.33) in conflict
with one’s expectation that, in Minkowski space, for ex-
ample, the scalar field action should be Lorentz invari-
ant? The answer is no. The action (6.33) is a function of
the dynamical fields ¢,7, but it is also a function of non-
dynamical, prescribed background fields, namely the
metric components. The generators of the Lorentz trans-
formation, Q 4, act only on the dynamical fields ¢, 7, not
on the background fields. Lorentz invariance of the ac-
tion is in fact attained if, by hand, one supplements the
canonical transformations on ¢ and 7 with appropriate
transformations on the metric. The derivation of the
constraints, however (from the Hamiltonian form of the
path integral), relied crucially on the existence of a
canonical transformation under which the action is in-
variant, and the necessary transformation on the metric
is not canonical. It is by making the embeddings dynami-
cal that the metric becomes a function of the dynamical
variables, and the appropriate transformation on it then
is a canonical transformation.

Put differently, the difficulty is due to the fact that a
fixed foliation is taken in Eq. (6.32), while global space-
time isometries typically involve motions or distortions of
the foliation itself. Indeed, the amount (6.34) by which
the Hamiltonian fails to be invariant is nothing more
than a transformation of the foliation itself. By making
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the embeddings describing the foliation dynamical, as is
done here in the parametrized field theory, changes in the
foliation such as that incurred in (6.34) may be absorbed
by symmetry transformations of the embeddings.

It should also be noted that this inability to represent
spacetime symmetries is not necessarily a consequence of
basing our analysis on the Hamiltonian form of the path
integral—it would also arise in the equivalent Lagrang-
ian form of the path integral. Rather, the difficulty is in-
trinsic to the functional Schrédinger picture in which the
central notion is that of a wave function on a spacelike
surface.

To end this section, we make some remarks about the
main result of this section—that summing over histories
with vanishing initial global charges leads to invariant
wave functionals. This result may perhaps seem obvious,
or even trivial, in that it is essentially equivalent to the
statement that a zero-eigenvalue eigenstate of the charge
operator will remain so under time evolution. However,
in this paper we are not merely using the path integral to
construct a propagation amplitude which respects the
global invariance of the theory. Rather, we are giving the
path integral a more fundamental role as a generator of
invariant wave functionals, and attempting to identify
those aspects of the sum-over-histories construction that
lead to invariant states. This endeavor is not without
motivation in that, as we shall see in the next section,
there exist proposals for the quantum state of matter
modes in certain spacetimes that are given in path-
integral form.

VII. VACUUM STATES IN de SITTER SPACE

We now apply the results of the preceding sections to
the case of de Sitter space. Recall that de Sitter space is a
solution to the Einstein equations with positive cosmolog-
ical constant A. It may be thought of as a four-
dimensional hyperboloid embedded in five-dimensional
Minkowski space. It is maximally symmetric, with ten
Killing vectors and isometry group SO(4,1), the five-
dimensional Lorentz group. The metric on de Sitter
space may be written

ds?=—di’+ —I%coshz(Ht 103, 7.1
where dQ% is the metric on the unit three-sphere, and
3H*=A. Its Euclidean section is the four-sphere S* with
isometry group SO(S), and metric

ds*=dr*+ ——sinX Hr)d 03 . (7.2)

H

Scalar field theory in a background such as de Sitter
space?® is normally quantized in the Heisenberg picture
by first introducing a set of mode functions u, (x,#) satis-
fying a wave equation of the form

(O—m>u,(x,1)=0. (7.3)

The field operator ® is then expanded in terms of these
mode functions

d(x,0)="3 [@ru(x,1)+ajut(x,1)] ,
k

(7.4)
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where 6,1 and @, are the usual creation and annihilation
operators. The vacuum state is then defined to be the
state |0) for which

a,10)=0 (7.5)

for all k. The vacuum state is determined by the choice
of mode functions u,.

In Minkowski space, there is a unique vacuum state
which is invariant under the Poincaré group; so is the
agreed vacuum state for all inertial observers. For an ar-
bitrary curved spacetime, however, there is generally no
unique natural choice of vacuum state. For spacetimes
with isometries, it is natural to look for states which are
invariant under the isometry group. In particular, in de
Sitter space, one is interested in de Sitter-invariant
states.2*

The traditional way of studying invariant vacua is
through the symmetric two-point function in a state |A):

G (x,y)= (A [Dx)D()+D(p)BX)]A) , (7.6

where ®(x) is the scalar field operator in the Heisenberg
picture. The state |A) is then said to be de Sitter invari-
ant if the two-point function depends on x and y only
through u(x,y), the geodesic distance between x and y:

Grlx,y)=1f(n) . 7.7

Using the fact that & obeys the Klein-Gordon equation, a
second order ordinary differential equation for f,(u) is
readily derived. From it, it may be shown that there is
not just one de Sitter-invariant vacuum, according to the
above definition, but there is a one-parameter family of
inequivalent de Sitter-invariant vacua.

For this one-parameter family, the function f; (1) gen-
erally has two poles: one when y is on the light cone of x,
the other when y is on the light cone of X, the point in de
Sitter space antipodal to x. However, among the one-
parameter family, there is one member for which f,(u)
has just one pole, when y is on the light cone of x. This
member is called the “Euclidean” or “Bunch-Davies”
vacuum, and has the nicest analytic properties. This is
often the one that is used in calculations of density fluc-
tuations in inflationary universe models, for example.

A second way of characterizing the Euclidean vacuum
is in terms of the mode expansion (7.4). The Euclidean
vacuum is defined to be the vacuum state corresponding
to the set of mode functions u(x,t) which are regular on
the Euclidean section of de Sitter space, i.e., regular on
the entire four-sphere.

In the context of this paper, a third definition of de
Sitter-invariant state is appropriate: a de Sitter-invariant
state is one represented by a wave functional
W[ #(x),X*x)] which is annihilated by the de Sitter gen-
erators, i.e., satisfies (4.27) or (4.28) with the Killing vec-
tors k% taken to be the ten Killing vectors of de Sitter
space. This definition has previously been studied by
Burges,* and by Floreanini et al.,’ but without using the
parametrized field theory. Floreanini et al. argued that
by this definition of invariant state there is in fact only
one state that is truly invariant under the de Sitter-
invariant group, namely the Euclidean vacuum. The oth-
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er “invariant” states in the one-parameter family |A) as
defined above are in fact eigenstates of the de Sitter gen-
erators, and are therefore changed by a phase under the
action of the de Sitter operator exp(—ie QA

Here, we will discuss de Sitter-invariant states in the
context of a path-integral representation of the wave
functionals of scalar field theory. If we were starting
from scratch, then such an endeavor would involve iden-
tifying the class of histories that it would be necessary to
sum over to generate de Sitter-invariant states. However,
it turns out that studies in quantum cosmology have al-
ready led to the identification of the appropriate class of
histories: the ‘“‘no-boundary” path-integral proposal of
Hartle and Hawking!® for the wave function of the
Universe has been argued to lead, in the semiclassical ap-
proximation, to de Sitter-invariant states for matter wave
functionals.!*?> The argument of Ref. 25 used the second
of the above three definitions of de Sitter invariance.
Reference 14 used a very heuristic argument that hinted
at the third definition. Our task to review the argument
of Ref. 14, and present it in a mathematically precise
fashion, using the results of the preceding sections.

We begin by reviewing the calculation of the no-
boundary wave function for the Universe. We are in-
terested in the no-boundary wave function for a three-
surface 2 of three-sphere topology on which the three-
metric is 4//(x) and the matter-field configuration is

¢"'(x). It is defined by a path-integral expression of the
form
‘I’NB[ x),¢"(x)]
= f D8 D exp(—Iy[8,, 1= 1 [8,r 8], (78)
where I, is the Euclidean action for gravity,
L1g]= [d*xVg(—R+2A), (7.9)

and I,, the Euclidean version of the matter action, (2.13).
The integral (7.8) is taken over metrics g,, and matter
fields ¢ on compact four-manifolds /# whose only bound-
ary is the three-surface X, on which 8,» and ¢ must
match the arguments of the wave function, A/ (x),¢"(x).
One is also supposed to sum over all compact manifolds
M with boundary 2. However, it is not known exactly
how to define this sum, so in practice one considers each
term in the sum over manifolds separately. Here, we will
consider only the case in which the four-manifold M is
the four-ball B*. In the standard 3+ 1 decomposition we
are using here (that is, without the embedding variables),
it turns out to be necessary to impose conditions on the
fields as the foliating three-surfaces shrink to zero. An
appropriate set of conditions may be found by insisting
that the saddle points of the integrals over metrics and
matter fields are regular solutions to the field equations
on B* matching the prescribed data on the three-sphere
boundary.?¢

We shall regard the scalar field ¢(x,7) as a small per-
turbation on the gravitational field—it does not act as a
source to the approximations in which we will be work-
ing. In the saddle-point approximation to the integral
over metrics, (7.8) then leads to an expression of the form
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Vg k) (%),8" (X)) = exp(— I, [T, ])
X [ D¢ exp(—1,(8,,9]) ,

where g v is the saddle-point metric, i.e., an extremum of
the Einstein action (7.9). We are interested in the case in
which the three-surface = is a three-sphere of radius a
with the usual round metric A =a2(2,-j. Then, when
aH <1, g, is real and is the metric (7.2) on the section of
four-sphere closing off a three-sphere of radius a. When
aH >1, g, is complex. It may be thought of as a section
of de Sitter space described by the metric (7.1) matched at
its minimum radius onto half a four-sphere with metric
(7.2).

The form of Eq. (7.10) invites one to regard the quanti-
ties

dla”,¢"(x)]= [ D¢ exp(—1,,(8,.4])

as matter wave functionals for a scalar field in a (possibly
Euclidean) de Sitter space background. This is justified in
that one may show that these wave functionals are solu-
tions to the functional Schrédinger equation.?’” The no-
boundary proposal implies that the integral over matter
modes in (7.11) is over fields ¢(x,7) on B* that match
¢"'(x) on the three-sphere boundary, and are such that
the saddle point of the functional integral over ¢ corre-
sponds to a regular solution to the scalar field equation
on the background geometry.

Equation (7.11) is our candidate for a path integral
generating de Sitter-invariant states. Indeed, by direct
computation of the wave functionals, it may be shown
that this state corresponds to the Euclidean vacuum, as
defined above.”> However, as noted above, a more heuris-
tic argument for the de Sitter invariance of the no-
boundary matter wave functionals has been given.'* This
argument shows that the de Sitter invariance is an inevit-
able consequence of the very geometrical nature of the
no-boundary proposal, and is therefore true of all types of
matter fields admitting de Sitter-invariant vacua.

Let us first recall the heuristic argument given in Ref.
14. Suppose one asks for the quantum state of the matter
field on a three-sphere of radius ¢ <H !. The no-
boundary state is defined by a path integral of the form
(7.11). One sums over all matter fields regular on the sec-
tion of four-sphere interior to the three-sphere which
match the prescribed data on the three-sphere boundary.
The resulting state will depend on the geometry only
through the radius of the three-sphere, and not on its in-
trinsic location or orientation on the four-sphere. One
thus has the freedom to move the three-sphere around on
the four-sphere without changing the quantum state—at
each location one is summing over exactly the same field
configurations to define it. These different locations are
related to each other by the isometry group of the four-
sphere, SO(5). It follows that the state is SO(5) invariant
on the Euclidean section. On continuation back to the
Lorentzian section, one thus finds that the state is invari-
ant under SO(4,1), the de Sitter group; that is, the state is
de Sitter invariant.

Although perhaps clear intuitively, there are at least
two difficulties with this heuristic argument. First, in the

(7.10)

(7.11)
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usual functional Schrodinger quantization, strictly speak-
ing one cannot talk about rotations of the three-sphere on
the four-sphere, because the wave functionals depend
only on the time coordinate label of the fixed foliation:
they carry no information about the location or orienta-
tion of the three-surface on the four-sphere. Secondly,
the key element of the above argument is that the fields
on the cap of four-sphere enclosed by the three-sphere
boundary “look the same” irrespective of the location of
orientation of the three-sphere on the four-sphere. How-
ever, in concrete implementations of the path integral
(7.11), one is obliged to take a particular foliation of the
four-sphere. For example, one might take the leaves of
the foliation to be surfaces of constant 7 in the metric
(7.2). This has the consequence that there is a preferred
point on the four-sphere from which the foliation
emerges at which it is necessary to impose regularity con-
ditions. This means that the fields on the cap of the
four-sphere enclosed by the three-sphere boundary will
not in fact “look the same” for all possible locations and
orientations of the three-sphere boundary.

Clearly the way around these difficulties is to introduce
the embeddings as dynamical variables, as we have in the
earlier parts of this paper. The first difficulty is comfort-
ably handled because the embeddings do allow one to talk
about motions or distortions of the three-surface. In par-
ticular, Eq. (4.33) captures in precise mathematical form
the notion that a wave function is annihilated by the gen-
erator Q 4 if it can be argued to be insensitive to the pure-
ly geometrical operation of moving the three-surface
around on the four-sphere under the action of SO(5).
With regard to the second difficulty, it is still true even
when the embeddings are dynamical that one has to im-
pose initial conditions at an ‘“‘initial” point on the four-
sphere from which the family of foliating surfaces
emerges. However, in integrating over the embedding
variables in the path integral, one integrates over all pos-
sible initial points. This means that there is no longer a
preferred initial point, and the field configurations
summed over on the cap of four-sphere will indeed look
the same for all possible orientations of the bounding
three-sphere.

The most convincing demonstration of the de Sitter in-
variance of (7.11), however, is to apply the results of Sec.
V, and attempt to derive global constraints on the no-
boundary wave function for the matter modes. We are
therefore led to study the Euclidean version of the path-
integral representation (6.1) of wave functionals of the
parametrized field theory [the natural generalization of
Eq. (7.11)], where the class of histories summed over is
taken to be that specified by the no-boundary proposal of
Hartle and Hawking. That is, we sum over histories (6.3)
satisfying the final conditions (6.4) and satisfying such ini-
tial conditions as guarantee that the saddle points of the
path integral correspond to regular solutions to the field
equations for the scalar field and for the embeddings.
Our object is to show that the conditions on the paths
specified by this proposal imply that the de Sitter charges
Q, and/or G, vanish initially, and thus, using the re-
sults of Sec. V, that the resulting wave functional is de
Sitter invariant.
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What, then, are the initial conditions on the histories
summed over in (6.1) corresponding to the no-boundary
amplitude?

Let us begin by considering the embedding variables.
Strictly speaking, our analysis really only applies to four-
manifolds of topology RXZ. The case of the four-
manifold B* considered here, therefore, must be obtained
as a limiting case of manifolds of topology R X X, and one
must expect to encounter some kind of singularities at the
“beginning” of the foliation. It will then be necessary to
impose suitable conditions on the embeddings to ensure
regularity as the initial three-manifold goes to zero, and
to ensure that the embeddings describe a “reasonable”
foliation of the four-sphere. Heuristically, we envisage
that the volume factor of the three-surface, 4 '/2, must go
to zero. In fact, because the charges Q@ and G, are
given by three-surface integrals [Egs. (4.3) and (4.5)], this
condition will guarantee that the charges vanish, provid-
ed that the integrands remain well behaved.

There are many ways in which the three-surface may
shrink to zero. The plethora of ways may be character-
ized by the eigenvalues of 4;; at each point x. For exam-
ple, if just one of the eigenvalues goes to zero, than the
three-surface volume goes to zero, but the three-surface
just degenerates to a two-surface. On the other hand, if
all the eigenvalues go to zero, than rather than degen-
erate to a lower-dimensional surface, the three-surface
shrinks right down to a single point. Given that some
kind of singular behavior is inevitable as the three-surface
volume goes to zero, it seems desirable to restrict this
singular behavior to just a single point, rather than to a
one- or two-dimensional surface. We shall therefore
demand that all the eigenvalues of 4;; go to zero. This is
in fact completely equivalent to the condition that h!/2h "
goes to zero (from which it follows that h1/? goes to
zero). One could perhaps argue that this is in accord
with the requirement that the embeddings describe a
“reasonable” foliation of the four-sphere. We note that
this condition is not obviously obligatory, on general
grounds, and it would be interesting to investigate the
consequences of choosing other initial conditions. How-
ever, it does seem to be the only possibility consistent
with regularity of the constraint equations, as we shall see
below.

It is difficult to see how the conditions 4 !"247=0 can
be enforced directly by imposing conditions on some
combination of the canonical variables, ¢, 7, X%, and P,,.
Following the general approach of Ref. 26, we shall
therefore demand only that the initial conditions
h'2h=0 be a consequence of the initial conditions we
choose to impose, via the constraints or field equations.

Now consider the Euclidean constraint equations
P,=—na, H—X.%; . (7.12)

Here, 7, is the Euclidean normal, and is normalized ac-
cording to 7i,7i “=1. Recall that # and #, are given by
H=L1n"2h"'7*+hY3,40;6+m*¢?) , (7.13)

F =0, . (7.14)
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In some (but not all) choices of gauge in the sum over his-
tories, the integration over N¢ will enforce the con-
straints as & functions in the path integral. Let us ask
what happens in the constraints as '/ and h12h Y go to
zero, if we insist that all quantities remain regular. Clear-
ly for the right-hand side to remain regular it is necessary
that 7 goes to zero as k!’ goes to zero. Then we also
deduce that P,=0.

But now let us turn the argument around. Let us insist
that the initial conditions are

m(x)=0, P,(x)=0. (7.15)

Then the constraints imply that #1/2=0, and h¥h1/2=0.
Furthermore, the condition 7(x,0)=0 will imply that the
classical solutions to the scalar field equations are regu-
lar. We therefore conclude that the conditions (7.15) are
the canonical initial data enforcing regularity of the clas-
sical solutions with the embeddings describing a reason-
able foliation of the four-sphere. The conditions (7.15)
are therefore reasonable candidates for the canonical ini-
tial data corresponding to the no-boundary amplitude.
Finally, it is readily seen that the conditions (7.15) im-
ply that the charges G,, Q, vanish. We therefore
deduce that the no-boundary wave functional for the sca-
lar field is annihilated by the global operator constraints
(4.27) and (4.28), and thus, that it is de Sitter invariant.

VIII. ANOMALIES

The treatment so far of quantum issues has been for-
mal, in that we have not addressed the full field-theoretic
aspects of the problem. We now discuss the important is-
sue of anomalies in the algebra of the various sets of sym-
metry generators, both local and global.

The first point at which anomalies may occur is in the
quantum version of the algebra of the diffeomorphism
constraints, (2.26). On general grounds, one should in
fact expect to find anomalies here, because the con-
straints Il (x) contain projections of the energy-
momentum tensor of the scalar field, T,p, and it is known
that anomalies generally arise in the commutators of
TaB'ZS
To actually calculate the anomaly in the quantum ver-
sion of the algebra (2.26) would be a very difficult task,
and will not be attempted here. However, one can give
general arguments about the form the anomaly must
take. Moreover, the calculation has been carried out ex-
plicitly in the special case of a two-dimensional cylindri-
cal spacetime,” where the problem essentially reduces to
that of finding the anomaly in the Virasoro algebra, a
problem which has a well-known solution.

On general grounds, a reasonable assumption (support-
ed by the explicit two-dimensional example) is that the
anomaly in the algebra of diffecomorphism constraints de-
pends only on the embeddings, and has the form

[1,(x), fl4(x ") ]| =Fop(x,x ;X %] (8.1)
for some quantity F,5(x,x ;X %], a function of the points
x,x’ and a functional of the embeddings X*. Assuming
that the Jacobi identity holds (it need not if there is a
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three-cocycle), one may deduce from the above that F 4
has vanishing exterior derivative, and thus that it is an
exact curl,

8A,(x;X]  8Agx";X]
8XF(x") 8X(x)

for some ‘“anomaly potential” A4 ,(x;X*]. Because of the

form of the anomaly, it may be removed by adding — 4,

to the generators II,. One thus arrives at new quantum
generators

Fop(x,x"; X]= (8.2)

fiev=p +H,— 4, (8.3)
satisfying the correct algebra
[V (x), 3™ (x)]=0 (8.4)

without anomaly. However, although finite in the two-
dimensional example, it is quite possible that the anoma-
lous term is infinite in the four-dimensional case, render-
ing the new generators (8.3) ill defined.*®

The next point at which anomalies could conceivably
arise is in the algebra of the global symmetry generators.
Because of their particularly simple form, it seems
reasonable to assume that the global symmetry genera-
tors G, may be quantized without anomaly. For the
generators Q 4, however, because they are constructed
from the energy-momentum tensor, there is the possibili-
ty of anomalies. Such anomalies were not present in the
two-dimensional example of Ref. 29, but there is no obvi-
ous reason why this should also be true of the four-
dimensional case considered here.

Again one can apply general reasoning to find some-
thing out about anomalies in the algebra of the quantum
generators 0 4- It seems reasonable to assume that the
quantum algebra has, at worst, the form

[0.4,051=iK530c+F 45 ,

where F 5 is a ¢ number that does not expand on ¢. This
is consistent with the Jacobi identity (again assuming
there is no three-cocycle). Suppose we shift the generator
QA by a c-number term q 4, in Eq. (8.5). Then the anom-
alous term may be removed if we can find a ¢ , such that

(8.5)

iKSpqc+F 43=0. (8.6)

If the global symmetry group is semisimple [as is the de
Sitter group, SO4,1)], the Killing metric

848 ZKECKBCD (8.7)

is invertible. The indices on K {5 may be moved up and
down using this metric and one may form the totally an-
tisymmetric quantity
K spc=8cpK3s . (8.8)
Equation (8.6) may then be solved for g, with the solu-
tion
gc=—ig PgPEK . wFpr . (8.9)

For semisimple groups, therefore, the anomaly may be re-
moved [although a one-cocycle may appear in relations of
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the form (4.33)].

If the group is not semisimple (e.g., the Poincaré
group), then the Killing metric is not invertible and the
above argument does not go through. More explicitly,
for generators Q 4 in the invariant Abelian subgroup, the
first term on the right-hand side of Eq. (8.5) is absent, and
it is not possible to remove F 45 by shifting the genera-
tors. In this case, the algebra (8.5) would be anomaly-free
only if F ;5 happened to be zero.

Given these as-yet unresolved potential difficulties with
the quantization of parametrized field theory, it is
perhaps reasonable to ask to what extent their resolution
might affect the main results of this paper. It may well be
the case that the presence of anomalies rules out a con-
sistent quantization of parametrized field theory. Howev-
er, this would not necessarily mean that all is lost. In this
paper we have been concerned with a completely general
family of foliating surfaces; i.e., we imposed no restric-
tions on the embedding variables. For the purposes of
discussing global symmetries, it would in fact have been
sufficient to consider a very restricted family of foliating
surfaces, related to each other by global symmetry trans-
formations. Such a family of surfaces would be described
not by the set of embeddings X *(x), which effectively has
4 X o3 parameters, but by a finite set of parameters, cor-
responding to the parameters of the global symmetry
group. As an example, in Minkowski space, one could
obtain a Lorentz-covariant functional Schrédinger for-
malism by restricting to a family of embeddings of the
form

X*x,t)=A*t)+BXt)x' (8.10)

as suggested in Ref. 10. A theory of this type would have
no local symmetries, just a set of global symmetries de-
scribed by the generators Q , and G 4, and there is a real-
istic possibility that it may be consistently quantized. In
particular, it may be that the possibly infinite anomalous
term A, in Eq. (8.3) vanishes when smeared with Killing
vectors in the construction of the quantum generators
Q 4 and G A-

A detailed treatment of anomalies in parametrized field
theories will be the subject of future publications.>!

IX. SUMMARY AND CONCLUSIONS

Two related issues motivated the work described in
this paper.

(i) The derivation of the operator constraints of the
Dirac quantization procedure from the path-integral rep-
resentation of the wave function was considered in Ref.
13. However, a more detailed treatment of the case of
constraints arising from global symmetries was called for.
In particular, for the case of global spacetime symmetries,
the operator constraints on the wave function cannot be
derived from the path integral using the usual functional
Schrodinger formalism. A covariant method, such as the
one described in this paper, is needed.

(i) An argument for the de Sitter invariance of the
matter field quantum state in de Sitter space defined by
the no-boundary proposal was given in Ref. 14. Howev-
er, the rather heuristic nature of this argument called for
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a more formal approach. The introduction of the embed-
dings allows this heuristic argument to be formalized.

Given these motivations, we embarked, in this paper,
on a study of global spacetime symmetries in the func-
tional Schrodinger picture. We began, in Sec. II, by ob-
serving that the usual functional Schrodinger picture, in
which one works with a fixed foliation of spacetime, does
not permit a proper discussion of spacetime symmetries.
This is because the field configurations on a fixed three-
surface of a given foliation do not carry complete repre-
sentations of spacetime symmetry groups. We then ar-
gued that a fuller appreciation of spacetime symmetries
could be obtained by generalization to parametrized field
theory, in which the spacetime coordinates describing the
location of the three-surfaces are made dynamical. Sec-
tion III covered some of the technicalities needed to han-
dle the embeddings.

In Sec. IV we discussed global spacetime symmetries in
parametrized field theory. We constructed two distinct
sets of generators obeying the Lie algebra of the isometry
group of the spacetime. We defined a globally invariant
state to be one represented by a wave functional which is
annihilated by the operator version of the generators.
The utility of the embeddings in discussions of global
spacetime symmetries is concisely summarized by Eq.
(4.33). This equation shows the connection between the
purely geometrical operation of the isometry group on
the three-surface and the operation of the generator Q 4
on the matter fields ¢ only.

With special emphasis on the case of global sym-
metries, in Sec. V we reviewed and elaborated on the re-
sults of Ref. 13, in which the derivation of operator con-
straints from the path-integral representation of the wave
function was considered. The invariance of the class of
histories summed over was identified as the source of the
constraints.

In Sec. VI, we applied the results of Sec. V to the case
of parametrized field theory. We derived the local con-
straints on the wave function (i.e., the generalized
Schrodinger equation) from its path-integral representa-
tion. When the background spacetime possessed
isometries, we showed that the wave functions were an-
nihilated by the corresponding global generators provid-
ed that the class of histories summed over had vanishing
initial charge. We emphasized the necessity of using the
embeddings in the derivation of constraints correspond-
ing to global spacetime symmetries.

In Sec. VII we reviewed quantum field theory in de Sit-
ter space, and we reviewed a previously given heuristic
argument for the de Sitter invariance of the wave func-
tion for the scalar field defined by the no-boundary pro-
posal of quantum cosmology. We showed that the intro-
duction of the embeddings allowed this argument to be
made more mathematically precise. Applying the results
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of Secs. V and VI, we demonstrated explicitly that the
wave function for the scalar field, as defined by the no-
boundary path-integral proposal, is annihilated by the de
Sitter generators. The issue of anomalies is an interesting
and important one, and insufficient attention to it has
been given in this paper. A brief discussion of anomalies
was given in Sec. VIII. We also noted there that the pos-
sible difficulties with anomalies could be alleviated by
considering very restricted classes of embeddings. A
more detailed treatment of anomalies will be the topic of
a future publication.?!

Finally, we note that quantized parametrized field
theory could be very useful in a number of other con-
texts. When doing quantum field theory in curved space-
time, it is often desirable to work with different (fixed) fol-
iations of the spacetime. In de Sitter space, for example,
one may work in kK = + 1 coordinates, in which the slices
of the de Sitter hyperboloid are three-spheres, but one
can also work in k =0 coordinates, in which one takes
flat slices of the de Sitter hyperboloid. These different
slicings are in fact related by de Sitter transformations.
The formalism described in this paper may offer a means
of relating the quantum theories (in the functional
Schrodinger picture) using different slicings.

More generally, there are many situations in which
there is considerable tension between covariant quantiza-
tion methods and the functional Schrédinger approach,
which is not manifestly covariant. This tension may be
alleviated by quantized parametrized field theory. This
has many of the benefits of the functional Schrédinger ap-
proach, such as its intuitive power and resemblance to
simple quantum mechanics; but is also covariant, in that
it involves all possible foliations of spacetime, rather than
just one foliation. The possibilities this opens up will be
pursued in future publications.
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APPENDIX: NORMALIZATION OF THE NORMAL
AND CALCULATION OF THE JACOBIAN 09X /3x

In this appendix we show how to calculate the normali-
zation of the normal, (2.3), and calculate the Jacobian
factor X /9x thus proving the relation (2.12).

We begin by defining the alternating symbols in n
spacetime dimensions. They are defined by

+1 if aja, ' a, is an even permutation of 0,1, ...,(n—1),

8 =§"1%""=1—-1 if q;a, - - @, is an odd permutation of 0,1, ...,(n—1),

ala2~'~a

0 otherwise .

(A1)
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Using these symbols one can define the determinant of an
n Xn matrix 4 with elements 4 5. Itis

det 4 =711—!8a'a2”'a"8B‘32mB" Aop Aap, " Aa,p, -
(A2)

Next we define the tensor density
€aa, o, = (€8) o a, > (A3)

where g =det(g,g) and e=sgn(g). From (A3) it follows
that

a1a2'~ a

€ ’ n:e(eg)—'l/Zaalaz"'an

(A4)

In particular, for the three- and four-dimensional cases of
interest here, one has

—15, 172 ijk — 3, —1/28ijk
eijk—'h / Sijk’ eV =h &Y ,

Capye=_—8)"MBoppe €PT=—(—g) 7121

(AS)
(A6)

Using the above, it is possible to deduce the result of con-
tracting together two alternating symbols. So for exam-
ple, one of the results needed below is

apye— — 680y 0¢) »

where [ - - - ] denotes antisymmetrization.
Now we may consider the normalization of the normal.
Recall that the normal is

€W PE 4 = — BHPE (A7)

o =keop XX X7, (A8)

where k is a constant which we are to determine. From
the normalization condition n*n = —1, it follows that
k2evPe

X, X X (A9)

ByvyyoImn_ijk— __
apyoX piX vm aninXke € 1.

Using (A7), and the fact that the three-metric is given by
h;j=X{X,;, Eq. (A9) becomes

—6k?hyhp, hy, €™ =—1 . (A10)
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From (A2) and (AS), it then readily follows that k ==£.
We shall see below that the appropriate sign is to take
k=—1.

Next we calculate the Jacobian arising in transforming
from the spacetime coordinates X to the coordinates
x%=(t,x'), and thus verify Eq. (2.12). We start with the
relation

0X*“ _ oX“* aXB X" 3Xe
det axﬂ' SHVPO’_ axp axv axp axg affye » (Al 1)
from which it follows that
a
det ai( Sk =X “XPX) X8 p,c - (A12)

Inserting the expression (2.8) for X ¢, contracting with
8k and using (AS5) and (A6), one thus obtains

oX“
x #

det

=LINh'2(—g) " ’n .5, XPX] X (" .

(A13)

It is readily seen, however, that the last few terms are
proportional to the normal, n,, and using the normaliza-
tion n%n,= — 1, one obtains the desired result

oX“
x

det

=Nh'?(—g)" 172 (A14)

proving (2.12), as intended.

Finally, note that if we had taken k=<1 in the ex-
pression for n,, instead of k= —1, then we would have
obtained a minus sign on the right-hand side of Eq.
(A14). This would mean that the coordinates (#,x°)
would have the opposite orientation to the spacetime
coordinates X“ There is no obvious reason why one
should not work with such coordinates, but it seems
desirable to choose the coordinates (¢,x’) to have the
same orientation as the coordinates X%, and it is for this

reason that we take k = — 1.
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