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Spectra of relic gravitons and the early history of the Hubble parameter
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The spectra of relic gravitational waves produced as a result of cosmological expansion of the

generalized inAationary models are derived. It is shown how one can reconstruct the time depen-

dence of the very early Hubble parameter and matter energy density from a measured frequency-

dependent spectrum of relic gravitational waves.

I. INTRODUCTION

Relic gravitational waves are, quite possibly, the only
source of information on the physical conditions in the
very early Universe. The energy density and spectrum of
relic gravitational waves depend on a specific rate of ex-
pansion of the Universe in its very distant past. The ac-
tual detection of relic gravitons, or even the experimental
restriction of their possible spectral energy density, are
capable of producing fairly meaningful conclusions about
the parameters of the very early Universe (for a recent re-
view of the subject, see Ref. l). In general, the informa-
tion stored in relic gravitons allows one to judge the
overall evolution of the comological scale factor. Howev-
er, in more specific models, which include very popular
inAationary models of the Universe, this information
gives us the direct data on the variability of the Hubble
parameter. It is important to emphasize that the relic
graviton spectrum measured "today" provides us with
direct information on the Hubble parameter attributed to
the very early Universe. Roughly speaking, the frequen-
cy dependence of the relic graviton energy density spec-
trum repeats exactly the time dependence of the very ear-
ly Hubble parameter. This paper presents a more precise
formulation of this statement and its proof.

II. BASIC EQUATIONS

We consider the simplest homogeneous isotropic mod-
els with the line element

ds =c dt a(t)dl—
Below, we will use the units c =G =%=1; in these units
the Planck density p is equal to one, p =1. The time
derivative is denoted by an overdot, and a sign of the spa-
tial curvature, k =+1,0, —1 corresponds to a closed,
flat, or open space. We will also use the g-time variable
a(q)dg=dt and will denote the il-time derivative by a
prime.

The gravity-wave perturbations h,-k (il, x ) superimposed
on the background metric (l) obey the generalized wave

equation. Each polarization component h(ii, x) can be
presented as a sum (integral) over the independent mode
functions h „with the wave vector n = ( n ', n, n ):

h (il, x)=g h„, h„=—p„(g)U„(x) .
1

a

The wave number n, n =(n') +(n ) +(n'), is associat-
ed with the frequency v (measured in Hz) according to
the relation v=n/2~a. The time dependence of h„ is
determined by p„(q) satisfying the equation

p'„'+ [n —V(il) jp„=O, (2)

where V (ii ) =a "/a and, for simplicity, we have put
k =0.

Equation (2) looks like the Schrodinger equation for a
particle having the potential energy (potential) V(ii).
For n ))~a" /a~ the general solution to Eq. (2) has the
form

p„= (tx„e '"~+P„e'""),1

2n
(3)

where a„and P„are arbitrary complex numbers. In the
opposite limit, n (( a" /a ~, the general solution is

p, =A„a+8„a 'g d'g

a

It is known that a traveling gravitational wave passing
through the barrier V(i)) will always be amplified. In
the quantum treatment of the problem, one says that the
initial vacuum state of gravitons goes over into a final
multiparticle quantum state —the particle creation takes
place. The final quantum state belongs to a class of the
so-called squeezed quantum states (for more details, see
Ref. 3).

It is clear from Eq. (2) that the behavior of p„(il) is
determined by the potential V(il)=a "/a. Let us turn to
the cosmological scale factor a(t). The function a(t)
satisfies the Einstein equations
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a 4m

3
(p+3p ),

8mH = p—
3 a

where the Hubble parameter H(t): a/—a. In the case of
the equation of state p = —p, the solution to Eqs. (5) and
(6) is the de Sitter metric. For k =0 it can be written in
the form

Obviously, for the strictly de Sitter solution (7) one has
y(t)=0. If a(t) is described by a power-law function
a (t) t-, then y = I /P =const and, in particular, y =2
for a-t' . For the arbitrary equation of state p =qp,
where q =const (and assuming k =0), one obtains a sim-
ple relation y= —,'(q +1)=const, that is, y varies from 0
to 3 when q varies from —1 to + 1. In general, since

d=(Ha) =H(1 —y)Ha,

ds =dt ae —'(dx +dy +dz ) (7)

where H =const. It is known that the hypothesis accord-
ing to which a sufficiently long period in the evolution of
the early Universe has been described by Eq. (7) lies at
the foundation of inflationary cosmological models which
possess a number of attractive features. Analogous ad-
vantages belong to the solutions which do not coincide
with the de Sitter solution but for which the condition
a )0 was satisfied for a sufficiently long interval of time
(see, for example, Ref. 5). The condition a )0 can be
called the condition of inflation. It is easy to see how this
condition ensures the closeness of the present-day param-
eter 0 to unity. Indeed, Eq. (6) can be presented in the
form

0=1+ k

(Ha)

y(t) =——
z

H

where A=p/p„p, =(8m. /3)H —the critical density. If
a )0 at some stage of expansion, then the factor a =—Ha
keeps growing. A sufficiently large growth of the factor
Ha at this stage of evolution makes 0 so close to 0= 1

that 0 remains in the necessary limits around 1 even long
after the end of inAation and, in particular, during the
present epoch. This solves the "fatness problem. " In a
similar way the "horizon problem" is solved. Indeed, the
ratio I/Rtt of the linear size of some region, l-a, to the
Hubble distance Rtt, Rtt -H ', scales as 1/Rtt -aH =a,
that is, l /Rtt increases at the a' )0 stage. At the
postinAationary stage the ratio l/R~ decreases. Howev-

er, if the stage a )0 was sufficiently long, the entire Hub-
ble volume of the present-day Universe could have
developed from a single causally connected region.

To analyze the inflationary solutions it is convenient to
use the function

the condition y(1 is equivalent to the condition of
inflation. We do not restrict a(t) by any other condi-
tions. (A family of exact solutions for Friedmann
universes containing a scalar field with particular self-
interaction potentials is found in Ref. 6.)

III. THE GRAVITON SPECTRA

The potential V(i)) can be rewritten as

a"
V(i)) = =(2—y)(Ha)

(9)

A wave with a given n enters the barrier region and
leaves it in the "turning points" defined by Eq. (9). We
will denote these points by i); and i)f. The indices i and f
will also be used to distinguish the values of the various
functions at the turning points. We will match continu-
ously at il, and

iaaf the values of p„(i)) and p'„(i7) deter-
mined by the solutions (3) and (4).

To the left of the barrier, that is, for g (g;, the solu-
tion is taken in the form p„=(2n) ' e'"". To the right
of the barrier, that is, for g)gf, the solution has the
form (3) where the numerical values of the coefficients
a„,P„ follow from the joining conditions. The actual
values of a„,P„are

If the function y(t) changes slowly and the factor (2 —y )

is not very small, the potential V(i)) is approximately
determined by the function (Ha) For a .wide class of
problems the function

~ V(r))~ has a bell-like shape and
goes to zero for i)~+ ~. The solution (3) is valid outside
the potential barrier

~
V(i))

~
while the solution (4) applies

to the region where the function
~ V(ri)~ dominates over

n The va. lues of il where the regimes (3) and (4) inter-
change are determined by the condition

f
—in(q, . +g ) afP„= . e ' f (Ha +in)—

2in a;
a,

(H, a,. +in) a, af (H, a, +in)(Hf —af +in )J
af

a,- afa„= e ' (H, a;+in) — (Hfaf in)+a, af(H;—a;+in)(Hfaf in)J-
2ln a ' '

a;
(10)
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where J = I„ra d r/.

In fact, we have calculated the coe%cients of the Bogo-
liubov transformation which relates the in and out quan-
tum states of gravitons. Let us recall that in the quantum
theory the quantity ~/3„~ defines the spectral energy den-
sity of gravitons created from the in vacuum state. The
contemporary energy density of gravitons integrated over
some frequency interval is given by the formula

GEe(v)=v = =4'~/3,
~

v" .
dv d lnv

(12)

We would hke to stress that Eq. (2) can be solved exactly
in the case of the power-law scale factors a (t) (see, for ex-
ample, Refs. 2 and 7), but we are developing here a gen-
eral, though approximate, method of calculation applic-
able to arbitrary functions a ( t).

Expressions (10) and (11) can be simplified if one trans-
forms the integral J:

"f dg 1 p
"If da 1 1

a2 3 ~ H 3 Hfaf3

1 j"f dH
li Q

1

H, a,

E= 6~8V= E V
v

where e(v)=e v. The spectral component e(v) is given
by

Further on,

j f dH j f de ( ) j~f d'g
( )

Il

J= 1 1

3 —
&y & Ha, '

1

Hf af3
(13)

We are mainly interested here in the inflationary expan-
sions and hence the value of (y ) is of the order of 1.
Therefore, the factor 3 —( y ) in the formula (13) is also a
number of the order of 1. Even in the most "dangerous"
case @=3 expression (13) reduces to the uncertainty of
the type —' which can be resolved by the direct computa-
tion of J to a finite number. The case y =3 corresponds
to the scale factor a(t) governed by the matter with the
most "stiff" equation of state p =p. Graviton production
in this case has been discussed elsewhere and we leave
this case aside.

By using Eq. (13) one can rewrite Eqs. (10) and (11):

where the number ( y ) is defined as

7l 9j(y)= j 'ya 'dg j '
g 'd—~.

A reason for the notation (y) is that this number
presents the mean value of y calculated with the weight-
ing factor a at the interval of time from g, to qf.
Thus, one obtains

a,—in(g, . —7Ie„= e ' ~. Ha,
2in Qf

Qf—Hf af
a;

1 1+ in

3 —&y& Ha,
in1—

Hf af
+in

Qf

Q; Qf+
ai

(14)

]. —in(g, . +q ) Qf/3„= e ' ~ . H a Ha, —
2in a,.

' 'Qf
in

3 —(y) Ha,
1+-

Hf af
Qf+in
Qi Qf

Qi Qf—Hf af C)
Q;

1 —sn(g, . —g )
e ' ~ Ha;

2in Qf

+ in
i af+

QiQf
(16)

From Eq. (9) it follows that the quantities (H, a, ),
(H&a& ) are numbers of the order of n, if y(rI ) is not too
close to @=2 in the vicinity of the turning points g; and

In the opposite case, that is, if one of the conditions
~y;

—2 ((1, ~y&
—

2~ ((1, or both of them, are satisfied,
one of the quantities (H, a; ), (H&a&), or both of them,
will be numbers much larger than n . In any case, the
expressions in square brackets in Eqs. (14) and (15) are
the complex numbers with the absolute values of the or-
der of unity. We denote these numbers by C, , C2 and
rewrite Eqs. (14) and (15) once more:

1 in(g, +q~)—
e

2in
af a,

Hfaf —H a; ', C2
Q; Qf

Qf+in
a,

Qi

af

The remarkable property of Eqs. (16) and (17) is that they
contain only the initial (i) and the final (f) values of a
and H. All the intermediate history of a(t) between g;
and gf is covered by the numerical factors C, and C2
with the absolute values of the order of unity
/c f'=[c /'=1.

Equations (16) and (17) can be further simplified for
particular numerical values of Hiai, Hfaf, and af/Q, .
For instance, in the case of (H, a, ) ))n and
(H&a&) ))n one obtains



SPECTRA OF RELIC GRAVITONS AND THE EARLY HISTORY. . . 2569

( g gg
) a; afa„= e ' H a; —Hfaf C),2in ' 'af a,.

in—(g,. +gf )
e

2 l tl

Qf
fQf Hiai

Q;

Qi
C2 .

a

On the other hand, if (H, a, ) =n, (Hfaf ) =n, and
af /a, »1 one derives

been transformed into the electromagnetic radiation. In
the course of cosmological expansion the energy density
of the radiation was decreasing in proportion to (af /a ) .
The present-day energy density e of the radiation (3-Kr

2microwave background) is related to Hf according to
48'

( )
8~

~ ) a

Qf

e, = e
2l n

—in(q. —q ) Qff (in —
C)Hfaf )

Q ~

Using the expressions for H,. and Hf, neglecting the nu-
merical factors of order unity, and restoring p for the
correct dimensionality, we obtain finally

(q,-+q~) QfP„= . e ' (in +CzHfaf )
2l n a,.

which leads to the especially simple expressions for the
absolute values of a„,P„. In the order of magnitude,

2 2
af H,

a; Hf

We will consider in more detail the case where the
inflationary stage (0 & y & 1) ends with a rapid transition
to the radiation-dominated stage (@=2). The relevant
barrier in Eq. (2) is described by the function V(i)) which
first increases with g and then decreases sharply up to
zero. Let us consider the waves interacting with this bar-
rier. Their wave numbers obey the conditions
(H; a, ) =n, (Hf af ) ))n, and we assume also
af /a; » 1. For acceptable inAationary models these
waves have a present-day frequencies in the interval 10
Hz&v& 10 ' Hz. ' From Eqs. (16) and (17) we obtain

—in(r],. —7I~) Qfe ' H a
2in f fa,

—in( g,. + qf ) tif
2(n

' f'f
a,

and (assuming C, l =ICz =1)
2

1
(HfQf ) 4H, Hfaf

af
4n a; 4n

(18)

By using I/3„I, in Eq. (12) we derive

e(v)= H; Hfaf .
7T 1

(2~) a
(19)

For the barriers under consideration the values of af Hf
are the same for all n The ent. ire dependence on n (and,
hence, on frequency v) is contained in the factor H; . In
its turn, H; (n ) is proportional to the matter energy den-
sity at the inflationary stage, namely, at those instants of
time tn when the waves with the corresponding wave
numbers n were entering the under-barrier region
H; (n)=( ~8)/3(tp„). It will now be shown that the other
factors in Eq. (19) can be expressed in terms of quantities
accessible for contemporary observations. The value of
Hf is proportional to the matter energy density at the
end of inAation. Some part 5 of this energy (5=1) has

(20)

This very simple expression allows us to link the energy
density e(v) of relic gravitational waves measurable today
with the time-dependent values of the matter density p
and the Hubble parameter H attributed to the very early
Universe. On can say, a little loosely, that the function
E(v) stores the information on the rate of expansion of
the Universe in that distant past when the relic waves
with frequencies v first started to emerge from zero-point
quantum Auctuations.

If the expansion law a (t) were precisely known, Eq.
(19) would give us a definite spectral dependence of e(v).
For example, for the power-law scale factors a (t) —t~,
one has y=p '=const, H(t)=pt '. From the condi-
tion H, (t„)a;(t„)=n we derive n —t„" ', that is,

can obtain e(v) —v " ' —v r ~ ', that is, the power-
law frequency dependence for e(v). In the case of strictly
de Sitter expansion (y=0, H; =const) one would obtain
the "fiat" Harrison-Zel'dovich spectrum e(v) =const,
e. -v '. (We note in passing that a spectrum of the
"Aat" shape is generated not only by the de Sitter evolu-
tion governed by matter with the equation of state
p = —p, but also by the "dustlike" evolution governed by
matter with the equation of state p =0, as follows from
the general theory of graviton creation. ' ) However, the
law of expansion of the very early Universe is not known
in advance. Of larger practical interest is the problem of
reconstructing the p(t) and H (t) from the measured spec-
trum e( v ) [we assume, of course, that the e( v ) will be
eventually known from the actual observations].

Equation (20) gives p and H as functions of frequency

p(v)= e(v), H (v)= p(v),PP 2 8m

3

and, therefore, gives p and H as nonmanifest functions of
time, since every v corresponds to some t„. The waves
with larger frequencies v describe the latter epochs of the
evolution as the high-frequency modes interact with the
inflationary barrier V(q) at the comparatively latter in-
stants of time (for the barriers of different shape it could
be the other way around). One can also derive the mani-
fest dependence of p and H on time t. To do this one
should use the condition H, (t„)a;(t„)=n and derive the
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d== [1—y(v)]H(v) d
dt d lnv

(21)

The function H(v) entering this equation is known. The
function y(v) is also in effect known since it can be de-
rived from H (v) and @{v) with the help of Eq. (8):

that is,

dv dt

1H i{ ) i( )
de(v) dv

2 dv dt

= ——(1—y(v))
1 d inc(v)
2 d lnv

[d Inc(v)/d lnv]v
2 —[d inc(v)/d lnv]

(22)

In other words, the relationship between dt and d lnv is
known from observations. Thus, it follows from the
equation

dH(t)
[ ]

dH(v)
(23)

that the graph of the function H(t) repeats the graph of
the function H(v) if one relates the scales t and lnv with
the help of a changing (but known) factor (1—y) 'H
Another useful form of Eq. (23) is

dH(t) 1 8'tr/'p de(v)
dt 2 3e d lnv

1 —y v

We can conclude by saying that every variation of the
function e(v) finds its explanation in the very definite
variations of the function H(t) describing the very early
Universe.

If the observed spectrum e(v) happens to have a
power-law dependence:

relationship between v and t. Let us show, for example,
how to obtain a graph of the function H (t) assuming that
the graph of the function H(v) is known from observa-
tions. First we differentiate the equation Ha =n and get

dn d (Ha)
dt dt

=(1—y)H a =(1—y)Hn,

1 dn 1dv =(1—y )H,
n dt v dt

which yields to the equation

and a (t) —(t —to)~. For e(v) having a power-law depen-
dence e(v)=Kv~, the graph of the function inc in terms
of the variable lnv presents a straight line whose inclina-
tion depends on f3 F. rom this standpoint, the zero in-
clination of the "flat" spectrum e(v)=const(/3=0) pro-
duced in the de Sitter inAationary model is just a manifes-
tation of the fact that the Hubble parameter H(t) does
not depend on time in this case, H(t)=const. For other
inflationary models, 0 (y ( 1, one has P (0 and the spec-
tral density e{v)=Kv~ decreases toward the higher fre-
quencies (see also Ref. 10).

IV. A PARTICULAR INFLATIONARY MODEL

In all inAationary models considered above, i.e., for
0(y(1, the parameter H(t) is a decreasing function of
time. Hence, one can expect in advance that the spectral
density e(v) will decrease for higher frequencies. If the
position of the low-frequency end of the spectrum is re-
stricted by the experimental data on the 3-K microwave
background anisotropy, "' the predicted e(v) at the
high-frequency end of the spectrum will be somewhat
lower than in the case of a strictly de Sitter inflation.

We will consider in some detail a particular
inflationary model governed by a scalar field P(t) with the
mass m. The Lagrangian of the field has the form

L= —
—,'(P P' +m P).

It is shown in Ref. 12 that almost all the phase trajec-
tories of the model inevitably get to the regime of the
inflationary expansion. (This result was extended' to
other models, some of which were used for an analysis of
the relic gravity-wave production. '

) In this regime, the
scale factor a (t) behaves as

a(t)=a(t, )exp —
~ [P (t) —P, ]

m~

where t, denotes the time of the ending of the inflationary
expansion, P, is the value of the scalar field at t =t„
P, =mz, and mp is the Planck mass. The scalar field P(t)
changes as

mm&
p(t) =p,+, , (t, t), —

(12~)'

where it is assumed that the time variable t grows from
the large negative values toward t =t, . Since

e(v) =Kv~, H (v) =
1/2

+/2 4 2

3mp

8~ Pp

3 6y

K =const, the task of restoring the H(t) is further
simplified. Indeed, from Eq. (22) one finds y=/3//3 —2
and from Eq. (21) one finds the relationship

1/2

+/2
/3 t —

to

one can write

2 2
H'(t)=H' 1+ (t —t)c 3~ c

C

(24)

where to =const. Hence one obtains

/3 —2 1 1 1H(t)=
/3 t —to y t —

to

where H, ={4~m /3m~)P, . It is also easy to find the
y(t) at t =t, : y(t, )=mp/4vrg, = I/4~, which we will
use later on.

From the condition H (t„)a (t„)=a (t„)= n we find
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H—,(t, t,—) =ln =ln
n, vc

(25)

where n, is the wave number characteristic for the end of
inflation, n, =a ( t, )H„and v, is the corresponding
present-day frequency (v, = 10 Hz for reasonable
inflationary parameters). By substituting Eq. (25) into
Eq. (24) one can find

(26)

fact that the t scale corresponds to the lnv scale. Let us
see this in more detail. One can expand the function
H (t) into a power series near t = t, :

dHH'(t) =H,'+
dt

Then, one can use Eqs. (8) and (21) to obtain the estimate

As far as the ~P„~ is determined by Eq. (18)

if3„i = H (t„)HIaI,4n4

or, even a simpler expression,

H'(t) = 1 —2y(t, )ln
v

H' (28)

where Hf af =const, the problem of deriving the predict-
ed spectrum e(v) being solved by Eq. (26). In other
words, the "fiat" spectrum e(v)=const acquires a loga-
rithmic correction:

e( v) — 1 — ln
2m v

3H
(27)

At the high-frequency end of the spectrum, that is, for
v=v„ the predicted e(v) is about 5 —10 times smaller
than the value of e(v) at the low-frequency end of the
spectrum, that is, for v= 10 v, .

The appearance of a logarithmic, frequency-dependent
correction in Eq. (27) looks very natural in view of the

valid if y(t, ) « l. After substituting y(t, )=mp!4nP,
into Eq. (28) we return to Eq. (26) derived in the concrete
model under consideration.

To summarize, we have shown what kind of con-
clusions about the very early Universe can be drawn from
the measured spectrum of relic gravitational waves. We
hope that the actual detection of relic gravity-wave back-
ground will be achieved in the not too remote future.
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