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N.J. Cornish and N.E. Frankel
School of Physics, University of Melbourne,

Parkville, Victoria 80M, Australia
(Received 17 August 1990; revised manuscript received 30 October 1990)

We investigate gravitational field theories in 2+1-spacetime dimensions. The consequences
of the lack of a Newtonian limit to general relativity are reviewed . Further insight into the
implications of this fact is gained by considering a new, general class of exact hydrostatic
solutions. We show that all self-gravitating polytropic structures have the same gravitational
mass and produce matter-filled spaces of finite spatial volume. Other theories of gravitation
are also considered and the behavior of one such theory with a Newtonian limit is studied.
Cosmological solutions of these gravitational theories are also studied in detail.

I. INTRODUCTION

Recently there has been much attention given to study-
ing gravitational theories in dimensions other than four.
The reasons for this are many and varied; however, the
principal motivation comes from string theory, grand uni-
fied theory, and quantum gravity. This paper shares none
of those motivations; rather, this work was motivated
by a study of degenerate fermion structures in d dimen-
sions. The particular problems that arose for dimensions
d+ 1 & 3 raised some interesting questions and produced
some unusual results. The unique status of Einstein's
field equations in two space and one time dimensions pro-
vides the principal reason to focus on 2+1 dimensions.

Because the Einstein and Riemann tensors are equiva-
lent in 2+1 dimensions, spacetime is Hat outside sources;
there is no free gravitational field and no Newtonian
limit. Deser, Jackiw, and 't Hooft have studied the
implI. cations of this fact and have shown that for point
sources gravity manifests itself as a global topology
rather than local curvature with conserved quantities
such as energy related to topological invariants. Deser e4

al. extended the static one- and two-body point-source
solutions of St,aruszkiewicz to include N-body, static,
point-source solutions, point particles with angular mo-
mentum and two-body solutions with orbital angular mo-
mentum. While these solutions provide insight into as-
pects of the theory that are especially important with a
view toward quantization, they do not shed much light
on the behavior of Einstein s field equations in the pres-
ence of extended sources. A collection of several exact
solutions with an extended matter source was provided
by Barrow, Hurd, and Lancaster. Because they only
studied a few particular cases they did not attempt to
draw any general conclusions about the nature of (2+1)-
dimensional extended objects that obey Einstein's field
equations. We shall present a general class of hydrostatic
solutions all of which have the fascinating property that
they produce spaces of finite spatial extent. There are an

incredible diversity of matter distributions and composi-
tions encompassed by this class of solutions. They range
from constant to exponentially decaying density profiles,
from the infinitely tenuous to the infinitely dense, from
stiA' to soft equations of state. All of this prompts us
to conjecture that all hydrostatic structures in (2+1)-
dimensional Einstein gravity produce matter-filled spaces
with no matching to dn external vacuum solution and
thus represent static cosmologies. We also demonstrate
in three particular cases that these solutions are stable.

In the light of all the unusual results cataloged above,
and their dependence on the lack of a Newtonian limit to
Einstein's equations, a variety of other field equations are
considered to discover whether the lack of a Newtonian
limit is peculiar to Einstein's equations. It was found that
higher-derivative, higher-order, tensor equations also lack
a Newtonian limit. The behavior of a scalar field equation
which does have a Newtonian limit was studied and was
found to yield some interesting cosmological and point
source solutions.

II. EINSTEIN GRAVITY IN D+1 DIMENSIONS

In any dimension Einstein s equations are

(2.1)

where the constants have been chosen to agree with the
corresponding Newtonian theory in the weak-field limit
(c=l throughout),

(2.2)

where Sg = 2a"i2/I' (2) is the solid angle, G~ = Gsld
and / is some fundamental length.

The singular nature of the coupling constant v in
d = 1, 2 spatial dimensions demands individual consider-
ation. When d = 1, G&„——0 is an identity and Einstein
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Rpv —qgpvR = 2mGsTpv (2 3)

gravity is devoid of content, this is reflected in Eq. (2.1)
where z —+ 0 when d —+ 1. The situation when d = 2 is

not nearly as straightforward and provides the main rea-
son for focusing on gravity in 2+1 dimensions. Forcing
Einstein's equations to yield a Newtonian limit results in

the coupling constant diverging when d 2. This is an
unacceptable situation as all post-Newtonian terms are
infinite and the theory as a whole is unworkable. A more
satisfactory solution is to "renormalize" the gravitational
constant in two spatial dimensions via Gg/(d —2) ~ Gd
so that Einstein s equations in 2+1 dimensions read

give

~
—

2'
I

= 2+G2p,

~
—2gv I

= 2~G2p

~ e "= 1 —2G2M(r),

M(r) = 2vrp(z)z dz,

(3.3)

(3.4)

(3.5)

(3.6)

which in the weak field, slow motion limit yields

7' C R]g ——0; (2.4)

27r Gg ps
1 —2G2M(r) ' (3 7)

thus we have sacrificed the Newtonian limit so that the
theory as a whole remains sensibly finite. Further insight
can be gained by considering the Riemann tensor, which
can be written as

where the constant in Eq. (3.5) has been chosen so
that the origin is part of the spacetime. When com-
bined with the radial component of T"'

&
——0, T"" .

&
——

p'+ (p+ p)v' = 0, these equations describe hydrostatic
equilibrium

d —2 [(gi.T~ —g~ Tp. —9,.Ti. + g, &~.)]

GgSg (2T+
d 2

l d (9/Jvgwr gavgyr) l + CAPvr.

—2+G2 p(p + p) r
1 —2GgM(i. )

(3.8)

(d) 2),
Comparing this equation with its (3+1)-dimensional
counter par t,

(2.5)

= 2«2[(g~.&p —g~ T,.—9„.». + 9„.T&.)]
+27rGs [T(g„,gp„—g„,g„„)]+

(d = 2)

In general when T&„——0, Rp„„„——Cg& „,so the cur-
vature tensor depends solely on the Weyl tensor. This
fact leads to the Weyl tensor being called the free gravi-
tational field. The Weyl tensor has &z(d+ 1)(d+ 2)(d+
3)(d —2) linearly independent components which tells us
that the free gravitational field vanishes in 2+1 dimen-
sions and that Rp„„—0 outside of any source. In the
the following section we shall see that the vanishing of
curvature in empty space only allows global topological
effects to influence geodesic motion.

III. STATIG SOLUTIONS TO EINSTEIN'S
EQUATIONS IN 2+1 DIMENSIONS

47r Gsp(p + p) r Gs M (r ) (p + p)
& —&G3~(~)/r r~[1 —2G3M(r)/rj) '

we see that the maj or difference is the lack of a
Newtonian-like mass-mass M(r)p piece in 2+1 dimen-
sions.

In fact Eq. (3.8) demonstrates the essentially local
nature of the theory because terms such as p(p+ p) de-

pend on the pressure and density at a point, coordinate
distance r from the center; in contrast a term such as
M(r)(p+ p) depends on the total mass beneath coordi-
nate radius r. The only "history" or nonlocal effect that
remains in 2+1 dimensions is due to the denominator
[1 —2G2M(r)]. The results of the section on hydrostatic
polytrope equilibrium show that this remaining nonlocal
effect is directly responsible for the hydrostatic structures
forming spaces of finite spatial volume.

A. Static equations B. Static sources

The most general circularly symmetric, static metric
has a line element

1. Static point source

d~2 ~2v{r)dg2 2"I{@)d 2 2d02 (3.1)
For a point source p = Mb(r), p = 0, which yields

(G = Gq hereafter)

Einstein's field equations in the presence of a perfect
flui)

e "=1—20M, (3.10)

R„,—2g„„R= 2vrGg[(p+ p)u„u, —pg„„], (3 2) v'=0 (3.11)
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and we are free to choose v = 0 as our
producing th l'e ine element

se v = as our scaling of time ) n = 2+[1 —(1 —2GM)'/2]

= 2+GM+ O((GM) ) (3.16)
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) 1/2
0& z& oo, (3.13)

2. Extended static sources

y = (1 —2GM)"'0

0 & P & 2n(1 —2GM)'/ (3 14)

s2 = dt2 —dz2-z —z y . (3.15)
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d(2 d(2 d 2+ d 2+ 2d02 M 2
(c) p =,H(r —R), M =

~ z(r) = dz. (3.17)
2GM (z)

1 —2GM z

The embedding diagrams for (where H is the Heaviside
function)

1
(a) p = Mb(r), M =

40 )

(b) p = Mb(r), M = 2

(d) p= H(r —R), M =M 1

are displayed in Figs. 1—4. The embedding function for
cases (a), (b) is

2GM'"' - '(I -2GM

the embedding function for case (c) is

(2GM)'i [1 —gl —2 GM(r /R)~], 0 & r & R,

z(r) = ~ 2GM / ( (1 2GM)
1 —26M q(2GM)'~'(I —2GM)'~' y

while the embedding function for case (d) is

2

z(r) = &

Ri1 — 1 —(r/R) i, 0&r&R
R~oo, r=R.

(3.20)

lowed in turn by an investigation of the natural follow-up
question: are these structures stable?

C. Hydrostatic equilibrium with relativistic
polytropes

p g~~ dz

= —[1 —(1 —2GM)'i ] (3.21)

Note, the constant density configuration has a proper
I11ass

To solve the equations of hydrostatic equilibrium we

require an equation of state p(p). In keeping with astro-
physical tradition we chose to study polytrope equations
of state. Such a model has the advantage of exploring a
wide range of constitutions, some of which can be shown
to approximate particular physical systems. The equa-
tion of state is defined as

showing that the largest allowed proper mass for this
configuration is &. The gravitational energy is which can be parametrized as

(3.23)

(3.24)

1= —[GM —1+ (1 —2GM) '~']
G,

[(GM) + O((GM) )] (3.22)

p= A0",

where 0(0) = 1, 0(R) = 0 so

y = central pressure,

(3.25)

The obvious question raised by these results is whether
there exists an inequality analogous to Buchdahl's in
3+1 dimensions which guarantees that objects in hy-
drostatic equilibrium preserve metric signature. In 2+1
dimensions such an inequality would have to guarantee
M(r) & z&. This inequality exists and will be discussed
in the following section. Also to be discussed is the more
surprising result that M =

2G for all polytropes and the
implications this would appear to have for any physically
reasonable structure. For this reason Fig. 4 deserves spe-
cial attention since all the exact solutions we found have
geometries topologically identical to this solution. This
result forms the basis for the next section which is fol-

A = central energy density.

n=O
n=1
n=2

constant energy density,
nonrelativistic degenerate fermions,
nonrelativistic mat ter
(p dominated by rest, mass)
and radiation providing most of the pressure,
pure radiation p = 2p, A = 2p,
stiK equation of state p = p, A = y,
speed of sound equal to speed of light, .

Some examples of physical systems here in 2+1 dimen-
sions which obey such equations are
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2vrrAO" dr, (3.26)

For polytropes the equations describing hydrostatic equi-
librium (3.6) and (3.8) become

00'
(g, )g „(,)g 2(n+ l)pg —A 00

(3.27)

Mter some rearrangement Eq. (3.27) becomes

(ln 0') = (3n+ 4) [ln (A + pg)] —(n+ 1)(in[0(A + pg)])'+ (ln r)' (3.28)

27rG—r(A + pg)~"+s
0/

(n + 1)(A + +)2n+20n+1 (3.29)

(n ~ 1)(A+ p)~"+~ ' u"+'dup'=
2n+3srG g (A+ yu)
"+

(n + 1)(A + p)~"+~ "+' ( n + I ( (—1)" p -(~+~+~) y -(~+~+~)
x 1+ —0 1+—

An+1+n+2&G ~
g I; ) (k + n +, 1)

(3.30)

A(n+ 1)(A+ p)'"+'
G

02n+1
do

(A + ~0)2ra+s

(n + l)(A + y)'"+' '~("+')

G

(3.31)

Equation (3.30) represents a complete analytic solution
for the structure of all polytropes regardless of index,
a situation unparalleled in 3+1 dimensions where exact
solutions are only known for a few particular polytropes
even when considered in the Newtonian approximation.

The most interesting result is obtained by substituting
Eq. (3.29) into Eq. (3.26) to obtain

Thus all structures that obey a polytrope equation of
state produce spaces of finite spatial volume with no ex-
ternal geometry; i.e. , the "star" is the universe. Because
polytrope equations of state encompass such a diverse

range of physically reasonable equations of state, it is not
unreasonable to conjecture that all perfect-fiuid struc-
tures in (2+1)-dimensional Einstein gravity have a grav-
itational mass of && and thus represent compact spaces.
We can at least be sure that, M & 2G for all structures
by employing the same arguments as Buchdahl for the
n = 0, constant density polytrope; i.e. , such structures
have the largest allowed density gradient and an equation
of state that, bounds all physical systems in stiKness.

To complete the formal results for all polytropes we

display exact expressions for the radius R, proper mass
Mo and gravitational energy 0 .

(3.32)

(3.34)

For cases where the polytropic index n is finite, these
expressions are very useful. In particular, we find that
the radius R is finite for all finite values of n and the
parameter +& . In the limit n —+ oo, asymptotic expan-
sion of the integral in (3.30) for R [where 0(R) = 0] is

required. We find, most interestingly, that R is infinite
for +& & 1 and finite for +& & 1 as can also be seen from
the explicit examples, A and 8, respectively, that are de-

veloped in Sec. IIID. Since solutions with && ) 1 have

luminal or superluminal sound velocities they are phys-
ically irrelevant while the physically sensible cases with
+& & 1 produce geometries with finite spatial volume.

D. Stability of hydrostatic structures

The stability of these polytropic Quid spheres against
infinitesimal, baryon-number-conserving, adiabatic, ra-
dial oscillations was studied using a method analogous to
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that developed by Chandrasekhar in (3+1)-dimensional
general relativity. Because an identical method was used
only the resulting criteria for stability will be displayed
here. The oscillation frequency ~ is given as an extremal
value with respect to the allowed trial functions ( . Phys-
ically ((r) represents the Lagrangian displacement of a
fluid element originally situated at a radius r in the equi-
librium configuration:

(&+a+ rc= extremum with respect to ( of
~

(3.35)

where

4vrGp(p+ p)j e "+'r dr,

2vrGpp'( e ~+"r dr,

R

( -vq) I ~ P ti+svd
p

(p+ p)j e " 'r dr,

The stability condition can be expressed in terms of a
critical ratio of specific heats

—(A -I- B)r, = (3.40)

The structure is stable if I' ) I, .We also know that all
physical ratios of specific heats exceed 2 so there is no
possibility for instability if I', ( 2 .

While it is not practical to test for stability by trying
every one of the infinitely many types of allowed trial
functions, a strong indication that the structure is stable
can be gained by using some physical insight. First we
need only consider the lowest radial mode of oscillation
because if this mode is unstable then all other modes
will be unstable; conversely, if this mode is stable we
have shown that the structure is at least marginally sta-
ble. We can achieve this choice in practice by only con-
sidering trial functions without any "wiggles. " Second,
because this is a variational treatment a first-order differ-
ence between the true and trial Lagrangian displacements
results in only a second-order difference in the frequency.
The combination of these two factors has allowed this
method to accurately distinguish between stable and un-
stable structures in 3+1 dimensions so we can apply it
to 2+1 dimensions with some confidence.

I' = ratio of specific heats

Example A

Structures with a stiff equation of state, p = p, have
I = 2 and density profiles given by [solution of (3.8)]

1 ( ON
N —p+p

—2 GP= P =7&

2g 2v 2«p~

(N = number density).

I' is taken to be a constant throughout the structure,
physically in '2+1 dimensions I' ) — (in contrast with
I' ) s in 3+1 dimensions). The Lagrangian displacement
C must satisfy the boundary conditions

We choose a class of trial functions that satisfy the
b oundary conditions and are relatively "wiggle" -free
(product of monotonic functions that have monotonic
derivative) so as to provide the best approximation to
the fundamental mode of oscillation:

~ finite limit as r ~ 0,
r

(3.36) ( oc rae —2bq rae —2bv

~V
Ap= —I'p ——(re "() ~0 asr ~R .

r Or
(3.37)

Also, to maintain adiabaticity (no shock fronts), we re-

quire
~
O(/Or ~( 1. Because the frequency is unaffected

by a constant rescaling of ( this condition becomes

should be finite for 0 & r & R (3.38)

The absolute minimum of (3.37) is the squared fre-
quency of the fundamental of mode pulsation. If it is
negative the "star" is unstable, if it is positive the "star"
is stable. Since D is positive definite the structures are
stable if

The boundary conditions impose the restrictions a )
6 ) 1 . The necessary integrals are straightforward

and give

2a(a+ 1 —4b)

(a + 1)[(8a + 4)b2 —4ab —3a]

This expression is bounded above by 2; i.e. , I', ( 2 as
(a —+ oo, b —+ 1) . Because I' ) I', these structures are
stable against perturbations of the type considered here.

Example B
For pure radiation or ultrarelativistic particles p

z p, I'=2 and the structures are given by [solution of
A+ B+ rC ) 0 V allowed ( (3 39) (3 8)]
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p 2'
P=Y 1—

p 2'
c = 1—

For trial functions of the form

j oc r'e " = r'e

the boundary conditions impose the restrictions a
1, b ) —2 while the condition

l 0(/Br l( 1 imposes
the stricter condition 6 ) 1 . We find

12[(a + 1) —b]

2b~ + (a —3)b+ 9a+ 11

Since I', ( 5, I' ) I', and these structures are also stable.

IV. COSMOLOGICAL SOLUTIONS IN (2+1)-
DIMENSIONAL EINSTEIN GRAVITY

Because all the hydrostatic solutions proved to be cos-
mologies, it is interesting to consider how the more usual
homogeneous, evolving cosmologies behave. It is also in-
teresting to consider what might happen if any "galax-
ies" began to form. Assuming our conjecture, that all
hydrostatic objects produce compact spaces, is correct
then any condensations that form will pinch themselves
oA' from the rest of the Universe. This situation is simi-
lar to the formation of primeval black holes in a (3+1)-
dimensional Friedmann universe; the consequences would
now, however, be even more drastic.

We first consider the equations governing homogeneous
expansion before investigating how irregularities might
grow. In terms of the (2+1)-dimensional Robertson-
Walker line element,

de~ = nt~ —a~p')
~

+ r de ), k = (—1, 0, +1)
ql —kr'

Example C
For structures with p =const, I' & 2 and the structures

are described by [solution to (3.8)]

~+ & —~[1 —(—")']"

Einstein's field equations become
r'a~ '

k+ —= 27rGp,
(aP a
a—= —2mGp,

(4 1)

(4.2)

(4 3)

For the choice of trial function

CX- &a &
b "I

&
cv

)

—(p )+p—( ) =o2 d 2

dt dt
For a dust-filled universe, p = 0 and

pa =const=gapa„2 2

= 2GM —k,

where M = xppa~o and Eq. (4.6) requires

kM&
2

then

(4 4)

(4 5)
(4.6)

the boundary conditions impose the restrictions a
1, b ) 1, and c is arbitrary. The condition l0(/Or l( 1
imposes the stricter restriction 6 ) 2 . We find

a(a —2b+ 3)I', (a, b, c) =
( ) ( b )+ ~

&(a ')

asa~oo.
[Note, I', is independent of c to first order in (p/A) as

one would expect from the form of the metric function
e .] Since I, ( &, I' ) I', and these structures are also
stable.

a(t) = a, +/2GM —k(t —&o) .

We note that for the compact case, k = +1, with I =
a(t) = ap and the solution is identical to that of

the n = 0 polytrope in the limit p ~ 0. For a radiation-
dominated universe, p = 2p and

pa = const:—ppap,
3 3

2GMpapa=+
a

MGapa=-
a

with expanding solutions

2Q'~'

342GMoao
if k=0,

1/2 1/2 1/2
2GMp ap ar csin if I- =+1, (4 7)

2GMp ap 20M 1 + 2GM
1/2a—arcsinh if k= —1.



2562 N. J. CORNISH AND N. E. FRANKEL

For early times a oc t ~ in comparison with a oc t ~ in
3+1 dimensions. We see that this simple, noninflation-
ary solution in 2+1 dimensions suffers the same horizon
problem of its (3+1)-dimensional antecedent.

In an allied study, we considered the evolution of
density and pressure fluctuations during the radiation-
dominated epoch; following the treatment of Peebles, it
was found that the growing mode grew as t ~ which is
similar to that in 3+1 dimensions (t ~s). The similarity
of the radiation-dominated solutions is not unexpected,
for pure radiation T"

&
——0 and

ory and several bimetric theories in an attempt to find
a theory that has a Newtonian limit in 2+1 dimensions
while also being a viable alternative to Einstein gravity in
3+1 dimensions. Such a study has already been done in
1+1 dimensions where it was found that algebraically
extended Hilbert theory produced a field equation with
nontrivial dynamics and a Newtonian limit, . (Einstein
gravity is devoid of content in 1+1 dimensions. ) The
field equation in this theory may be expressed as

R = —4GgT,

so there is no qualitative difference between the theories
in d = 2 and 3 spatial dimensions for highly relativist, ic
sources.

V. OTHER THEORIES OF GRAVITY IN 2+1
DIMENSIONS

A. Introduction

As the various results discussed so far have shown, Ein-
stein gravity has some very peculiar features in 2+1 di-
mensions. It is pertinent to ask therefore whether alter-
native relativistic theories of gravity are able to restore
mass-mass interactions. This surely is not an unreason-
able demand to make of a theory of gravity.

One way of restoring propagating degrees of free-
dom is to go to higher-order, higher-derivative theories.
Some examples of such theories have been considered by
Barrow, Hurd, and Lancaster and Deser, 9ackiw, and
Templeton. Barrow et al. considered gravitational ac-
tions of the form

8 = — (nR„„R"'+PR + R —5 ) ~gd z

Analyzing the results of such a theory in the weak-field,
slow-motion limit they showed that, in momentum space,

2)r Gag�(p) [2p'(2P + ct. )]
(1+~p') [(3~+»)p' —1]

showing that this theory does not have Newton's equa-
tions as a nonrelativistic limit. The situation is similar
for the topologically massive theory considered by Deser
et al. The field equations for this theory

1 1
Rpv ——gpv R + —Cpv = KTpv,

2 rA

pv papC"'—: c" P(R p
—4g pR)"

g

have a slow-motion, weak-field limit given by

1
R~~+ «~ = o—

m

which has nontrivial dynamics but no Newtonian limit.
We are currently considering other classes of gravita-

tional theory such as algebraically extended Hilbert the-

T "" .
&

——0 (assumed).

It is not surprising that a successful gravitational the-
ory in 1+1 dimensions has a scalar field equation since
all two-dimensional spaces are conformally flat (g„,
P g&, ); i.e. , they possess a single scalar degree of freedom
P. Concomitantly the curvature tensor can be expressed
purely in terms of the scalar curvature

1
RpvA p

—
2 (gpAgvK gvAgpK)R

Outside sources T = 0, It', = 0 and space is Oat as
was the case with Einstein gravity in 2+1 dimensions.
There are also no propagating degrees of freedom so why
is there a Newtonian limits The difference is that this
theory results in a nontrivial, global, space]ime geometry
whereas Einstein gravity in 2+1 dimensions only caused
nontrivial, global, topological effects on the spa]ial ge-
ometry. This distinction is made more obvious if one
considers the 1+1 dimensional line element in Euclidean
form (dr = i dh) and transforms the spatial coordinate
via x ~ r = —'e-~~~~, then

d8: dP + A P GT )

where A is a function of the mass of the source situated
at z = 0 . The imaginary-time coordinate then has a
period related to the strength of the source. Because
the time coordinate is affected, this conical geometry has
a Newtonian limit while a completely analogous conical
spatial geometry that did not involve the time coordi-
nate in 2+1 dimensions has no Newtonian limit. It is
important to note that the weak-field limit is achieved
about x = 0 as one would expect in a dimension where
the Newtonian potential grows linearly with distance.

It is interesting to consider how this R = KT field
theory behaves in higher dimensions especially consid-
ering that it reduces to Newton's equations in any di-
mension. Einstein actually tried this field equation
in 1914 before discovering the correct tensor equations.
Unfortunately this field equation contains insufhcient in-
formation to fully determine an arbitrary assignment of
metric functions; one has to choose a prior geometry
that has only one scalar degree of freedom. A natural
choice is g&,

—P~g», i.e. , a conformally flat space-
time with C&„g„=0. Such a choice in 3+1 dimen-
sions has a working Newtonian limit but fails to pre-
dict the deflection of light [obvious from the fact that
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ds = Pz(dt —dz —z dB ) has the same null geodesics
as Bat space modulo possible nontrivial homotopic con-
siderations]. In addition the theory predicts Mercury to
have a perihelion retreat rather than advance. Such fail-
ings naturally resulted in this theory being rejected in
3+1 dimensions. It is a strange quirk therefore that this
theory produces big-bang cosmologies with no horizon
problem as the following solution demonstrates.

We generalize our choice of metric to those conformal
to a spacetime with a maximally symmetric spatial sub-
space of the form

a sense of lamentation that nature does not comply with
the R = zT theory as its cosmological predictions are
very appealing in that they automatically admit solutions
with no horizon problem without needing the scaffolding
that supports the inflationary cosmologies currently in
vogue.

B. R=I.T theory in 2+1 dimensions

For the choice g„=P~rt„

R = —4p &p = 87rGT

a;, dz g dz
d7 9 'I

(1+kz'/4)' )
(5 1)

2~GT—Q' . (5.9)

which for homogeneous cosmologies can be transformed
into the usual Robertson-Walker form, by a redefinition
of the time coordinate, O0 = —2vrgp (5.10)

In a weak field P—:1+ 0 (0 (( 1, T = p), we have

t' dp'
2 2 2 2 2bds =dt —a (t) ~

+r d0 yr sin gdg
ql —kr~ )

(5 2)

In terms of this line element, the field equation gives

which for static fields gives the Newtonian limit

7' 0 = 2vrGp .

For a point source of mass M

0 = GM ln7.

(5»)

(5.12)

a (al' k-+~ —
i

+ —,—4 G.(3p p),a (aP a~ (5.3)
For this potential the weak-field limit is about 7. = 1;
the full line element becomes

additionally T"" .
&

——0 gives ds = (1+GM Inr) (dt —dr —r dg ). (5.13)

—(pa )+&—(a ) =0 .
dt dt

(5 4)

These equations only have a solution in both the
radiation-dominated and matter-dominated epochs if

—1 . Then the solution that has a finite initial
expansion rate in the radiation-dominated early stage is,
with no arbitrary constants:

The metric is singular at 7* = e ~ . This surface does
not represent an event horizon however since radial pho-
tons can freely pass through and metric signature is pre-
served. One unusual feature of the circle at 7. = e
is that bound polar photon orbits can occur.

The equation for hydrostatic equilibrium with a
perfect-Quid source is

a(t) = t

This solution then goes over to

a
~a/a —6Gs M + 6Gs Mar ccosh

q6G, M

1/2

(5.5)
= 2~G(2p —p)(p+ S')

S'(p'+ 2p')

P+2
(5.14)

a t + const. (5.7)

So, we have a complete cosmology that demands an open
universe (k = —1) and never has a horizon problem.

While we are not suggesting that Einstein's equations
should be amended to read

R„,—~g„,R+ Ag„=87rGsT„„+A247rGsg„„T,

where A is now vanishingly small, we cannot help feeling

= t + const (5.6)

in the matter-dominated epoch. Conceivably the pres-
sure would not be negligible until a )) 6G3M at which
time Eq. (5.6) becomes

Unfortunately we were unable to find any solutions to
this equation except in the Newtonian limit. The philo-
sophical desire for a static mass-mass interaction appears
destined to lead to highly intractable equations. Thank-
fully the cosmological solutions proved to be more readily
soluble.

If we generalize our choice of metric as we did in 3+1
dimensions to include line elements of the form

, (, 6;, dz edz''
(1+kz~i/4) ~

d7.2
= ch' —a'(t) + r'd0')

1 —I-7-2

[when P purely P(t)], (5.15)
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then the equations describing the evolution of the Uni-
verse are

(2+1)-dimensional Einstein gravity during the radiation-
dominated epoch.

a Pa)' k
2 —+

~

—
~

y —,= 4~G(2p —p),a ka) a
(5.16)

Class 1:
k must = —1

(a) Radiation dominated:

(5.17)

These equations have two dist, inct types of solution
in both the radiation-dominated and matter-dominated
epochs. One class demands k = —1 and are very sim-
ilar to the solutions found in 3+1 scalar gravity. The
other class has an identical form to those found in

a(t) = t

(b) Matter dominated:

a(t) = Ql —4GM (t —t o) + ap.

C'lass 2
(a) Radiation dominated:

(5.18)

(5.19)

A ar csin A
—

A 1 —Aa if k =+1,

a'~' ifk=O, (5.20)

s/a—aI cslnh if I-= —1,

where A = arbitrary constant & 0, (for k = +1, A = a,„&,.).
(b) Matter dominated:

srcsin
~ )

—
( ) (i —

) if B ) 0,

2t+ const = $ a~ if B=O,3Ai]~ (5.21)

(aiB~i)
(

o~iB~i)
i a[B[—arcsinh if B(O,

C

where B = 4GM + Ic, C = arbitrary constant & 0 (for
B & 0, C/B = a „)Note that there is no horizon prob-
lem for the class-1 solutions in analogy with the solutions
to this theory in 3+1 dimensions. Further, the class-2 so-
lutions are identical to those in Sec. IV for the Einstein
theory during the radiation epoch. This is not fortuitous
since Eqs. (4.2) and (4.3) add to give Eq. (5.16) dur-

ing the radiation-dominated epoch, and Eqs. (4.4) and
(5.17) are identical.

VI. CONCLUSION

After reviewing some of the unusual features of (2+1)-
dimensional Einstein gravity in the presence of point
sources, we extended our study to include matter dis-
tributions. Q'e found that although such regions then
possessed local curvature the lack of a Newtonian limit
continued to have interesting ramifications.

Specifically we found that all relativistic polytropes in
hydrostatic equilibrium produced compact spaces, an in-
triguing result that could well be symptomatic of all hy-
drostatic structures in (2+1)-dimensional Einstein grav-
ity. Because all the "stars" turned out to be cosmologies
we then considered the behavior of homogeneous, evolv-
ing cosmologies. It would be interesting to further study
whether such cosmologies have a propensity to either sub-
nucleate out static universes or to entirely transmute into
closed, static cosmologies.

Finally we investigated other gravitational theories and
found that the lack of a Newtonian limit was common
amongst tensor theories. To gain some insight into the
behavior of a relativistic theory in 2+1 dimensions that
does have a Newtonian limit, we studied a theory that
was developed recently for 1+1 dimensions. This theory
has a history in 3+1 dimensions where it was considered
by Einstein before being rejected on aesthetic and exper-
imental grounds. The gross nonlinearity of this theory
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did not allow us to find any analytic relativistic hydro-
static solutions to compare with those that we found in
(2+1)-dimensional Einstein theory. Cosmological solu-
tions were found for this theory in both 3+1 and 2+1
dimensions, some of which had the attractive property of
no horizon problem.
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