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New look at supermassive cosmic strings

Miguel E. Ortiz
The Blackett Laboratory, Imperial College of Science, Technology and Medicine,

Prince Consort Road, London SS'7 2BZ, United Aingdom
(Received 26 November 1990)

Although it is well known that cosmic strings produced at grand-unified-theory (GUT) scales
give rise to a conical spacetime, this picture must be revised for strings produced at much larger
energy scales. An expression for the metric due to a supermassive cosmic string has recently
been given by Laguna and Garfinkle. Here, we argue that their metric is not unique, and that
a second solution exists which has diR'erent asymptotics. The existence of this new solution is
verified numerically. Like the Laguna and Garfinkle metric, the solution we give is singular at
finite distance from the core of the string. We further demonstrate that supermassive cosmic
strings may also arise from symmetry breaking at GUT scales if the coupling between scalar
and gauge fields is very weak. We argue that these low-energy supermassive strings are closely
related to U(1) global strings, a, result which is not surprising given their singular nature. By
analogy with global strings, it is clear that the singularity of a low-energy supermassive string
occurs at extremely large distances from the core of the string.

I. INTRODUCTION

One of the most interesting aspects of cosmic strings is
the nature of their coupling to gravity. It was first demon-
strated by Vilenkin that associated to a static, infinite,
straight cosmic string is an asymptotically conical metric.
Although this result is now well established for a Nielsen-
Olsen string arising from grand-unified-theory (GUT)
scale symmetry breaking in the Abelian Higgs model, cos-
mic strings in different field-theory models may give rise
to very different gravitational fields. Perhaps the best ex-
ample of this is provided by the U(l) global string which
has been shown to produce a singular spacetime. It
is also clear that if one looks at the Abelian Higgs model
away from the standard GUT symmetry-breaking scale,
then as the symmetry breaking energy scale is increased,
the deficit angle of the string spacetime increases. There
is a critical symmetry breaking scale above which the
deficit angle is greater than 2', and for which one is
forced to abandon the picture of a cone in favor of a new
metric; cosmic strings of this type have been termed "su-
permassive. " Supermassive cosmic strings have recently
been studied by Laguna and Garfinkle, and their con-
clusion is that such a string has a Kasner-type metric
outside the core. Although related to the regular Kasner
asymptotics of Melvin's magnetic universe, it is found
that the supermassive solution is necessarily singular at
finite distance from the core. However, at first sight, un-
like global strings, supermassive cosmic strings seem to
be allowed only at high-energy symmetry breaking.

In Sec. II we review the work of Laguna and Garfinkle
and also the earlier work on supermassive cosmic strings
of Gott. In Sec. III we demonstrate that the solution
given by Laguna and Garfinkle is not unique, in the sense
that a second solution with different asymptotics exists

for the same values of the parameters in the Abelian
Higgs model. The solution is similar to that found by
Gott in his approximate analysis, and is perhaps more
natural, since the large energy at the core of the string
is rejected in a collapse in the conical structure of the
spacetime. In both Laguna and Garfinkle's and Gott's
treatments it is implicitly assumed that supermassive
strings arise only at large symmetry-breaking scales. In
Sec. IV we study this question in more detail and demon-
strate that supermassive strings with singular spacetimes
can form in the Nielsen Olesen model at GUT scales.
These strings, however, require an extremely small value
of the constant n defined explicitly below, and as such are
probably unphysical. In addition, by exploiting the rela-
tionship between supermassive strings and global cosmic
strings, it is possible to show that any singularity aris-
ing from GUT-scale supermassive strings must occur at a
distance from the core of the string which is many orders
of magnitude greater than the present Hubble scale.

II. AN OVERVIEW OF RESULTS ON
SUPERMASSIVE COSMIC STRING S

The model for a cosmic string we shall consider in this
paper is the Abelian Higgs model of Nielsen and Olesen
with Lagrangian

where the gauge-covariant derivative is defined by 0„=
T& + ieA& and F&„—— 7„A —T A& is the U(l) field
strength. We have taken 6 = c = 1. V'& is a covariant
derivative if we couple the system to gravity. Although
the Lagrangian depends on three parameters g, A, and
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e, it is simple to show that in flat space solutions are
determined by just one dimensionless parameter

n = 47re /A

with g further determining the scale of the solution.
An ansatz for a cosmic string which is straight and has

cylindrical symmetry is given by

14= Re', A= —(P —1)d0,
e

(2)

ds' = e"«) (—d~' y dz') + dp'+ e «) de' (4)

Inserting (1), (2), and (4) into the Einstein-Hilbert action
yields the full set of nonlinear Einstein and field equa-
tions, which must be solved to obtain a consistent picture
of a self-gravitating string. In curved space, the equa-
tions contain an additional dimensionless constant, Gg,
which may be thought of as determining the strength of
the coupling of the string to gravity.

The first study of the gravitational field of a cosmic
string was performed by Vilenkin. He used a distribu-
tional energy-momentum tensor with tension and mass
per unit length xg~, as a source term in the linearized
Einstein equations, and thereby demonstrated that the
spacetime of a cosmic string is conical, with a deficit an-
gle of the order of Gg~. A slightly more physical ap-
proach was later adopted by Gott to obtain a similar
result. Gott took the energy momentum tensor to be
constant within a small region corresponding to the core
of the string, and zero outside this region. The more real-
istic nature of the source made explicit the fact that the
metric of a cosmic string is only asymptotically conical,
and that inside the core region, the metric is regular, the
spacetime looking globally like a "snub-nosed" cone.

The conical picture was obtained in both cases for
GUT scale cosmic strings, where the dimensionless pa-
rameter Gg is extremely small (approximately equal to
10 ). As expected, this qualitative result is confirmed
by a more detailed analysis taking inta account the full
system af Einstein and field equations. If, however,
Gg2 becomes comparable to unity, one must proceed
more carefully. At these energy scales the deficit an-
gle 40 approaches 2x, ~ and clearly beyond the critical
point where 40 = 2', the conical picture is no longer
valid. Moreover, it is no longer consistent either to use

where R and P are functions of p, and p and 0 are cylin-
drical polar coordinates. In flat space it is well known
that this ansatz leads to the Nielsen Olesen solution,
whose asymptotics are given by

R-g(1 —Roe '~"P) P-Pe
To calculate the metric associated with a U(l) string,
it is necessary to make an ansatz for the metric with
similar symmetries. In addition to being cylindrically
symmetric, the Nielsen Olesen solution also has boost
symmetry, and it follows that the most general metric
for such a string takes the form

ds = dh + dz + d—p + (asap+ a2) dg,

whence the cone, or

ds = (bqp+ b~) / (—dt + dz )
+dp'+ (~,p+ I,)-'/'do'.

(b) (c)

FIG. 1. An embedding diagram of the (r, 8) sections of
the three Gott metrics. (a) Gg ( 1/4s, (b) Gq = 1/4s',
and (c) 1/27r & Gg & 1/47r.

the weak-field approximation or to regard the string as a
distributional source.

Gott's method for calculating the spacetime of a cos-
mic string difFers from Vilenkin's in that by taking into
account the finite width of the string, he is able to ofFer
a possible metric for a supermassive string. His gen-
eral method of splitting spacetime into a core region
and an exterior region is equivalent to matching a two-
dimensional flat space (corresponding to the exterior re-

gion) to part of a two-sphere (corresponding to the core
region) to obtain the spatial part of the metric transverse
to the axis of the string. For small Gg~, the spherical re-
gion is of very small solid angle, and provides the "snub-
nose, " while the flat space is just the conical exterior.
For Grl = 1/4m, the energy density becomes sufficiently
large for the spherical region to be. a hemisphere, and
hence the exterior region is cylindrical; this is the critical
point at which the transition between conical and super-
massive strings occurs in his model. For Grl~ greater than
but close to 1/4', the solid angle subtended by the re-

gion of the sphere is greater than 2x, and hence the flat
space matched onto the sphere mu'st be like an inverted
cone, which now has a singular point at finite distance
from the core. The three Gott metrics are illustrated in
Fig. 1. Although the last solution provides a candidate
for the metric of a supermassive string, it does not seem
likely that the unwelcome singularity would be smoothed
out in a more detailed treatment.

Independent of the results of Gott, the spacetime of
supermassive cosmic strings has been examined in some
detail by Laguna and Garfinkle. Their approach was to
consider carefully the possible asymptotics of the super-
massive string metric. It is well known that if the energy
momentum tensor of any cylindrical source with boost
symmetry falls ofF sufFiciently rapidly with distance from
the core, the asymptotic form of the metric must be one
of the two Levi-Civita metrics, ~s
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which is a Kasner metric.
In reality (5) and (6) are four different asymptotic met-

rics depending on whether ai and bi are positive or neg-
ative. For positive ai, (5) is the standard cone, and for
positive bi, (6) is the asymptotic form of Melvin s mag-
netic universe. If a~ or bi is negative, each of the met-
rics is asymptotically singular. In Ref. 5, Laguna and
Garfinkle postulate that a supermassive cosmic string
must correspond to a Kasner metric, (6). They show
that if this is the case, then b~ must be negative, im-

plying that a supermassive string metric is singular. By
solving the full field and Einstein equations numerically,
they confirm that an asymptotic solution of this form
may be matched onto a regular core. They also remark
that the metric at the transition between conical and
I&asner asymptotics is asymptotically cylindrical (IR x Si
with ai —0 or bi ——0), which, unlike their Kasner solu-
t ion, agrees with Got t 's prediction.

So far, we have not made reference to the considerable
simplification to the problem of finding solutions to the
full field and Einstein equations afforded by the analog
of Bogomol'nyi's equations in curved space. The
Bogomol'nyi equations apply when o. = 8, and reduce all
differential equations to first order. In this special case,
the deficit angle is given exactly by

40 = 8m Gtl (7)

III. A NEW SUPERMASSIVE
COSMIC-STRING SOLUTION

Substituting the ansatz (2) into the Euler-Lagrange
equations derived from the Einstein-Hilbert action, and
redefining

so that the transition to supermassive strings indeed oc-
curs exactly when Gg = I/4vr; for this value of the
parameters, Linet has demonstrated that the cylindri-
cal solution referred to above may be written down in
closed form. An immediate consequence of the Bogo-
mol'nyi equations is that the metric coeKcient A defined
in equation (4) must vanish identically if n = 8.is i7 This
is the case for the conical solution (when n = 8), and for
Linet's cylindrical solution. It is not, however, the case
for Laguna and Garfinkle's metric, despite the fact that
their solution includes the case o. = 8. We shall show
in the next section that their solution is not unique, and
that there is a second solution for a supermassive string
which satisfies the Bogomol'nyi equations (with A—:0)
when o, = 8, and which is similar in character to that
originally proposed by Gott.

( „C" + + A'C'
)

(~e i ~)
Ag

C"& —16 G
(10)

C'lX"+ X'
~

A'+ —
~

= X[P e +4(X —1)j,2)
ClP" + P'

~

A' ——
~

= ~PX',

where the components of the energy-momentum tensor
are

27;i X' + e ~X'P'+ 2 (X' —1)

2Z" PI 2
" =

i

X' —e-~X'P' —2(A' —1) +

2V

Pq2
-X"+.— X 'P' —2 (X' —1)'+

ensuring that we have a cosmic string configuration, and

A(0) = 0, e ~ r as r ~ 0, (14)

ensuring that the metric is regular at the origin. We make
no assumptions regarding the behavior of the metric at
infinity, but in general X and P will behave asymptoti-
cally as in Eq. (3).

As mentioned above, the fIat-space Bogomol'nyi bound
may be generalized to curved space. The bound is satu-
rated when o. = 8 by requiring that A and P satisfy

~ XP —C/2
dp
dP
dp

= ~4e l'(X' —1),

and that in addition

(15)

(16)

A' = 0

Equation (10) is purely a constraint equation that is auto-
matically satisfied if we impose the boundary conditions

~~]., P~Q as phoo,
X~0, P~ 1 as p —+0,

r = WXgp, and e~ = ) g'eD

the Einstein equations and the scalar and gauge field
equations are given by

(8)

c'/2 4 g 2P ~2 g + g 4 g 2

dp

It, follows directly from (17) that when n = 8, and
provided that P (X —1) tends to 0 sufficiently fast and
that 1 —4vrGg is positive, the deficit angle is exactly
Ag = 8' Gg2. When 1 —4vrGg2 is negative (or in other
words when AO ) 2a), Eq. (17) implies that as P —+ 0
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FIG. 2. The metric field e as a function of r for several values of t g, with n = 8. If Sert rl ) 2, the function e ~ goes
to zero at a singular point, which for 87rag = 2.227 occurs at r ~ 5.

andX~1,
I

47' g ( 0

The metric in this case is asymptotically just as in Eq.
(5) with ai & 0. This gives a strong indication that at
least in the case where n = 8, there is a second solution
that is again singular at finite r, but which is clearly not
the Laguna and Garfinkle solution.

To verify the existence of this solution, we have solved
the curved-space Bogomol'nyi equations numerically for

Gg & 1/4ir. The numerical calculations were performed
using a polynomial approximation method called the tau
method. ' Details of this implement, ation of the tau

method may be found in Ref. 20. Typically the solut, ions
obtained yielded errors of order 10 when substituted
back into the differential equations (15)—(17).

We found that the new solutions are almost exactly as
predicted by Gott. The string fields X and P behave
just as in the flat space solution; the behavior of e ~ is
illustrated in Fig. 2. Note that we must, constrain Gg2 to
be small enough for the singularity to occur sufficiently
far from the core that we can talk about a localized cos-
mic string. Beyond values of Gg2 where the singularity
comes close to the core, it no longer makes sense to talk
about string type solutions.

Having verified the existence of a solution to the Bo-
gomol'nyi equations, it remains to see whether the new
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The metric field Ia = e + as a function of r for several values of n, with Set rj = 2.2. If o. ( o.„;t 11.5, the

string solution is supermassive and has a singularity at finite r.
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solution exists away from n = 8. This was indeed found
to be the case, by solving the full system of Eqs. (8)—
(12) numerically, provided that n is suKciently close to
8 for the solution to remain within the supermassive re-
gion and for the solution to retain a distinct core region.
In Fig. 3 we illustrate this with graphs of solutions for
I& = e+++~~ for various values of n, with 8+Gil2 = 2.2.
In these solutions e+ exhibited the asymptotics of (5),
but without A = 0. However, e was sufFiciently close to
1 to regard its behavior as unimportant.

At first sight it would appear that this new inverted
cone solution is the more natural given that it satisfies
the Bogomol'nyi equations when n = 8. However, the
fact that both solutions are singular means that we can-
not define an energy per unit length for either, and so
it is difFicult to justify such an argument. It is not clear
whether a stability analysis of the Laguna and Garfin-
kle metric makes sense. A second factor in favor of the
inverted cone solution is that the spacetime outside the
core of the string becomes singular at a point of (nonreg-
ular) compactification. From an intuitive point of view,
one would expect that an increase in the mass per unit
length of a cosmic string would eventually result in the
compactification of the sections transverse to the string.
The Laguna and Garfinkle solution, on the other hand,
has somewhat surprising asymptotics which do not lend
easily to a physical interpretation. It is, however, the
gauge string analog of the global U(1) string coupled to
gravity as we shall describe below.

IV. CUT-SCALE SUPERMASSIVE STRINCS
AND GLOBAL U(1) STRINGS

The phase space of static straight cosmic strings in the
Abelian Higgs model coupled to gravity is parametrized
by two dimensionless numbers, GiI2 and n defined above.
It is normally assumed that cosmic strings were created
by the breaking of a symmetry with n of order unity
at GUT scales, corresponding to Gil2 10 s, and for
t, his choice of parameters the metric of the cosmic string
is conical. It would therefore appear that supermassive
strings cannot be produced at GUT scales.

The supermassive string solutions discussed above
arise from the fact that as Gg increases, the deficit an-
gle also increases. However, it is evident from the results
given in Sec. III that the deficit angle also increases as
n decreases. This phenomenon is reflected in the depen-
dence on n of the critical value of Gg2 at which strings
become supermassive. A graph of this dependence has
been given by Laguna and Garfinkle in Ref. 5, and this
shows that the critical value of g is a monotonically in-
creasing function of n, at least for n and Gg~ both of
order unity. Within this range it is clear that for a fixed
symmetry-breaking scale, one should expect supermas-
sive strings to form for any model with n smaller than
a critical value of n depending on Gg2. In order to un-
derstand the role of n, and to determine whether this
feature is still present at the much smaller Gg of GUT

scales, it is necessary to examine the small e limit of the
Abelian Higgs model in more detail.

Let us study the cosmic string solution in terms of the
dimensionless unit of length specified by r. In these units,
the width of the scalar field core is independent of both
a and GiI2, whereas the width of the electromagnetic
core is determined by n as may be seen directly from the
asymptotics (3). Gg~ determines the strength of coupling
to gravity of the energy contained within the two core
regions. In the central core, where the derivative of X(r)
is of order 1, the energy density is of the same order of
magntiude for all n. In the second, outer core (of width
r I/~a), P 1, and P' /n 0. If one inserts these
two values into the full field Eqs. (8)—(12), they become
exactly the field equations for a U(1) global cosmic string
coupled to gravity. Thus, for small n, there is an outer
core in which the gauge string solution behaves like a
global string with X consequently falling off as I/i ~ in
this region. As a result, the total mass per unit length
of the cosmic string has an extra contribution from this
outer core, which is given approximately in dimensionless
units by

(18)

When n is sufFiciently small for this to become compa-
rable to 2x, then a gauge cosmic string is supermassive
rather than conical.

From a physical point of view, it is clear that this effect
is almost certainly not relevant. In the first place, for the
expression of Eq. (18) to be of order unity, we require
that

—1
n exp

/ '9' i
which for GUT scales gives a value of a in the region of
e . This value is probably far too small to be of any
interest. Secondly, either of the two supermassive metrics
is approximately conical close to the core. The distance
from the core at which the supermassive nature of the
string starts to become important is given by I/n core
widths which is clearly many orders of magnitude larger
than the present horizon. This argument is exactly the
one used to ignore the singularity in the metric of U(1)
global strings.

Although the small-n limit does not appear to be di-
rectly relevant to cosmology, it does make clear the re-
lationship between the gravitational fields of gauge cos-
mic strings and U(1) global cosmic strings. In the limit
n ~ 0, we have seen that P ~ 1, which reduces the field
equations to those of a global string. The smaller n, the
larger the region over which a Nielsen-Olesen string looks
like a global string.

Looking at the Abelian Higgs model, the global U(1)
limit occurs when the gauge and scalar fields decouple.
This corresponds to e = 0, which is equivalent to n = 0.
We could have therefore expected the global string metric
to be the n = 0 limit of a supermassive string metric. A
simple inspection shows that the global string metric has



MIGUEL E. ORTIZ 43

the same asymptotics (as discussed in Ref. 21) as the
supermassive string metric of Laguna and Garfinkle. The
reason why this, rather than the inverted cone solution
is picked out may be easily understood. The term in the
energy density proportional to

is always finite in both supermassive string solutions. In
the Laguna and Garfinkle solution, e tends to infinity.
In the new solution, although e goes to zero at the sin-
gularity, so does P. However, if P:—1, then only the
Laguna and Garfinkle metric avoids infinite energy den-
sity at the singularity. Therefore a global string should
correspond to the o. —+ 0 limit of their solution. The new
solution found above apparently has no well-defined limit
as n~0.

V. CONCLUSIONS

We have demonstrated the existence of a new super-
massive cosmic string solution. In common with Laguna
and Gar6nkle's solution, the metric has a singularity, the
existence of which may be easily interpreted in the new
solution. The new metric takes the form of a teardrop
as suggested by Gott. This type of metric has also been
discussed in various other contexts (see for example the
section on sigma model strings in Ref. 4). It has com-

pact spatial sections which could provide a mechanism
for dimensional reduction.

In addition we have shown that supermassive strings
could be created at GUT scale phase transitions, al-
though this requires fine tuning of the scales in the field-
theory model, and would in addition not have any di-
rectly observable consequences. Finally, we have shown
how gauge strings with small o. are related to global cos-
mic strings.

The appearance of two solutions for the metric of a
supermassive cosmic string suggests that the same phe-
nomenon may occur for cosmic strings hitherto associ-
ated only with conical spacetimes. There is no mathe-
rTiatical reason to rule out the possibility of Melvin-type
asymptotics for a cosmic string with a small mass per
unit length. These would be of the form given by Eq.
(6), with bt ) 0, and consequently would have no sin-
gularity. It would be interesting if such solutions were
found, as they would highlight the need for a dynamical
mechanism favoring evolution to a conical solution after
symmetry breaking.
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