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Analysis of infiation driven by a scalar field and a curvature-squared term
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The evolution of an isotropic cosmological model in the R +R theory of gravity with a coherent
massive scalar field is studied analytically and numerically. For certain initial conditions, the model

goes through a superinAationary stage (H &0) followed by usual subinflation (H (0). Double
inflation consisting of two inflationary stages divided by a period of power-law expansion a (t) ~ t

is possible if the scalar particle mass is small compared to the mass of the scalaron (scalar graviton).
The spectrum of adiabatic perturbations generated from vacuum quantum fluctuations is investigat-
ed. It is quasiAat (though not necessarily varying monotonically with scale) in the case of single

inflation; for double inflation, it has a characteristic step.

I. INTRODUCTION

It is well known that both vacuum-polarization effects'
and a scalar field can lead to an inAationary stage in
the early Universe (for a recent review, see Ref. 6). Fur-
ther, it was argued that the combined action of these
effects may lead to two consecutive inAationary stages
(double inflation; for the generalization to the multi-
scalar case, see Ref. 10). To elucidate these questions fur-
ther we shall discuss here a cosmological model including
vacuum-polarization effects which are described by an
additional R term in the gravitational action and a
coherent massive scalar field. We shall follow the general
approach of Ref. 6 but choose a different potential for the
scalar field (m P instead of A,P /4). Thus we start with
the Lagrangian

( R+—aR )+—'(tt tti" mtt ), —
16~G 2 ~P

where a is a positive coupling constant, R denotes the
Ricci scalar, and P the scalar field. We use units where
the speed of light c = 1 and the Planck constant %= 1; i.e.,
the gravitational constant G is equal to the Planck length
squared: G =lpI. The coupling parameter o. and the mass
m are assumed to satisfy the conditions cx ))l p&,

mlpi ((1.
The question of whether or not two consecutive

infIationary stages exist is crucial for understanding the
spectrum of perturbations generated during inflation. In
the case of two consecutive inflationary stages separated
by an intermediate stage of power-law expansion a break
in the spectrum is expected. However, in model (1) the
case of two really disconnected inflationary stages takes
place only if the mass of the scalar particles is small in
comparison with the inverse coupling constant,
m «1/6ct, and if vacuum polarization dominates ini-
tially, ' i.e., the energy density of the scalar field is small
compared to the Hubble parameter during the first part
of inAation. Otherwise the combined action of the scalar H + (2HH H+6H H)=z +—m zI (3)

field and vacuum polarization leads to a single quasi de
Sitter stage with a quasiAat perturbation spectrum.

At first, we study spatially flat homogeneous isotropic
cosmological models, for which a generalized Friedmann
equation can be obtained. It is a second-order differential
equation for the Hubble parameter H (t) =a /a, where the
overdot denotes a time derivative and a (t) is the scale
factor (that does not explicitly enter into equations for
spatially flat models). General expressions for super- and
subinflationary stages arising in model (1) are presented
in Sec. II. The process of relaxation to the de Sitter
(inflationary) stage is studied in Sec. III. Dift'erent possi-
ble paths of the general evolution of the curve H(H) in
the H-H plane obtained by numerical calculations are
discussed in Secs. IV and V.

If there exist two consecutive infIationary stages
characteristic for R inflation and scalar field inflation,
the transition between them may be accompanied by rap-
id oscillations of the Hubble parameter. This behavior is
investigated in Sec. VI. In Sec. VII we present equations
for small inhomogeneous perturbations on the homogene-
ous background and study their solutions. Section VIII
contains conclusions and discussions of initial conditions
for the model.

The variation of the Lagrangian (1) leads to the field

equations for the gravitational field and the scalar field.
With the metric

ds =dt a( t )6,t, dx 'dx"— (2)

of the spatially fIat Friedmann universe we obtain the
field equation in terms of the Hubble parameter and its
derivatives and the scalar field and its derivatives. It is
convenient to introduce the dimensionless quantity
z =4irGQ /3, which is related to the number of e-folds
during scalar-field-driven inflation [cf. Eq. (9)]. Then the
00 component of the gravitational field equations takes
the form
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where the mass M of the scalarons —scalar gravitons cor-
responding to the R term in the Lagrangian —is defined

by M = I /(6n); Mlp~ (( l. A second equation of interest
is the trace equation

H + 2H + (H" '+ 7HH +4H + 12H H )
M

= —z 2+2m 2z (4)

where H' ' denotes the third time derivative. Equation
(3) is the first integral of Eq. (4). The field equation for
the scalar field reads

z+3Hz+m z=O . (5)

InAationary stages driven solely by the R term or the
massive scalar field are characterized by the conditions
lH; tl «H', Hi, ,„,= —M'/6, " and Hs;„,= —m'/3, '

respectively. In order to compare the roles of the R
term and the scalar field within the combined scenario (1)
we shall discuss the two cases m ))M and m &(M,
i.e., the cases of heavy scalar particles and light scalar
particles.

To investigate Eqs. (3) and (5), we have to fix the initial
values Ho, Ho, zo, and zo. Since we are mainly interested
in the existence of inAationary stages, the quantity Ho
should be large enough to ensure the existence of such
stages, i.e., Ho))max(m /3, M /6). In the case of the
Aat Friedmann model (2), all solutions (except for a set of
zero measure) begin or terminate in a singularity. As was
shown in Ref. 7, the most general behavior of solutions of
the combined model near the singularity is a(t) ~ lt '

(the fact that a difterent scalar potential is used in our pa-
per makes no change). We shall assume Ho (0,
lHol —Ho, i.e. , we start in the phase of decelerated
power-law expansion from the singularity. We take
zo=O as an initial condition for numerical calculations,
but a kinetic term would not change substantially our re-
sults. Concerning the initial condition for the scalar field
itself, three cases are of particular interest. For
mzo (&Ho, vacuum polarization dominates over matter.
In the Einsteinian case mzo=Ho, higher-order gravity
terms vanish initially. Finally, if mzo ))Ho, the Einstein
tensor may be neglected as far as H ))M, and then the
theory reduces to a case of pure fourth-order gravity with
the scalar field energy-momentum tensor as a source.

II. INFLATIONARY STAGE IN THE COMBINED MODEL

If the space-time (2) goes through the quasi de Sitter
(inAationary) stage and the scalar field is in the slow-
rolling regime, i.e., lH l

«H and
l Pl &(H

l Pl, Eqs.
(3)—(5) simplify and can be integrated for an arbitrary
V(P) (see Ref. 7). In our case we have

It is convenient to follow the behavior of a solution of
Eqs. (3) and (5) not in the complete phase space
(H, H, z, z), but projected into the H Hplan-e. To ac-
complish this we rewrite Eq. (3) in the form

M—3H — (H —z —mz )
dH 2H 2HH

H (6H/M +1)=772 z

3Hz+m z=0 .
(7)

It is clear that z (0; thus, the scalar field may only de-
crease with time (we consider the region z )0). However,
it follows from Eq. (7) that

dH2

dZ

M
(H —m z )

m z

Therefore, we have "superinAation" with H ) 0 (fol-
lowing the terminology of Ref. 13) if H (mz and usual
subinAation with H (0 in the opposite case. It should be
mentioned that superinAationary regimes appeared al-
ready in the inAationary model proposed in Ref. 1 Ithey
corresponded to the separatrix emerging to the right
from the point (1,0) in Fig. 1 of Ref. 1. However, in that
model they all terminate in a singularity with an infinite
scalar factor and curvature and have no "graceful exit"
to the region of low curvature. Thus, model (1) (and its
generalization to the case of arbitrary power-law poten-
tial of the scalar field) presents the first example of an
inAationary model having both super- and subinAationary
regimes and possessing a smooth transition to the power-
law Friedmann expansion [with a(t) ~ t ~, see below].

The solution of Eq. (7) has the following parametrical
form where the role of the parameter is played by the sca-
lar field itself (M&m v'2):

M /m M /m —2

H =H z z
1

Z ]

M2z 1—
2 —M2ym 2

t —t&= —3 dz
H(z)
m z

(9)

Z ] Z
2 2

In(a/a& )=3 H) —H
+3

M

H =H
1

Z ]

—Mzln
Z]

(10)

As was pointed out in Refs. 7 and 10, the last expression
in Eq. (9) looks like a sum of two independent contribu-
tions from scalar field inAation and R inAation. Howev-
er, this is a formal analogy only, because H(t) and z(t)
are interrelated and cannot be considered as independent
entities. For example, the second term in the expression
for tn(a /a i ) is negative during superinAation but the first
term makes the sum positive.

Let us now compare the lengths in lna of the super-
and subinAationary parts of the expansion of the
Universe. SuperinAation arises if H

&
& mz

&
. It ends at

the moment t = t, when H, =0 and H, =mz, . It is
straightforward to obtain from Eq. (9) that

Here a„H, , and z, denote the values of a, H, and

z at the moment t = t i when inAation begins

(H i ))M, m; z i ))1). For the special case M = m &2 the
first equation in (9) should be replaced by
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Z, =Z1X '

1
exp 1

2

[ M + 1—
2m vl z

1

H1

I Z
1

1/(2 —M /m )

M=m&2.

, Mam&a,

2mI „=1— 1+
M

1/(1 —M /2m )

2m
(12)

for Hi~0. Actually, I=I „if

Hi ((zimin(m, M) . (13)

We remark that H grows significantly during
superinflation [i.e., H(t, ) ))H, ] only if inequality (13) is
satisfied. Considered as a function of M fm, I „has its
maximum equal to 1 —2/e =0.264 at M=mi/2, and it is
small for both large and small values of M/m [I
=y ln(1/y) for @=M /(2m )((1, I „=in'/y for
y ))1]. Thus, we come to the conclusions, first, that
superinflation is always followed by subinflation in our
model and, second, that the duration of superinflation
(measured in terms of lna) is no more than 26% of the to-
tal duration of inflation.

III. RELAXATION TO THE
DE SITTER (INFLATIONARY) STAGE

In this section we investigate the process of relaxation
of the metric (2) from the initial conditions described in
Sec. I to the de Sitter (inflationary) phase of its evolution
analytically using some simplifying approximations. This
will help us to understand the results of exact numerical
solution of Eqs. (3) and (5) presented in Secs. IV and V.

First, let us assume that H ))M, rn and that the scalar
field energy density can be neglected at all. Then Eq. (3)
simplifies to

For a given M/m, the quantity I=ln(a, /a, )/ln(af /a, )

[where af is the scale factor at the end of inflation and

a, =a(t, ) ] approaches its maximum

H, defined in Eq. (15) just coincides with H, introduced
in the preceding section, and we can use the second of
Eqs. (15) to obtain an approximate estimate of H at the
beginning of inflation in the exact solution from initial
data at t =to. The characteristic time of relaxation to the
de Sitter stage is also of the order of H, '. The de Sitter
stage is reached without change of sign of H if Ho) —2Ho, and in the opposite case a (t) passes through an
inflection point where H =H =0.

The approximation (14) is not sufficient for the investi-
gation of the slow evolution of H during inflation. So, as
a next approximation, we assume that H ))I and
z zo const )) 1 but the scalar field energy density can-
not be neglected. Then, instead of Eq. (3), we get

2HH H+6H H—=M (m z H)—(16)

This is the case of the R +R gravity with a positive
cosmological constant. In terms of H and H,

dH M (m zo H)——3H+
dH 2HH 2H

The phase diagram of this equation is presented in Fig. 2.
The detailed structure near the point (mzo, 0) depends on
M/mzo; the point (mzo, 0) is a stable node with two nega-
tive eigenvalues A, i z= ——3mzo+( —'m zo —M )'~ if
M (—', mzo, and it is an attractive focus for M )—', mzo.
All curves terminate in this point (i.e., in the pure de Sit-
ter stage with H=mz =ocosnt). However, before that
they may pass either through the subinflationary stage
with H= —M /6 characteristic of R inflation if H1
defined according to Eq. (15) is much larger than mzo and

2HH —H +6H H=O, (14)

that corresponds to the case of the pure R gravity. The
first integral of Eq. (14) has the form

H=2&H (H H) H = H —+ Ho

2+H,
(15)

Equation (15) gives the expression for evolution paths in
the H-H plane. It can be easily integrated further to get
the corresponding a(t). We do not display it here be-
cause isotropic homogeneous solutions for pure fourth-
order gravity have already been studied (see, e.g., Ref.
14).

The H-H diagram for this case is shown in Fig. 1. All
solutions with HOW —2HO terminate in the de Sitter
stage of exponential expansion with H=H1. Therefore,

FIG. 1. Phase diagram of Eq. (14). The separatrix
H = —2H [a(t) ~ v t ] is shown by the heavy line.
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(a) the scalar field oscillates with frequency co=m (as in fiat
space-time), z ~a ~ cos(mt+const), and the dimen-
sionless energy density z +m z =Ca, C )0.
Neglecting the Einstein term, we obtain, from Eq. (3)

2HH H 2+ 6H2H =CM2a —3 (19)

~ ~

6
Thus, this approximation corresponds to the pure R
gravity with a source in the form of dustlike matter.
Multiplying Eq. (19) by a and differentiating, we get

H (2HH H+—6H H)+3H(2HH H—+6H H)
dH

=0. (20)

With the definitions y=H/H and g=lnH, Eq. (20) can
be rewritten in the form

'2

+(7@+6) +6y + —"y+9=0 .
dX

(21)

This equation can be reduced to the first-order one by
denoting 5 =d y /dg and changing the independent vari-
able.

d6 6y +33@/2+9
dy 6y

(22)

AlZp

FIG. 2. {a) Phase diagram of Eq. (17). The inflationary

asymptote H =M (m zo/H —1)/6 is shown by the heavy line.

(b) Detailed structure near the point (mzo, 0) in the case
M &

~ mzo. Separatrices H = A, »(H —mzo ) are shown by

dashed lines. (c) Structure near the point ( mz0, 0) for
M ) —mzo.3

2

The phase diagram of this equation is given in Fig. 3.
The region y(6+3+ —3y) &0 corresponding to C & 0 is
unphysical. For C) 0, all curves go out of the point
(
—2, 0) [or a(t) ~ Vt ], tend to the point (0, —~ ), and

reemerge from the point (0, + ~ ) to the first quadrant
[the latter jump corresponds to the regular transition of
a(t) through the point where H=O]. In the end, all

M, or through a superinAationary stage with

M~m 2z~
H=

6H

H=(M m z t/2)'

a(t) ~ exp(const X t ~ ),
(18)

if Mmzo «Hi «m zo (thus, the latter regime can ap-
pear only if M « mzo ). It is worthwhile to note that Eq.
(18) yields also the generic asymptote of expansion for the
pure R gravity with positive cosmological term. [That
corresponds to the limit mzo ~ ~ in Eq. (16).]

Furthermore, there may be a break of inflation between
the subinAationary stage and the pure de Sitter stage with
H=mzo driven by the scalar field if M»mzo, and then
we have double infiation. (This case was first considered
in Ref. 15.) The superinflationary stage (18), if it exists at
all, always smoothly matches the pure de Sitter stage
without a break of inflation.

Finally, let us consider the case m»H»M. Then

FIG. 3. Phase diagram of Eq. (22). The unphysical region
y(5+3+ ~y) &0 is dashed. The curves lying on its boundary

correspond to the pure R' gravity (C=O). The point ( —2, 0) is
a (t) ~ "1/'t; the point (0, —3) is the de Sitter solution with an ar-
bitrary H.
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curves approach the point (0, —3)—the de Sitter solu-
tion with some constant H. In this case the de Sitter
solution is approached from the side H )0 for all curves
in the H-H plane.

IV. HEAVY SCALAR PARTICLES

For heavy scalar particles the characteristic value of H
for the scalar-field-driven inAation is much larger than
that of the inAation driven by vacuum-polarization
effects, i.e., ~Hs;„r ))~Hz;„r~. First, let us consider an
inAationary period driven by vacuum-polarization effects.
It is characterized by the condition H ))~Hz;„r~
=M /6. In that case Eq. (3) reduces to
H (1+6H/M ) =m z, which obviously can be satisfied
only if I z «H . From the equation of motion it fol-
lows that the scalar field decreases linearly during R
inAation. Note that the inAation can only start if the en-
ergy density of the scalar field ( =m z ) is smaller than
the Hubble parameter squared.

On the other hand a scalar-field-driven inAationary
period would . be characterized by the condition
H =m z ))~Hs;„r~=m /3, z ((I z . In that case
Eq. (3) would reduce to H (1—2m /M )=m z which
obviously cannot be satisfied. Indeed, this case leads to a
rapidly changing scalar field z =2/9M ))I . There-
fore, for heavy scalar particles the vacuum-polarization
effects prevent generally the typical pure scalar-field-
driven inAation. Obviously, this means that in this case
two separate inflationary stages are impossible. Of
course, inAation driven by the combined action of the
scalar field and the vacuum polarization as described in
Sec. II can take place.

Let us now investigate numerically the behavior of the
curves H(H) in the H Hplane. Gene-rally, for the initial
values under consideration the vacuum-polarization-
driven inAationary stage Hz;„&= —M /6 acts as an at-
tractor for all H(H). The relaxation to the infiationary
stage is already described in Sec. III. Figures 4 and 5
show examples for the direct relaxation to the R
inAation in the vacuum case and for the relaxation to a
superinAationary stage arising because of the condition

H/m .

H/m

1-6

1 2 3

FIG. 5. H-H diagram in the case of heavy scalar particles
m/M=3. 7; initial values: curves 1 —3 the same as Fig. 4 and
Hp = 5m Hp = 10m vacuum (curve 4), zp = 50 (curve 5),
zp: 100 (curve 6); curves 2, 3, 5, and 6 show superinflation.

mzo ))Ho. Then the preinAationary stage is quite similar
to that shown in Fig. 1. In particularly, Eq. (15) gives an
estimate of H, : H, =Sm for Fig. 4 and H, =4.3m for
the curves 4—6 in Fig. 5. Also, Eq. (11) can be used to es-
timate H, =mz, at the turnover point (e.g. , at the end of
superinflation). For Figs. 4 and 5 that gives H, /m =12
for zo =50 and H, /m =22 for zo = 100. The agreement
between the simplified description of the super-
infiationary regime given by Eq. (18) and the results of
numerical calculations is also reasonable.

Note that during superinAation z is not constant now
[as compared to the approximation (16)j. Also H does
not remain constant but H = —M (1 —m z /H )/6 is a
slowly decreasing function. Contrary to the vacuum
models with negative coupling constant a (i.e., tachyonic
gravitons), this leads to a natural end of the
superinfiationary stage [cosmological vacuum models
corresponding to the Lagrangian (1) and a & 0 have been
considered in Ref. 16. For z, ))H, /M a long
superinflationary stage takes place. It can be described
approximately by H=M m z& /(6H )

—m /3, from
which one obtains the maximum H, =Mz&/v 2. At the
turnover point of trajectories in the H-H plane, the scalar
field and the Hubble parameter are related by z, =H, /rn.
Therefore, during superinAation the scalar field decreases
by the amount z, /z& ——M/(&2m ). The solution remains
near H, until z /z

&
falls down to a small value

(M /m )ln(z&/z)=1. After that, H begins to decrease
and the solution quickly approaches the inAationary re-
gime driven by the R term: Hz;„&- —M /6. This is
shown in Fig. 5.

-50

-75.

FIG. 4. H-H diagram in the case of heavy scalar particles
m/M=3. 7 with fixed initial values Hp =5m and Hp = —100m,
vacuum (curve 1), zp = 50 (curve 2), zp = 100 (curve 3); curves 2
and 3 show superinflation.

V. LIGHT SCALAR PARTICLES

For light scalar particles the characteristic value of H
for the scalar-field-driven inAation is much smaller than
that of the inAation driven by vacuum-polarization
effects, i.e., ~Hs;„r~ ((~Hz;„r~. First let us consider a
scalar-field-driven inAationary period described by
H =m z )) |H&;„r~ =m /3, z &(m z . Equation (3)
reduces to H (1 —2m /M ) =I z, which can be
satisfied, in principle, because m /M «1. That means
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that scalar-field-driven inAation can start if H and mz
have the same magnitude and are large in comparison to
m.

On the other hand, in the case of inAation driven by
vacuum-polarization eff'ects (Hz-;„t= —M /6) Eq. (3)
reduces to H (1+6H/M ) =m z, which can be satisfied
jf I z (&H . Since the scalar field with
z =m z /(9H )((m /9 decreases during this stage
much more slowly than the Hubble parameter the
inAation ends if H and mz are of the same magnitude. At
this moment a transition to scalar-field-driven inAation

H/m

-8"

H/rn

L H/m

occurs.
Let us first consider the case mzo ))Ho where

vacuum-polarization effects initially dominate classical
gravity. Then relaxation to superinAation takes place.
This behavior is quite similar to that described in the
preceding section (see. Figs. 4 and 5, curves 2, 3, 5, and
6). During this superinflationary stage H increases and z
decreases, so that the superinAation ends if H =mz. At
this moment H(H) turns into the lower half plane and
scalar-field-driven inAation starts.

Let us now investigate the opposite case if mzo (&Ho
where vacuum-polarization effects initially dominate over
matter. As discussed in Sec. III the further evolution of
the model depends crucially on whether the value of Ho
is greater or smaller than —2HO. This follows from the
fact that the radiation-dominated universe (H= 2H )—
is an exact solution in R +R gravity, and H = —2H is
also an exact vacuum solution in pure fourth-order gravi-
ty. If ~HO~ &2HO the curve H(H) tends directly to the
R inAation, during which H and z decrease and get the
same magnitude as argued above, so that a transition to
scalar-field-driven inflation occurs (Fig. 6, curves 1 —4).

If Ho~ )2HO, the curve turns into the domain of ac-
celerated expansion and at H, it returns to R inAation in
the lower half plane. This behavior is described by Eqs.
(14) and (15). Indeed, the scalar field remains constant
and small. In the vacuum case the maximum value H& is
reached, and then the curve goes over into R inAation
(Fig. 7, curve 1). If the initially scalar field mzo is less
than the maximum Hubble parameter H& defined by the
vacuum model then the curve H(H) turns directly to the
lower half plane, i.e., H, =H&. During the following R

FIG. 7. H-H diagram in the case of light scalar particles
m /M =0. 13 for fixed initial values Ho =25m and
Ho = —5000m, vacuum (curve 1), zo = 5 (curve 2), zo = 15
(curve 3), zo=60 (curve 4); curves and 2 and 3 show double
inflation with smooth transition; curve 4 shows the transition
from superinflation to scalar-field-driven inflation.

inflation H and nzz decrease and become of the same or-
der of magnitude (Fig. 7, curves 2 and 3). On the other
hand, if rnzo is greater than H&, a period of superinAation
occurs during which H increases and mz decreases until
they have the same magnitude at H, . Then the curve
turns to the lower half plane and ordinary scalar-field-
driven inAation starts. Therefore, H, )H&, where H& is
given by Eq. (15) (Fig. 7, curve 4; cf. also Fig. 5, curves 2,
3, 5, and 6). The question of whether or not two consecu-
tive inAationary stages exist depends on the ratio of zo to
H, and, therefore, it depends indirectly on the initial
values Ho and Ho.

Finally let us compare these results with the behavior
of singularity-free models. In these closed models
Planck-sized initial values were assumed for the scale fac-
tor and the energy density of the scalar field. Therefore,
H, =l/ao and the scalar field has approximately the
magnitude of the Hubble parameter (i.e., H, =mzo =H„
the condition valid in the Einsteinian case) so that
scalar-field-driven inflation starts. Consequently, in such
singularity-free models there do not exist two consecutive
inAationary stages. In general, also in singularity-free
cosmological models double inAation can be the source of
a nonAat perturbation spectrum. '

VI. THE TRANSITION FROM A INFLATION
TO SCALAR-FIELD-DRIVEN INFLATION

-3000.

-6000-

FIG. 6. H-H diagram in the case of light scalar particles
m /M =0.024 for fixed initial values Hz =60m and zo =2,
Ho =0 (curve 1), Ho = —2000m (curve 2), Ho = —4000m
(curve 3), Ho= —6000m (curve 4), Ho = —8000m (curve 5),
Ho = —10000m (curve 6), Ho = —12 000m (curve 7).

As already mentioned above the R inAation acts as an
attractor for most of the solutions. We shall now consid-
er in more detail the end of this inAationary stage. In the
vacuum case R inAation is characterized by the condi-
tion H~-;„t= —M /6 and it ends if H = ~H&-,„t~. At this
moment oscillations of the type H~M[1 —sin(Mt)j/
(6+3Mt/2) occur, where H(t) passes the origin. From
Eq. (3) one can see that the existence of a coherent scalar
field leads to an earlier breaking off of the inAationary
stage. Namely if m z ) ~HV-;„t~ the inflation already
breaks oft'if H=mz (cf. Fig. 7; note that z =zo). In this
case the transition to the scalar-field-driven inAation
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occurs smoothly. On the other hand if m z & ~Hv;„t~
the transition is so rapid that oscillations around the
scalar-field-driven inflationary stage occur (Figs. 8 and 9).
From Eqs. (3) and (4) one finds

H+ (1/M )(H' '+ 3HH+ 6H ) = —3z

During the scalar-field-driven inflationary stage one has
Hs ' f

—3z and with H =Hs;„t+y Eq. (23) reduces to
an equation for damped oscillations of the quantity y:

-05"

y'+3Hy+M y =0, (24)

where the term 6(y+Hs;„t) has been neglected in com-
parison with M y, and H can be treated in first approxi-
mation as a constant of the order zo. Therefore, if initial-
ly the scalar field is small (zo «M /m ), during the
transition damped oscillations around the scalar-field-
driven inflation occur. The oscillations are similar to
those at the end of the inflation driven by vacuum-
polarization effects in the vacuum model, but in our case
after these oscillations there follows a long period of
inflation only if zo &)1. During the second inAation the
length scales of all perturbations which may originate
during this transition increase. In the case of single
inAation, perturbations from the reheating period corre-
spond now to characteristic lengths of a few meters. In
the case considered here, perturbations stemming from
the transition between two inflationary stages would ac-
quire much larger scales due to the second inflation; i.e.,
they may inhuence the perturbation spectrum responsible
for galaxy formation.

If on the other hand zo ))M /m then y is aperiodical
and the transition is smooth (Fig. 7, curves 2 and 3). In
this case during the transition from one inAationary stage
to another, no additional perturbations can be expected,
but one should see only the break between the two Rat
spectra coming from the different inflationary stages (cf.
Fig. 12).

Finally, it should be mentioned that the small oscilla-

FIG. 9. The same as Fig. 8 but the inner part of the curve.
Since zp=3. 5 the scalar field inflation is only short, and at the
end oscillations start again, but here because of scalar field oscil-
lations at the transition to the Friedmann stage.

tions of a and R considered in this section decay ex-
ponentially with a characteristic time r-(gM )

' when
the effect of creation of matter-field quanta by these oscil-
lations is taken into account (see Refs. 1 and 18—20).

VII. PERTURBATIGNS

ds =(1j24)dt —a (t)(1—2%)5,kdx'dx", (25)

In the inAationary models adiabatic density perturba-
tions arise from quantum Auctuations during the de Sitter
stage. The first quantitatively correct expressions for the
adiabatic perturbations generated at the

inflationary

stage were presented in Refs. 21 —23 for scalar-field-
driven inflation and in Ref. 11 for inflation driven by vac-
uum polarization. For further consideration of adiabatic
perturbations in the (R +R ) theory see Refs. 24 —26.

We shall now take into account small scalar perturba-
tions of the background metric (1) in the notation used in
Ref. 25:

100 "

-100 "

-200"

30

where the invariant potentials are the same, up to the
sign, as those given by Bardeen (4=4&,%'= —4H).
We denote the perturbations of the scalar field by
5z =z —z, and the perturbations of the Ricci scalar by

(0)

M =R —R' ', where z' ' and R' ' are the solutions of
the background equations discussed in the preceding sec-
tions. We decompose the perturbations and the poten-
tials in plane waves [5z =5z&exp(ikr ), etc.]. By straight-
forward linearization (cf. Ref. 25 for the case of single
inflation) of the trace equation

R+M R =6M (z z' —2m z ), (26)

FIG. 8. H-H diagram in the case of light scalar particles
m /M=0. 024 for a wide class of initial values Kp and Hp lead-

ing to R inflation and zp=3. 5; the curve shows the transition
from R inflation to scalar-field-driven inflation with damped
oscillation s.

one obtains

5R +3H5R + (k /a +M )5R

+ 12M (z 5z —z @—2m z 5z ), (27)

= (2@M )[—R+6(z —2m z )]+(4&+3%)R



43 ANALYSIS OF INFLATION DRIVEN BY A SCALAR FIELD. . . 2517

+12(H+2H )4+6H@+24HqI .

From the (iAk) component of the field equation one has
a connection between the two potentials N and +:

e=e —5R /(R —3M') . (29)

The equation of motion of the scalar field leads to

5z+3H5z+(k /a +m )5z=(4&+3%')z —2m z@ .

(30)

From the Oi component one obtains additionally a first
integral

(1—R /3M )(4+HC&)+(5R —NR H5R )—/6M

=3z5z . (31)

We are especially interested in background models with
two consecutive inflationary stages, i.e., in a transition
from typical R inflation to scalar field inflation, which
was described in Secs. V and VI. Therefore, in this sec-
tion we generally assumed m &M and initial conditions
which lead at first to R infiation (Ho ))~Ho = Hv;„t,
mzo «Ho).

To fix the initial values of the perturbations let us con-
sider the perturbation equations (27) —(30) in more detail.
With the relations (29) and (31), Eq. (27) can be rewritten
as a fourth-order equation for the potential N with one
first integral (31). To solve it together with the second-
order perturbation equation of the scalar field, one has to
fix five initial values.

On the other hand the inevitable initial quantum fluc-
tuations of the scalar quantities 5R and 5P at the quasi de
Sitter stage provide the initial values for the perturba-
tions. To this end let us consider the quantum fluctua-
tions of a scalar quantity f in the de Sitter space which
satisfy the equation

( +p )f=O, (32)

where p denotes the mass term. Decomposing f into
modes

f=(2') Jd k[akfk(rI)e '"'+a kf&" (r))e' "], (33)

where a I, and ak are the Usual creation and annihilation
operators and i) is the conformal time di)=dt/a(t), one
finds the solution of the k mode:

-'(~~) '"H~H"'—( k~) (34)

The index of the Hankel function H is v
=

4
—p/H, where H is the constant Hubble parameter

in de Sitter space. The short- and long-wave limits of Eq.
(34) are

y„=(2k)-'"Hqe '"&, kq-
fk =Hk '(2k) ', ki)~0,

(3&)

where the indices for the k modes of the perturbations
are omitted and 5R is given by

5R =6%+2(k /a )(2V —@)

for 5z and

'(/192vrG(1 —3M /R )/2kMH/a

for 5R. In the short-wave limit Eqs. (27) and (30) decou-
ple. Therefore, the phases are arbitrary. There remains
an additional initial condition. From Eq. (29) one can see
that the potentials N and 4 oscillate in the same way as
5R. Then in the short-wave limit from Eq. (28) it follows
N= —'(II; otherwise 5R would be damped proportional
a in contradiction to our assumption. That means the
perturbations are conformally flat. Of course, in the
linear perturbation equations all perturbations could be
multiplied by a constant factor without changing the re-
sults, but the relation 5zp/5Rp may influence the further
evolution.

Let us first consider adiabatic perturbations generated
during the infiationary regime (9) generated by the mutu-
al action of the scalar field and the R term with no break
of inflation. For this case, the result was already present-
ed in Ref. 10:

k3r hk =v'24rrGH(c, z+c2H/M), (37)

where h(k)=(2~) ~ Jh(x)e'""d x, k=l&l c, and cz
are two independent Gaussian random variables with
zero average and unit dispersion, and the quantities z and
H in the right-hand side are taken at the moment of the
first horizon crossing (k =aH) at the infiationary stage.
The quantity h(r) is the metric perturbation characteriz-
ing a growing adiabatic mode in the "ultrasynchroneous"
gauge where

ds =dt a(t)[1+h(r))—5,kdx'dx" (38)

for k «aH irrespective of the structure of the matter
energy-momentum tensor. The relation of h to the quan-
tities N and 4 in the longitudinal gauge is given by the
expression

aC= —4= —
—,
' 1 —— ad~ h,

a
(39)

valid whenever matter pressure perturbations are diago-
nal [5p,I, ~5,k and v, k/(aH) && l, v, =dp/de]. For
p =0 and a (t) ~ t~r, @=—4= —

—,', h.
Let cr(k) denote the rms value of k hk. Then

respectively, where additionally p «H, i.e., v= —', is as-

sumed. These considerations remain valid in the quasi de
Sitter stage of the inflationary cosmology, where H is a
slowly decreasing function. The limits (35) and (36) cor-
respond to the two limiting cases of a physical wave-
length much smaller than the horizon (A, «H ') and
much larger than the horizon (A, ))H '). Since A, =a/k
is an exponentially increasing function the transition
from one limit to the other is very rapid.

Let us now return to the problem of the initial values
of the perturbations 5z of the scalar field and 5R of the
Ricci scalar. Assuming that they arise from quantum
fluctuations one obtains in the short-wave limit damped
oscillations with amplitudes

i/4rrG /6k /a
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0. =24rrGH (z +H /M )~g

d incr

d ink
d lno. d lnH
d lna d lna

1 do. dz
2g2 dz2 d lna

H+ —'Mz(l —mz/H )2

3H'(z'+ H'/M')

Using Eqs. (8) and (9), we obtain

(40)

(41)

R term, it is not monotoneous. d lno. /d ink is always
positive at the subinfiationary stage (in particular, at
t =t, when H, =mz, and at the end of inflation), but it
may be negative during a part of the superinflationary
stage if H, /z, + —,

' M ( 1 —m z, /H, ) & 0.
If k =k is the point where o.( k) has a maximum anda, H, and z are the values of a, H, and z at the mo-

ment t = t when k =a H, then

It follows from the condition ~H~ (&H at the stage
(7)—(9) that ~d lno/d ink~ (&1. Thus, the spectrum of
adiabatic perturbations is approximately Aat (or, of the
Harrison-Zeldovich type). However, in contrast with the
cases of inflation driven solely by the scalar field or the

H =
—,'M ( I++I+8m /M )

m

It follows from Eq. (9) that

(42)

Zm Z1X '

—1/(2 —M /m )1+—'(2 —M /m )(+1+8m /M —1)
M&m&2,1+(2—M /m )H, /(M z, )

expI —
—,'(+5 —1)+H, /(M z, )], M=mV'2.

(43)

For a given M/m, the quantity Q =ln(a /a
&
)/ln(af /a& ) approaches its maximum

1++1+8m /M
max 2

—1/(1 —M /2m )
(2—M /m )(~1+8m /M —1)

4

1 —
—,'(&5+ 1)exp[ —

—,'(V'5 —1)]=0.128, M=m V'2,

for H&~0 (H& &(Mz&). Considered as a function of
M/m, Q,„ is maximal and equal to 0.134 at M = 1.98m.
Thus, the scale A, =a/k is far beyond the present-day
cosmological horizon if In(af /a

&
) ) 80.

Now we turn to the case of double inflation with the
power-law intermediate period between the two stages of
inflation described in Sec. VI. Let us consider a perturba-
tion leaving the horizon during the first inflationary
stage. After crossing the horizon it remains at a nearly
constant value. These values have a G aussian dis-
tribution with (5P ) =H /2k and ( M )
=192~GM H /2k ." This leads to the well-known
quasiflat spectrum of perturbations coming from the first
inAationary stage (and also for perturbations leaving the
horizon during the second inAationary stage). Note that
the phase between the two perturbations 6R and 6z also
influences the result. A phase shift of ~/2
(6R0=0, 6zo=0) gives a perturbation amplitude half as
large as in the case 6Ro=6zo=0. An interesting effect
comes into play if one considers perturbations in the
short-wave limit during the transition period, i.e., pertur-
bations with wavelengths smaller than the horizon at that
time. Then in Eq. (27) the right-hand side cannot be
neglected, but it acts as a source amplifying the oscilla-
tions of 6R. This amplification concerns only the behav-
ior of the 5R perturbations (and consequently the behav-
ior of the potentials &0 = —4) and not the scalar field per-
turbations 6z which are damped also during the transi-

tion period up to crossing the horizon. Figure 10 shows
the behavior of the scalar perturbations of the metric
during this period. Already before leaving the horizon
the relation N = —4 is not valid.

To obtain a spectrum of the perturbations crossing the
horizon during the first and second inflation and during
the transition period between them we have chosen pa-
rameters (I/M=0. 032,z0=6. 2) which lead to a long
transition period with oscillations of the Hubble parame-
ter, as was demonstrated in Figs. 8 and 9. The perturba-

/
V

I
1

I
I

FICs. 10. The behavior of the k modes of the scalar perturba-
tion of the metric N(t) and +(t) during the transition from R
inflation to scalar field inflation (for a wavelength within the
horizon).
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ink

FIG. 11. Spectrum of the scalar perturbation at the end of
the inflationary stage for wave numbers k corresponding to hor-
izon crossing between 60 and 50 e-foldings before the end of
inflation (m /M =0.032).

tions M and 5z are in phase (6Ro=5zo=0) and their
magnitudes are 5Ro/5zz-—12M. Figures 11 and 12 show
the logarithm of the rms value of the potential multiplied
by k as a function of the logarithm of the wave num-
ber for two different values of the coupling parameter e,
i.e., for different masses M. The parameter cx adopted in
Fig. 11 corresponds to a transition between both
inAationary stages accompanied by rapid oscillations of
the Hubble parameter, whereas Fig. 12 corresponds to a
smooth transition between the inAationary stages. Be-
tween the characteristic almost Aat parts of the spectrum
corresponding to horizon crossing within one of the
inAationary stages one sees a smooth transition from the
larger perturbations for long wavelengths to the smaller
ones for short wavelengths. In the case described in Fig.
11 this transition shows characteristic oscillations for
perturbations crossing the horizon at the end of the tran-
sition period.

VIII. CONCLUSIONS

We investigated the evolution of the isotropic cosmo-
logical model and small scalar perturbations on its back-
ground in the (R +R ) theory of gravity with a massive
scalar field. This combined model possesses the inter-

mediate quasi de Sitter (inflationary) asymptote (9) that
has an attractor property for a nonzero measure of all
solutions. The characteristic relaxation time to this de
Sitter stage is of the order of H

&
', the inverse Hubble pa-

rameter at its beginning. The de Sitter (inflationary) re-
gime may begin with the superinAationary expansion
(H )0) necessarily followed by the subinflationary one
(H & 0). The existence of double inflation, i.e., two
separate de Sitter stages with an intermediate period of
power-law expansion a(t) o- t ~ with small superimposed
oscillations, is possible, too, if m ((M.

The spectrum of adiabatic metric perturbations gen-
erated from quantum fluctuations of the scalar field P and
the scalar curvature R is quasiflat:

~
d ln

~
k Ii~ ~

/
d ink~ &&1 (i.e. , of the Harrison-Zeldovich type) in the
case of a single inAationary stage. The quantity
d ln

~
k hk ~

/d Ink is always negative for sufltciently
small wavelengths, but it may change the sign for those
large wavelengths which first crossed the horizon during
the superinAationary stage. However, both the
superinflationary region (H )0 at the first horizon cross-
ing) and the region where d ln~k hi, ~

/d ink )0 typical-
ly correspond to scales much exceeding the present-day
cosmological horizon. In the most interesting case of
double inAation, the perturbation spectrum has a charac-
teristic step (with increase of the amplitude to the direc-
tion of large A,). Small superimposed oscillations in the
spectrum appear in this case, too. In general, nonAat
Auctuation spectra can result from the combined action
of different scalar fields with complicated potentials, but
also double inAation in sixth-order gravity may be a
source of nonAat spectra. A spectrum with more power
on small k values could explain why one observes in the
Universe on large scales more structure than expected for
the scale-invariant Zeldovich spectrum. Indeed, some re-
cent observational results as the great attractor or the
cluster-cluster correlation function ' indicate extra
power in the spectrum on large scales.

Let us now discuss the question of whether it is possi-
ble to obtain "naturally" the break in the spectrum at the
right place (e.g. , at about 100 Mpc) and with right ampli-
tudes on small and large scales in our model. As already
mentioned in our model the place of the break depends
only on the initial value of the scalar field. Thus, we have
to choose

A

'v
CV

ln 10 —10~ z I
—42

m p) 27T
(4&)

FIG. 12. The same as Fig. 11 but with m /M=0. 078. (Note
that the scale of the ordinate is difT'erent from that in Fig. 11.)

where mp] 6 ~ The rather natural way to produce
such a value of the scalar field is the following. Let us use
the idea first proposed in Ref. 7 and assume that P=z =0
initially. Then, Gaussian quantum Auctuations of the
scalar field are generated during the first part of inAation
(that is driven solely by the R term in this case). The
rms value of z at the end of the first part of inAation de-
pends on HI —the value of H at the beginning of
inflation. We shall find, below, what value of H& is neces-
sary to obtain the correct typical value of zl given in Eq.
(45). Note that in Ref. 33 a low probability of double
inAation and an extreme fine-tuning of parameters is de-
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u= (H, H)~—G, , a',
2M 2M m

(47)

The limit is valid for H ((H, ; note that Eq. (47) contains
M instead of m as it would in the case of an equilibrium
("thermal" ) state of a massive scalar field in the de Sitter
background.

To have the right amplitude at the scale of 10 Mpc one
has to choose massive scalar particles with m =10 mp~.
The ratio 6 of the amplitude of the perturbations spec-
trum at small and large scales is given by

rived. But these results depend crucially upon the as-
sumption that the first inflationary stage starts at the
Planck density.

In the one-loop approximation the dispersion of the
fiuctuations of the scalar field u =(z ) is given by (see,
e.g. , Ref. 22)

2 2du GH 2mu z 2, 2

d lna 3~ 3

For light scalar particles m ((M one finds

M M
mz) 6. 5m

Any spectral distortions of the primordial fluctuation
spectrum are strongly restricted by the observed high
isotropy of the cosmic background radiation. In our
case, from the large-scale hT/T measurements one finds
6 (5. Taking 6=3, this implies M =20m =2 X20'
GeV. Thus, H& ——0.014mp&. The fact that H& appears to
be significantly less than the Planck value explains why
our conclusions upon the viability of double inflation
differ essentially from Ref. 33. Such a value of H& might
not be unnatural if an exact self-consistent de Sitter stage
with this curvature exists (e.g. , in the spirit of Ref. 1).
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