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Interference effects in the Schwinger pair-production mechanism
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Interference efFects in pair production by external fields via the Schwinger mechanism are investi-

gated. Electric fields consisting of two time-separated pulses are shown to be capable of producing
resonant behavior in the spectra of produced particles as a result of the interference between the
pair-production amplitudes of the two individual pulses. No a priori assumptions about the length
of the time interval between pulses relative to the individual pulse durations are made; the interfer-
ence feature is seen to exist even when the interval is comparable to the pulse widths. Several nu-

merical examples are examined.

I. INTRODUCTION

Pair production from a static electric field was original-
ly studied by Sauter, who carried out the calculation of
vacuum tunneling. An explicit expression for the pair-
production rate was obtained from the imaginary part of
the effective photon Lagrangian by Schwinger. He
determined that the rate could not be represented by an
analytic function of the electric field, thus explicitly
displaying the nonperturbative nature of the problem.
This problem has since been investigated through various
nonperturbative techniques by numerous authors.
The Schwinger pair-production mechanism and its exten-
sions continue to play a very important role in a number
of physical situations of current interest. Examples of
such situations are electron-positron pair production in
the low-energy (near Coulomb barrier) collisions of heavy
ions, measurements of beam luminosity and determina-
tions of beam stability in a relativistic heavy-ion collider,
energy deposition and quark-gluon-plasma formation in
ultrarelativistic heavy-ion collisions, and particle pro-
duction in Friedmann-Robertson-Walker expanding
cosmologies. '

In this article we want to focus on one particular as-
pect of pair production in background fields, namely, in-
terference effects which can lead to sharp resonances in
the spectra of the produced pairs. Cornwall and Tikto-
poulos have shown that strong classical electric fields
with certain kinds of space-time variation can create fer-
mion pairs which are strongly resonant in energy and
momentum. By explicitly solving the Dirac equation for
a step-function vector field, they have demonstrated that
rotation by an odd multiple of ~ of a free-particle solu-
tion to a free-antiparticle solution (and vice versa) yields
the desired resonant behavior. For more general time
variations of the electric field, they work the problem
"backwards, " i.e., by finding a smooth rotation of an-
tiparticle to particle and constructing from that rotation

the required smooth vector potential. In this article we
wish to provide a prescription for solving the problem
"forwards, " i.e., starting from the vector potential. A
qualitative discussion of how a resonant behavior in the
number density as a function of energy might arise is
given in Sec. II. In Sec. III such a resonant behavior is
quantitatively demonstrated by numerically evaluating
the time-evolution operator of the system. Section IV
contains a brief discussion of our results and conclusions.

II. RESONANT BEHAVIOR IN
PAIR PRODUCTION BY A TIME-DEPENDENT,

HOMOGENEOUS FIELD

where no sum over i is implied,

(k2 k2)1/2
0 i

and the operators

J+(k) =—g b t (k)d &~(k )u (k)y, v&(k ),
I a, p

J (k)=[J+(k)]
Jo(k) =

—,
' g [b (k)b (k) —d (k )d (k )]

(2a)

(2b)

generate an infinite number (one for each k) of SU(2)

In this section we wish to illustrate resonant behavior
in pair production by a time-dependent, homogeneous
electric field E(t), which is fixed in direction. We first
summarize some of the results of Ref. 6. The Hamiltoni-
an describing pair production in such a field is given by

k,II = fd'k 2 ko —eA; Jo(k)
0

epA;
[J+(k)+J (k)]

0
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algebras in the j =1 representation, all commuting with
each other. In the above equations the symbol k denotes
the four-vector (ko, k) and k denotes (ko, —k) and i is the
direction of the electric field. The evolution operator, to
be determined by solving the equation

. BU
'at (3)

(4)

where

e(k)= Ip +[A, —eA, (t)] I
'~2 .

In the above equations the gauge

Ao =0, A, (t) = —f . E,(t')dt'.

(Sa)

(sb)

is adopted. The evolution operator can be completely
determined by solving Eq. (4). (For further details the
reader is referred to Ref. 6). Equation (4) needs to be
solved with the initial condition

lim a2(k, t) =0 . (6)

Note also that the relation ~a, ~
+ ~a2) =1 is satisfied at

all times.
As shown in Ref. 6, the quantities which describe pair

production can be written in terms of the function
~c2(k)~ = ~lim, + a2(k, t)~. Then the probability of
creating fermion pairs per unit volume per unit time is
given by

, y —fd'k~c, (k)~2".
T(2')

Defining P„ to be the probability of creating n pairs with
any momenta, one can write the probability generating
function

g P„A,"=exp f d k in[1+(I,—1)~c2(k) ~ ]
2V

(21r )

from which the average number of pairs created is calcu-
lated to be

(n)=, fd'k~c2(k)~'.
(2~)'

is an element of the SU(2) group. Although this Hamil-
tonian is realized in a j = 1 representation, because of the
symmetry properties, it is sufficient to solve Eq. (3) in the
simplest irreducible (i.e., spinor) representation. In Ref.
6, it was demonstrated that the pair-creation process is an
indication of the deviations from adiabaticity. Rewriting
Eq. (3) in the spinor representation and in the basis of
adiabatic eigenstates yields

r

a 1 e(k) ipE/2e
dt a 2 i pE/2e—' —e(k)

given by

W= lim e(k, t) .

Choosing the z axis along the direction of the electric
field, we get

d&n)
d8'

2~ W&W2 —m'
(21')

X f d(cos8)ic2(W, cos8)i—1

(10)

T ) t2 & ti ) —T,
we assume that the field is turned on (off) when t = —T
(+T); the first crossing occurs when t, ) t ) —T and the
second crossing occurs when T ) t ) t2 with A (t) being
approximately constant for t2 & t & t, as depicted in Fig.
l. If there were only the single first (second) crossing
alone, then the effect would be to change the initial values
of a, =1 and a2 =0 to the final values a'," and a 2" (a', '

and a2' '), respectively. When these two level crossings
occur together as shown in Fig. 1, the values of a, and a2
at time Tare given by

which shows that the resonant behavior observed in the
number of particles produced per unit volume within a
given energy range is directly related to the resonant be-
havior of c2(k).

At this point, the resonant behavior in d ( n ) /d W
could be demonstrated by numerically solving for c2(k)
for various choices of the vector potential and using Eq.
(10) to generate the resulting spectra. We postpone the
numerical calculations until the following section and in-
stead investigate some general features of the interference
effect. We begin by examining the solutions of Eq. (4).
Initially, before the electric field is turned on, a i

= 1 and
a2=0. The quantity a2 will increase most significantly
when either e(k, t) attains its minimum value for a given
k, , i.e., when the condition k, =eA,.(t) is satisfied, or
when E(t) (the off-diagonal term) attains its maximum
value. For a monotonically increasing A (t) there can be
only one such "level-crossing" time t~ for each k;. jThe
time t~ represents an avoided level crossing in the Hamil-
tonian of Eq. (4); see Ref. 6.] Note that even if the mag-
nitude of the electric field decreases, A (t) could still in-
crease; an example would be a singly pulsed electric field.
On the other hand if A (t) fiuctuates in time then there
may be more than one "crossing. " We can gain some in-
sight into the question of how resonances appear in
d(n )/dW by considering the special case where A (t)
remains almost constant for a sufficiently long time (as we
quantify below) between two such points.

In the following discussion we assume that there are
two "level-crossing" times for a particular value of k;; the
generalization to three or more crossings is straightfor-
ward. Taking

We want to investigate the resonant behavior of the
quantity d(n ) /dW, the number of particles produced
with individual energies between 8' and 8'+dR'. The
final energy of each of the particles in the created pair is

a, (T)

a, ( T)

a'"ai
a (2)a2

e(2) a"'
2 ai

s(2) 0(t2~tl ) (1)ai a2

a*( )

0ai
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A(t)
h Op(rz, r, ) =

—ig (7.2, v I )

0

0
I'g (72, ~i )

e
(15b)

and 8', ( r, r, ) satisfies the equation

(16a)

I

I

I

I

I

I

t()
R

—k
1

where

peE 0
—2lg('T, V))—ie

2ig(w, r) )
ie

(16b)

When the electric field is well localized in time, the
Magnus method" provides a very good approximation as
we describe below. In this approximation B, is given by

Vl&(rz, w& ) =exp[ A (rz, xi )], (17a)

FIG. 1. An example of a vector potential which corresponds
to the type of electric field configuration considered in the text.

where

with

c4 (7 &z7 )ic4 i (7z~'ri ) + A z(rz, r& ) + (17b)

where the first matrix describes the evolution of the sys-
tem for tz ~t ~ T, U(tz, t, ) for t, ~ t ~tz, and the final
matrix for —T t t, .

During the time interval ti ~ t ~ tz, E(t) is very small
since A (t) is changing very slowly. This allows Eq. (4) to
be solved by treating the o6'-diagonal terms as a perturba-
tion. To first order in E (t) we find

A, (rz, r, ) = i f H,—(t)dt, (17c)
1

(r, ri) =,'(i)z f dt f 'dt'[H, (t),H, (t')], (17d)
7 ) 7

and so on. The evolution operator in this expansion
remains unitary even if the series in Eq. (17b) is truncat-
ed. The commutator in Eq. (17d) can easily be calculated
yielding

U(t„t, ) =
—ig(E2 f])

&Q(~P ~l )
e

(12)

[H (t) H (t')]='
ez( t)ez( t')

1 0
Xsin Q(t, t')

where we defined

Q(t, ti)= f e(t')dt'

and

pe ~ E(t') ziQ(t', t, )

'i e (t')

(13a)

(13b)

One observes that for a well-localized (in time) electric
field Az(rz, r&) is very small. (For the 5-function electric
Geld investigated in Ref. 3, the above commutator van-
ishes. ) Hence for such situations it is sufficient to trun-
cate the series after the first term. We obtain

a&
—az

In the following we ignore the slow variation of the
vector potential for tz &t) t, . Substituting Eq. (12) into
Eq. (11)we get

8(rz, r, ) =

where

a2 a&
(19)

~a( )a(i&e ' z' 1 +a s(z)a(1) '~ z'
c2 2 a) e a& az e (14)

—g( ... )
a, =e '

cos~I(rz, r, )~ (20a)

where Q (tz, t, ) = (tz t, )e Althoug. h the read—er would
already observe the oscillatory behavior in Eq. (14), we
would like to provide simple expressions for the quanti-
ties a&",. . . appearing in the above equation. These
quantities can be conveniently calculated in the Magnus
approximation.

In order to calculate the evolution operator 'M(r) for
the Hamiltonian in Eq. (4) we write

and

ig (72, 7.
i )

az = —e
'

e
'

sinlI(&z

with

—ip(~z, ~& ) z~ i

(20b)

(20c)

+(&z~ &i ) +p( rz~ &i )+i(&z~ &i ) ~

where

(15a) Note that the above results are exact for a 5-function
electric field. Finally inserting Eqs. (20) into Eq. (14)
after some algebra we get
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(21b)

It is instructive to look at various limits of the expres-
sion given in Eq. (2la). First let us consider the situation
where the initial and final pulses (electric fields) have
identical shapes. For definiteness, we consider the case
where A(r) monotonically increases as time changes
from —T to T although similar arguments can be made
for a monotonically decreasing A (t). In this case, A (t)
will be smaller for the first electric field pulse than for the
second one. Hence for lower values of k; (smaller values
of t~ ) the first pulse will cause level crossings, but the
second one will not (I(t„—T)AO, I(T, t2)=0). On the
other hand for larger values of k; (larger values of tz ) the
first pulse will not cause level crossings, but the second
one will (I (t„—T) =O,I ( T, tz )%0). Inserting those
values in Eqs. (20) and (21) it follows that one has a
double-humped spectrum of produced particles: one
hump at lower energies corresponding to the first pulse
and another at higher energies corresponding to the
second one. Since e6'ectively only one of the pulses will
be producing particles at a given energy, there will be no
interference pattern.

Next we consider the case where the strengths of the
initial and the final electric fields are the same, but their
directions opposite (the example considered in Ref. 3).
We will assume that A (t) increases near the first pulse
and decreases near the second one, but the arguments
also hold for the alternate choice. Hence, both pulses can
produce partic1es with a given energy and one gets

I(ti, —T)= I(T,t2)— (22a)

(the sign change is due to the opposite signs of the two
pulses) or

(22b)

which yields

~c2~ =sin Q(t2, —T)sin (2~I~) . (22c)

(c2[ =cos asin [(I(ti, —T))+(I(T,t2)[]

+sin asin [(I(t, —T)[ —(I(T,tz))], (21a)

where

considering two pulses rather difFerent in strength so that
the phases P( T, t2) and P(ti, —T) differ appreciably as W
increases. An alternative interpretation for this situation
was given in Ref. 12, where two oppositely directed
pulses are shown to act like two Fabry-Perrot time mir-
rors between which the electron wave is rejected back
and forth in time.

III. NUMERICAL ANALYSIS

2meEo
X exp e n

(24)

where
2 1/2

2xeEo+W —m +m (25)

The resulting number density is plotted in Fig. 2(b), and
as expected does not show any resonant behavior. The
salient features of this figure are easy to understand. As
stated previously, the most significant increase in a2(k, t)
occurs when the o6'-diagonal components of the matrix in
Eq. (4) are maximized. This is equivalent to the condi-
tions that the most favorable longitudinal momentum be
given by k; =eA (t,„)where t,„ is the time where the
electric field is a maximum and that the perpendicular
momentum be zero (since then e =p =m +k i ). Ac-
cording to Ref. 6, the final momentum along the direc-
tion of the field is then given by

In this section we quantify the qualitative arguments
given in the preceding section by numerically solving Eq.
(4). We first wish to emphasize that in the case where
only a single pulse acts, there is no resonant behavior ob-
served in the number density of the produced particles.
This can easily be seen from Eq. (14) by substituting zero
for either az" or az '. To illustrate this, we consider the
case where the electric field E (t) =Eosech at as shown in
Fig. 2(a). For this field it is possible to evaluate c2(k) us-
ing the semiclassical approach developed in Ref. 5. Us-
ing the result given in Eq. (4.9) of Ref. 6 one can also per-
form the integration in Eq. (10) to obtain

8'a
[[1—y(1)]e "'—[1—y( —1)]e ' "j

Vd8' eEo

In this case for a 5-function electric field the integral in
Eq. (13b) can be easily carried out yielding k,'~'=eA (t,„)—eA( ~ ), (26)

peEo
~cz~ -sin [W(tz —t, )]sin (23)

which leads to a most favorable particle energy of

W=+m [+e (At,„)—eA ( ~ )] (27)

which, except for kinematic factors, is the same result as
obtained in Ref. 3. Hence the number of particles per en-
ergy interval oscillates (first sine function) with a decreas-
ing magnitude (second sine function) as the energy in-
creases. Note that, in general, for such an oscillation to
occur it is not even necessary to have the electric field
zero over the region t2) t & t, . A sufFicient condition is
that the quantity 6 of Eq. (21b) changes significantly
(several times rr) as the energy of the produced pair in-
creases. It is even possible in principle to take ti =t2 by

From Fig. 2(a), it is seen that e A (t,„)=0 which leads to
a predicted peak in the number density at W =&10m, in
fair agreement with Fig. 2(b). The width of d(n ) IdW
can also be qualitatively estimated from the maximum
possible momentum which can be transferred from the
field to the produced particles. This is roughly given by
~eA ( —~ ) —eA ( ~ )~. In this particular example, a
width of b, W=&37m is predicted. This is also in fair
agreement with Fig. 2(b), although the kinematic cutoff
at low energy tends to skew the distribution.
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As a second example we consider two pulses of the
form E (t) =Eosech at and E(t)= —Eosech a(t to—)
suitably connected to provide a zero field region in be-
tween as depicted in Fig. 3(a). The resulting number den-

sity, evaluated by integrating Eq. (4) numerically, is
shown in Fig. 3(b). This electric field configuration,
which we qualitatively discussed in the preceding section
Icf. Eq. (23)], can be considered as a generalization of the
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FIG. 2. (a) Upper panel: the single pulsed electric field
E(t)=Eosech at. All the quantities are given in terms of the
mass of the produced fermions. In this figure eE0=3m and
a=m. Lower panel: the corresponding vector potential. (b)
The number density of produced particles as a function of ener-

gy for the electric field shown in (a).

FIG. 3. (a) Upper panel: the doubly pulsed electric field
E ( t ) =Eosech at —Eosech a( t —

to ). Lower panel: the corre-
sponding vector potential. The values of eEo and a are the
same as those used in Fig. 2(a) while to =6m '. (b) The number
density of produced particles as a function of energy for the
electric field shown in (a) ~
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I I I I

)
I I I I

I

I I I I

(a)

we qualitatively predicted in the preceding section.
As a final example we consider the combination of an

electric field of the type E(t)=Eosech at and another
one obtained from a Gaussian vector potential [Fig. 6(a)].
The resulting number density is plotted as a function of
the energy in Fig. 6(b) (the solid line). To illustrate the
interference efFect in this figure we also plot the number
densities obtained when the first (the dashed line) or
second (the dotted line) electric field acts alone. As ex-
pected [cf. Eq. (14)], one needs two pulses to obtain an in-
terference pattern.

1.0

0,8

0

I. . . , I

—5 0

Time (1/m)

10

(b)—
Total

First Pulse

Second Pulse

IV. DISCUSSION AND CONCLUSIONS

In this paper we discussed both qualitatively and quan-
titatively the conditions under which the number of par-
ticles produced in an external field with energies between
8' and 8'+d8' would exhibit a resonant behavior as a
function of 8'. An electric field consisting of two pulses
separated by a time interval comparable to the widths of
individual pulses yields such a behavior as a result of the
interference between the pair-production amplitudes of
the two pulses. It is also possible to understand the quan-
titative features of the spectra such as the number of the
peaks.

The reader at this point might ask if there is a connec-
tion between our work and the recent experimental re-
sults' on electron-positron pair production in heavy-ion
collisions, showing multiple resonances in the singles and
coincidence spectra. Indeed various theoretical explana-
tions of those events were given invoking interference
effects among different amplitudes. ' We feel that the
effects we investigated here typify the wealth of possibili-
ties of interesting phenomena in nonperturbative pair
production by external fields. As such, they merit a study
on their own. Interference effects in pair production can
also play a role in other physical situations ' in addi-
tion to heavy-ion physics near the Coulomb barrier. For
this reason we defer the discussion of the possible connec-
tion between this interference phenomenon and the
heavy-ion experiments. We nevertheless note that such a
connection would be hard to establish unless one takes
into account the spatial dependence of the e1ectric field as
well.
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