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Phase transition in Reissner-Nordstrom black holes
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It is argued that nonrotating electrically charged black holes present a nonequilibrium second-
order phase transition in the limit

~ Q~ ~M.

Soon after the discovery that quantum black holes
were thermodynamic objects possessing a well-defined
temperature T and entropy S, it was found that the heat
capacity of rotating neutral black holes,

MTS
CJ =— (Kerr), (1)

~J —T S
and nonrotating electrically charged black holes,

4MTS
C& = (Reissner-Nordstrom),

irQ 4T S—
suffer an infinity discontinuity and change their sign at
some given value of their parameters. ' Effectively, at the
"transition" point J =(2&3—3)' M and Q~
=(&3/2)M, the right-hand sides of Eqs. (1) and (2)
diverge.

This result was interpreted by Davies on a thermo-
dynamic basis as a second-order phase transition. How-
ever, as pointed out by Sokolowski and Mazur the na-
ture of such "phase transitions" is very unclear. The
event horizon does not lose its regularity and the internal
state of the black hole remains unaffected, whence it is
hard to see how these can be aptly named phase transi-
tions.

However, one may still wonder whether the black-hole
radiance is affected in some way by these "transitions, "
i.e., if at the "transition" points the second moments in
the fluctuations of the rates of emission of energy and an-
gular momentum or charge diverge or remain bounded.
In a previous work we used the Landau-Lifshitz hydro-
dynamic fluctuation theory to calculate the second mo-
ments in the fluctuations of the Auxes of energy and an-
gular momentum of a generic Kerr black hole. It turned
out that nothing special happened at the "transition"
point; however, we found that some second moments
diverge in the limit J~M, which corresponds to a max-
imally rotating black hole. This may be interpreted as a
phase transition from an extreme ( J =M ) to nonextreme
(j (M ) Kerr black hole. Effectively, that transition is
accompanied by a sudden change in the emission proper-
ties of the black hole. An extreme Kerr black hole is un-
able to radiate via spontaneous Hawking emission but
only via superradiant scattering, whereas a nonextreme
one gives off particles and radiation via both mechanisms.
Furthermore, unlike ordinary Kerr black holes the inner
and outer horizons become degenerate in the extreme
limit.

The target of this work is to analyze the Auctuations in
the emission rates of energy and electric charge of
Reissner-Nordstrom black holes. It turns out, on the one
hand, that some relevant correlations diverge in the ex-
treme Reissner-Nordstrom hmit ( ~Q~ ~M), which can be
seen as an indication that a true phase transition occurs
at that point. On the other hand, no second moment
diverges at the "transition" point ~Q~ =(&3/2)M. The
latter outcome supports the view that no true physical
transition can be ascribed to that point. These results
fairly parallel those of Ref. 4. In what follows, for the
sake of notational simplicity, we shall assume the charge
Q to be positive; the general case is recovered by taking
its absolute value.

To carry out our analysis we shall make use of the
rates of emission of energy and charge by very massive
and high electrically charged black holes. These, as cal-
culated by Hiscock and Weems, are

M = acto OT + —Q,
r+

(3)

3

2m Am

2r+
QQo

respectively. Here o. is a fairly constant quantity that de-
pends on, among other things, the number of massless
neutrinos species. If the number is three, o.=2.0228,
whereas if it is zero, o.=0.26792. oo is the geometrical-
optics cross section of the black hole and a =m /15% .
The quantity r+ =M +(M —Q )' stands for the radius
of the outer event horizon, QO=A'e/arm with e and m
the charge and mass of the electron, respectively. An
upper dot means temporal derivative. The temperature is
given by

A

277 I" +

with A = (M —Q )
' . The first term on the right-hand

side of Eq. (3) accounts for the emission of massless parti-
cles (neutrinos, photons, gravitons) while the second one
accounts for the coupling between the emission rates of
mass and electric charge.

These rates were derived under the following assump-
tions. (i) The rate of emission is so slow (r+ ))QQO,
T «10 ' eV) that neither the mass nor charge of the
hole vary appreciably on a geometrical time scale ( =M).
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(ii) The black hole is in isolation so there is no surround-
ing medium accreting onto the black hole; otherwise the
hole charge would neutralize quickly. From the astro-
physical side this is not a realistic situation but it makes
no dift'erence for our purposes. (ii) The black-hole mass is
so high (M))go) that the emission rate of charge is
overwhelmingly due to electron-positron pair creation
and well described' by the corresponding Schwinger for-
mula. It is obvious that these rates must experience
spontaneous Auctuations around their quasi-steady aver-
age value —given by the right-hand sides of Eqs. (3) and
(4), respectively. To calculate these fluctuations we shall
resort to the Landau-Lifshitz theory, which applies to
situations such as this one, a slow varying process not far
away from thermodynamic equilibrium. The latter
means that the generation of entropy

&5M5M&= AooT 4

+B exp
T+ QQO

2r+

(10)

Eq. (9) is to ensure that correlations between independent
Auxes vanish.

To determine the second moments in the Auctuations
in the cruxes of mass and electric charge we add a sto-
chastic term 5M and 5Q to the right-hand sides of Eqs.
(3) and (4), respectively, and combine the resulting rela-
tionships with Eq. (6). The standard procedure leads to

S=2~ (r+M —QQ )

ks Q~
&5Q 5Q &

= — BA exp
'77 7' +

2r+
Qgo

is very small.
According to Landau and Lifshitz, if the Aux x; of a

given thermodynamic quantity x;, which is varying in a
general dissipative process, is governed by

x, = —Qr; X, +5x;
J

and the entropy rate by

S= g (+X;x;),
1

then the correlations in the fluctuations of the Aux obey

& 5x, 5x, &
=k, (r„+r„)5„.

Here and throughout, the angular brackets denote a sta-
tistical average with respect to the steady value &x; &

whence &5x; & vanishes. The quantities 1," and X indi-
cate the phenomenological transport coeScients and the
thermodynamic forces respectively. The Kronecker 6 in

&5M5Q &
= &5g5g&, (12)

where B:—e /2m. Rm~.
Note that at the "transition" point nothing special

happens; that is to say, these fluctuations remain bound-
ed. However they tend to vanish in the limit Q —+M.
This is a very interesting property, since if it were not
met Q could get bigger than M, causing the event horizon
to disappear whence the singularity inside the black hole
would reach a causal connection with external observers.
Accordingly, the constraint Q ~M can be viewed as a
boundary condition. It is well known in hydrodynamic
and electric systems that the autocorrelations vanish
when a relevant parameter in the Auctuating system at-
tains a boundary value. An analogous behavior can be
found in Kerr black holes. "

The second moments in the entropy and temperature
rates are easily calculated from Eqs. (6) and (5). We get

&5S5S&=
2

(r+ &5M 5M &+Q &5Q 5Q &
—2r+Q&5M 5Q &), (13)

&5T5T&=
2

( [M (M —A) —2A ] & 5M 5M &(A —M) Q & 5Q 5Q &

2wAr+

+2[M (M —A) —2A ](A —M)Q & 5M 5Q & ), (14)

&5S5T& = (r+[M(M —A) —2A ]&5M 5M &
—(A —M)Q &5Q 5Q &

—[2M +A —MA]Q&6Q 5M &) .
A r+

Bearing in mind that the second moments given by
Eqs. (10), (11), and (12) are proportional to A and that in
the limit Q ~M one has A~O and r+ ~M, one immedi-
ately realizes that in that limit the right-hand side of the
last three equations diverge. From statistical mechanics
it is well known that phase transitions are usually accom-
panied by the occurrence of divergences in some relevant

I

second moments. Accordingly, one may think that
these divergences correspond to a nonequilibrium
second-order phase transition from extreme to nonex-
treme Reissner-Nordstrom black hole. This conclusion
seems reasonable since, on the one hand, no divergences
are found in any of the second moments for Q (M, and
on the other hand, extremely charged spherical black
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holes differ radically from nonextreme ones in their way
of emission. While the former radiate only via superradi-
ant scattering, as Hawking spontaneous emission is
suppressed ( T=O), the latter emit via both mechanisms.
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