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Coalescing compact binary systems are important sources of gravitational waves. Here we inves-

tigate the detectability of this gravitational radiation by the recently proposed laser interferometers.
The spectral density of noise for various practicable configurations of the detector is also reviewed.
This includes laser interferometers with delay lines and Fabry-Perot cavities in the arms, both in
standard and dual recycling arrangements. The sensitivity of the detector in all those configurations
is presented graphically and the signal-to-noise ratio is calculated numerically. For all
configurations we find values of the detector's parameters which maximize the detectability of
coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects.
Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which il-

lustrate the interferometer's response to coalescing binary signals.

I. INTRODUCTION

Long-base-line laser interferometers are currently be-
ing proposed for the detection of gravitational waves by a
number of experimental groups —see Ref. 1 for a review.
The optics of the interferometers may be arranged in
various ways: Both delay lines and cavities may be used
with either standard, detuned, dual or resonant cy-
cling. This enables the spectral density of noise in the
interferometer to be optimized according to the gravita-
tional signal to be detected.

Recently, one of us has derived a single formula
describing the frequency response of a gravitational-wave
detector which is valid whether the interferometer con-
tains delay lines or cavities, whether or not recycling is
used, and whether the recycling arrangement is standard,
detuned, or dual. In this paper we shall discuss the
detectability of an important source of gravitational
waves recently discussed in the literature: coalescence of
binary-star systems consisting of neutron stars or black
holes. With the aid of the formula just mentioned, we
calculate numerically the signal-to-noise ratio that can be
achieved with an optimum filtering of the data for the
possible optical configurations of the interferometer. We
also determine the parameters that maximize such
signal-to-noise ratio for each optical configuration. We
do not discuss explicitly the case of detuned recycling
since this arrangement has already been investigated;
furthermore, dual recycling is both more flexible and
gives better performance.

The plan of the paper is as follows. In Sec. II we sum-
marize the derivation of the general transfer function of
the laser interferometer applicable to all configurations of

the instrument and we give the spectral density of the
photon-counting noise. We assume that this will be the
dominant noise in the planned long-base-line interferome-
ter for frequencies above 100 Hz. In Sec. III we give ap-
proximate analytical formulas for spectral densities of
noise for various configurations of the detector. In Sec.
IV we give the numerical analysis of the sensitivity (in-
verse of the spectral density) of the detector. In Sec. V
we briefiy review the problem of detection of coalescing
binaries with optimal filtering. We evaluate numerically
signal-to-noise ratios for all optical arrangements of the
detector. We find the optimum values for various param-
eters of the antenna: reAectivities and transmissions of
mirrors, tunings of cavities, and number of bounces in the
delay lines. We present our results on a series of contour
plots so that the signal-to-noise ratio for any detector can
be read off. In Sec. VI we discuss the implications of
these results for the detection of coalescing binaries and
make a few concluding remarks. Numerical values of the
parameters of the detector apply to the proposed joint
German-British interferometric gravitational-wave detec-
tor. '

II. FREQUENCY RESPONSE
OF INTERFEROMETRIC
GRAVITATIONAL-WAVE

DETECTORS

The basic optical arrangement of these systems is
shown in Fig. 1. A suitably polarized gravitational wave
induces opposite length changes in the two arms of the
interferometer, producing phase shifts on the sensing
light which are converted into intensity changes by in-
terference at the beam splitter. These intensity changes
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FIG. 1. Optical arrangement of an interferometric
gravitational-wave detector. The Michelson interferometer
detects induced phase differences, which are made larger by the
multiple-bounce system formed between mirrors M& and M2.
Standard recycling places mirror Mo to recycle the laser power,
while dual recycling adds M3 to recycle signal sidebands.

constitute the gravitational-wave signal.
We shall consider a single Fourier component of a

gravitational wave, which we will regard as phase modu-
lating the light to give two sidebands. The interferometer
is arranged so that when the light beams from the two
arms meet at the beam splitter, the original laser frequen-
cy heads back to mirror M0, while any sidebands pro-
duced by differential phase modulation travel toward
mirror M3 and the output of the interferometer. The
mirrors M0 and M3 will, in general, have different rela-
tive positions and reAectivities which must be taken into
account when calculating how both laser light and side-
bands resonate. So the sideband amplitude emerging
from the output mirror may be found if we regard the op-
tical system as consisting of a split cavity, in which the
laser frequency and sidebands experience different
reAectivities and optical lengths. The signal in this case is
just the emerging from an equivalent single cavity with

I

(composite) input mirror Mi, and end mirror M2, length
L. The input mirror has amplitude reAection and
transmission coefficients R i„T„for the carrier (laser fre-
quency) and R i„Ti, for the two sidebands (we will only
consider the usual case of R, + =R, ). The end mirror
has reAectance R2 for all frequencies. It is the interpreta-
tion of R &„R„,etc. , that determines the optical system
to which the results apply.

For a simple delay line system with no recycling
R

&

=R ]
=0 R 2 is the reAectivity of the whole delay

line and L must be regarded as the optical length of the
delay line. If there are N reAections in the delay line,
then L is approximately N times the physical length l of
each arm of the interferometer. If standard recycling is
used, the carrier reAectivity R&, is just equal to the
reAectivity of the recycling mirror M0, while in dual re-
cycling it is M3 that determines the sideband reAectivity

R1, .
In a cavity system, R2 is just the reAectivity of the end

mirror and L is the length of the cavity. With no recy-
cling, R

&
is frequency independent —it is simply the

reAectivity of the cavity input mirror. In standard and
detuned recycling, R &, is determined by the combination
of M0 and M&, which form a cavity. In dual recycling,
R „is determined by the combination of M, and the out-
put mirror M3.

Let us consider a gravitational wave of optimum polar-
ization, amplitude h0cos~t, incident on the antenna. In
order to calculate the effect that this has on the light in
our equivalent cavity, we will regard the light as being
the sum of many beams, each of which has experienced a
different number of reAections in the cavity. We will first
determine the inAuence of the gravitational wave on one
beam, then add the contributions from all the beams.

If the transit time of one beam is ~, the differential
phase shift 5P induced on the light in one round trip is

ho~L
5P = ~Lhocoscot dt = sin

CO 2
e +ei co( t —v./2) i

—i co( t —~/2) (2.1)

where we have used the exponential representation of cosset and mL is the angular frequency of the light. The effect of
this phase shift is to multiply the field by e' ~= 1+i5$ producing a sideband-field offset by +co from the laser frequen-
cy. The total sideband field is found by adding the contributions generated in each bounce; taking just the +co field E+
emerging from the cavity,

h 067 L—lT1c T]sR2 Sln (R„R ) 'e ' g (R„R e '"')" 'e
N=1 n=1

(2.2)

where E0 is the incident laser field and 6 is the phase offset of the cavity from resonance: 5, is that for the carrier, 6,
that for the sidebands. The e '""' term reAects the change in phase of the signal over the history of the light stored in
the cavity. Summing the series gives

F+ /Ti Ti R2hoML Sln(COG l2)e e
i (5 +5, —co~)

E i5 i(5, —co~)
0 co(1 —R „R2e ')(1—R „Rze '

)

which may be rewritten as

(2.3)



2472 A. KROLAK, J. A. LOBO, AND B.J. MEERS 43

ice(t +7.i2) i5 i(n, —~~)
E+ iT„T„Rzhocol sin(cow/2)e' ' (e ' —R &, Rz)(e ' —R &,R2)

co(l —R &, Rz) (1—Rz, Rz) (1+F,'sin 5, /2) I 1+F,'sin
I (5, —cow)/2jI

where

(2.4)

4R 1cR 2 4Fs

(1—R„R2)
4R1,R2

(1—R„R2)
(2.5)

and F is the ftnesse of the cavity. It is always optimum to arrange for 5, =0, corresponding to an isolated cavity being
on resonance or maximum power buildup in a recycled system. With this choice, (2.4), simplies to

Eo

i (6, —CO7. )
i T„T&,R2hocol sin(cow/2)e'""+' ' e ' —R &, R2

co( 1 —R ),R2)(1 —R ),R2) I 1+F,'sin
I (5, —cow)/2] I

(2.6)

The expression contains virtually all of the information we need (for the other sideband, co~ —co). For example, the
enhancement of the sideband amplitude by the choice of 5, =cow (as in dual and detuned recycling) can be seen.

The sidebands are detected by beating them with a local oscillator field EI to produce an intensity change AI:

KI=(EI +E++E )(El*+E++E*), (2.7)

where an asterisk denotes complex conjugation. The fluctuating intensity 6I is

I EI E+ +EI E —+EL E+ +EL E (2.8)

EL may be an external field or may be some of the internal field which is allowed to leak out. For simplicity, we will
take EL to have the original laser frequency and to be in the quadrature phase (as an internal field would be). Insertion
of (2.6) into (2.8) then gives, after some considerable algebra,

4EDEL T„T„R2hocol i cor 2) 5, +co
1+F,'sin

co(1 —R) R2)(l —R) R2)
' 2

2F,
X sinco t + —sincor cos5, + (cos5, —coscor )

2 ~2

~s CO'T

1+F'sin
S

+cosco t +—
2

2F, 2Fs
(cos5, coscor R„R~ )

—1+ (1—cos5, coscor) + sin 5, sin cor
7T'

(2.9)

(2.10)5I(co) =K(co)h (co),
where a tilde denotes the Fourier transform and h(co) is the Fourier transform of the signal. Taking the Fourier trans-
form of Eq. (9) and performing lengthy algebra we get the following expression for the transfer function:

2

This expression gives the intensity change at the output of the interferometer as a function of the gravitational-wave
frequency co for any combination of d tector parameters. In our investigation we shall need the transfer function K(co)
of the detector, which is defined as,

IK(co)I =IQILR 7 V

where

co% D
2 M+M

(2.11)

T2
I,=2IE, I',

1c 2

2
T1s

(1 —Ri, R~)
(2.12)

V, and V, are the standard and dual recycling factors, re-
spectively. Also,

I

The spectral density SI(co) of the light intensity 5I(t) at
the photodiode is given by the formula'

$7+6
M+ = 1+F'sin

S 2
(2.13) S,=4~ I, ,

Ac

I.
(2.15)

5,+F'sin
S

sin 6,
(1—Ri, R~)

D = 1+F,'sin cos6,

(2.14)

where I, is the rms intensity of the light at the photo-
diode, kl is the wavelength of the laser light, and A is
Planck's reduced constant.

By formula (2.10), the spectral density S~(co), referred
to the dimensionless amplitude of the gravitational wave,
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is given by

Ac
(2.16)

coefficients are then

TO T1
T1

oR1
1+F0sin

—1/2

(2.21)

In our case, where we assume that the light power on the
photodiode is dominated by the local oscillator, I,=II.
Taking a quantum efficiency g of the photodiode, we get
the following expression for SI, .

+S (co)= R V 74' rIIoc sin (row/2)

(2.17)

The above formula is a little complicated, but this is a re-
sult of its genera1ity.

In Table I we summarize how one can obtain the spec-
tral density Sh(co) for particular configurations of the
detector. We assume that each mirror has the same losses
A, and we have the basic relation

T3 T1
Tls

1 —R3R1

—1/2
53

1+F3sin
2

(2.22)

where Fo =4ROR, /(1 —ROR, ) and

F3 =4R3R ) /(1 —
R3R ) ), Fo=(vr/2)QFO,

F3=(n/2)+F3, and 50 and 53 are the finesses and
offsets of the power recycling and signal recycling cavi-
ties, respectively.

If the interferometer cavity is run on resonance (as an
isolated cavity), then the isolated recycling cavities
should be off resonance (as an isolated cavity), then the
isolated recycling cavities should be off resonance in or-
der to behave as perfect mirrors, i.e.,

60=53=m .

R +T+A =1 (2.18) In this case,

where R and T are amplitude reAection and transmission
coefficients, respectively. In the case of end mirrors, we
have the relation

To T1 T3 Ti
Tlc 1+R R 1sT (2.23)

R,„d=(1—3 )' (2.19)

If we are recycling, the standard recycling factor can al-
ready be optimized independently of the signal, and we
have the following optimum value for R1, .

R „,„,=R~(1 —A (2.20)

If cavities are used in the arms of the interferometer, then
the recycling mirrors are also cavities. The transmission

TABLE I. Summary of the various parameter settings in gen-
eral formula (10) in order to recover all possible detector
configurations. These are determined by mirror reAectivities
and cavity offsets. Note that, for recycled systems, an optimiza-
tion of R „is assumed.

This allows the correct recycling mirror to be deter-
mined.

Only in detuned recycling are the (isolated) interferom-
eter cavities run off resonance. If the power in the inter-
ferometer is to be kept high (i.e., 5O=O), the recycling
cavity must then be operated nearly on resonance. How-
ever, this means that the power in the recycling cavity is
greatly increased, thereby enhancing the significance of
any losses there; our assumption that the losses are dom-
inated by the cavity mirrors is probably unjustified in this
case. ' Since our analysis has shown that dual recycling
has exactly the same shape of frequency response as de-
tuned recycling, it would seem that dual recycling gives
the best performance and greatest Aexibility. Therefore,
in the following we shall not consider detuned recycling
any more.

III. APPROXIMATE ANALYTICAL FORMULAS

Cavities
~=2l /c,

R =(1—A )'

R„=Rl
R„=Rl

5, =0

Delay lines
~=NI/c,

R, =(1—~')~"

No recycling

RI, =O
RI, =O
5, =0

In the numerical analysis of signal-to-noise ratio
presented in the following section, we have used the exact
formula (2.17) for the spectral density of noise in the
detector. However, for specific configurations of it, it is
both possible and useful to obtain transparent analytical
formulas which describe the frequency response of the
antenna. We will summarize some of these formulas
below.

Standard
recycling

Detuned
recycling

Dual
recycling

R&, =R,
General
Formula

RI, =RP
RI, =R3

Recycling
R&co t=R2(1 —A

Rl, =Rp
Ri, =RI Rl, =O

5, =0 5, =0

A. No recycling

I. Cavities

(3.1)

For a nonrecycled detector using cavities in the arms,
the noise spectral density takes on the form

4m.%XI
Sq(~o) = f, 1+

gl, c
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where the characteristic corner frequency f, of the cavity
is given by

(1 —R iR2)c
4~l

(3.2)

2. Delay lines

For a nonrecycled detector using delay lines in the
arms of the interferometer, the noise spectral density is

vrfikL (f /fd )

sin (f /fd)
(3.3)

where the characteristic frequency of the delay line is

(3.4)

Here —and henceforth —we will use the frequency f
rather than the angular frequency co; they are related by
co=2'. We have assumed a detector size small com-
pared with a gravitational wavelength, 27rfL /c ((1,
which is accurate for the proposed detectors.

Sh(co) =

(3.7)

Two modes of operation may be distinguished: a
broadband operation, where the signal recycling cavity is
made resonant for the original laser frequency (5, =0)
and the bandwidth of the signal recycling cavity is corn-
parable to the observing frequency, so that both signal
sidebands are present; and a narrow-band operation,
where the signal recycling cavity is tuned to one signal
sideband (6, =+cur), thereby allowing a high finesse, and
so there is an efficient signal buildup at one frequency.

In the broadband mode, interferometers using cavities
and delay lines with f« fd have the same frequency
response: simply that given by (3.5) with f, = (2F,r)

In the narrow-band mode, detectors with cavities and
delay lines again have the same response as long as
f« fd. If the bandwidth is fairly narrow, the spectral
density of noise for a system tuned to fo is

2
cA (rrrb f)

ilIoc 4~l ~ref —crA /l
2

X 1+4

X being the number of rejections in the delay line.
where

B. Standard recycling

1. Cavities

ir~~L C+2 ff, 1+
r)Ioc ~l ' f, (3.&)

In this broadband operation mode, optimum sensitivity
of the antenna to a given frequency f =f„„,„ is achieved
by arranging mirror reflectivities so that f, =f„,„,h.

2. Delay lines

If the optical losses are dominated by absorption and
scattering at the cavity mirrors (of loss coefficient 2 ),
then the power buildup inside the recycling system is
maximized, for any cavity, by choosing the recycling cav-
ity to have a transmission T &, =23 . This yields a spec-
tral density

(3.8)

bf=
F,w

(3.9)

Af is the full width at half maximum (FWHM) band-
width, and so the bandwidth is just the inverse of the sig-
nal storage time. Different transmissions of the signal re-
cycling mirror give different signal storage times (F,r)
and so different sensitivity-bandwidth combinations.
This is illustrated in Figs. 2 and 3. The minimum noise at
the center frequency fo is obtained by choosing
2rrrb, f=crA /l, Ti, =23 . The optimal detection of
broadband signals, such as those from coalescing
binaries, will require a somewhat broader bandwidth; the
precise determination of the best combination of peak
sensitivity, bandwidth, and tuning frequency will be the
subject of Sec. V.

(f/f„)'
fd . ,gj„c vol sin2(f/fd)

(3.6)

The minimum noise spectral density in this case occurs at
f=1.2fd.

C. Dual recycling

The frequency response of detectors using dual recy-
cling is, in general, more complicated than those with no
signal recycling. Crood approximations to the frequency
response may, however, still be found in special cases.

The power buildup within a delay line interferometer
with X reflections is, if the losses are mainly at the delay
line mirrors, optimized by choosing a recycling mirror
transmission To =%A . This gives a noise spectral den-
sity of

IV. GRAPHICAL ANALYSIS
OF THE SENSITIVITY FUNCTION

In this section we give plots of the sensitivity function
S(f), defined as the inverse of the spectral density Sh(co).
We have assumed that the length L, of the arm is 3 km
and that the losses in the mirrors are 2 = 5 X 10

In Figs. 2 and 3 we have considered cavities. In Fig. 2
we plot the sensitivity function for several values of the
tuning frequency fo, keeping transmission T„ fixed. We
find that the tuning of the signal recycling cavity deter-
mines the resonant frequency in accordance with formula
(3.8). In Fig. 3 we plot the sensitivity function for the
case of standard recycling and dual recycling with a fixed
value of the frequency fo. The function is plotted for
several values of the transmission coefficient T„of the
signal recycling cavity, and we find that the smaller the
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SENSITIVITY FUi'CTIDN
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FIG. 2. Sensitivity function (in arbitrary units) vs frequency for narrow-band dual recycling implemented in a Fabry-Perot inter-
ferometer. The effect of tuning the signal recycling cavities is shown for three values of the tuning frequency: f0=107, 500, and 1000
Hz. The transmission of the signal recycling mirror has been chosen T'„=6 X 10,whereby the FWHM bandwidth is b,f=6.0 Hz.
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FIG. 3. Sensitivity function for the same device. In this case curves have been plotted for di6'erent values of the transmission of
the signal recycling mirror with a fixed value of the tuning frequency fo=107 Hz. The FWHM bandwidth increases with
transmission —respective values are b,f= 6, 12, and 21 Hz. Eventually, when no signal recycling is present (T„=11, one recovers the
standard recycling sensitivity curve, which is also shown.
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transmission of that cavity the narrower is the band-
width, in accordance with the approximate general for-
mula (3.9).

In Figs. 4 and 5 we have considered delay lines. In Fig.
4 we plot the sensitivity function for the case of standard
recycling and that of broadband dual recycling (5, =0)
for several values of the transmission T3 of the signal re-
cycling mirror. In Fig. 5 we consider tuned dual recy-
cling corresponding to 30 beam refIections within the de-
lay lines. Plots are shown for a number of different
values of the transmission coeKcient T3 of the signal re-
cycling mirror and the tuning frequency fo. We find that
the smaller the transmission T3, the narrower the band-
width, in agreement with the approximate general formu-
la (3.9). We also note that the offset of the signal recy-
cling cavity (in this case made up of mirror M3 and a de-
lay line which can be considered as equivalent to a mirror
with refiectivity R 2) determines the resonant frequency in
accordance with formula (3.8).

V. OPTIMIZATION OF SIGNAL-TO-NOISE
RATIO FOR COALESCING BINARIES

IN A LASER INTERFEROMETER

To maximize the detectability of gravitational-wave
signals in noise, we use optimal filtering. A standard re-
sult from the statistical theory of signal detection is that,

if the noise is Gaussian, the filter that satisfies the
Neyman-Pearson test is a linear filter whose Fourier
transform is the Fourier transform of the signal divided
by the spectral density of noise —see Ref. 9, Chaps. 3 and
4 for details. The Neyman-Pearson test is a test that
maximizes detection probability subject to a certain
chosen false-alarm probability.

The signal-to-noise ratio S/N that can be achieved
with the optimum filter satisfies

(SIX) =2f df,
o $~(f)

where ~h(f) is the power spectrum of the signal. This is
a most important parameter since it determines both the
detection and false-alarm probability density functions.
These are Gaussian distributions with Uariance equal to
(SIX) and with mean equal to (SIN) and zero, respec-
tively (Ref. 9, p. 119).

The characteristics of the gravitational-wave signal
from coalescing binaries to post-Newtonian order have
been investigated by one of us. ' '" It was shown that for
frequencies up to several hundred hertz the rms values of
the gravitational-wave amplitudes to first post-Newtonian
order are accurately described by the formulas quoted

SENSITIVITY FLiN("TION

18-3

Frequency (Hz)

FICx. 4. Sensitivity function for broadband dual recycling in a delay line interferometer. The frequency offset is zero and 15 round
trips of the laser beam have been assumed —the number of reAections in the mirrors is taken as %=30. Curves are provided for
different transmission coefficients of the signal recycling mirror, including Tz= l, which corresponds to standard recycling.
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SENSITIVITY FUN(:TIQN
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FIG. 5. Narrow-band dual recycling sensitivity function for a delay line interferometer. 30 beam reAections on the mirrors have
been assumed again, and the effect of tuning the system for frequencies fo = 107, 500, and 1000 Hz is shown. Different curves are also
provided to illustrate the effect of changing the transmission of the signal recycling mirror for each value of fo. Standard recycling
sensitivity is also represented for comparison.

below:

(h, ) =3.94X 10 "pomof iooR &oo(~mo/mo)

( h, ) = 1.02 X 10 "porn oi f ioioR ioo

X [1—0.034(1—0.514poymo)(mof ioo

(5.2)

(5 3)

( h3 ) =9.15 X 10 pomof iooR too(~mo~mo)

(hc) =3.24X10 po(mof too) R too(1 3pomo)

(5.4)

(5.5)

The subscripts 1, 2, 3, and 4 in the amplitudes denote
that they correspond to waves coming at 1, 2, 3, and 4
times the orbital frequency, respectively; po, mo, and
5mo are the reduced mass, tota1 mass, and difference be-
tween masses of the components of the binary, expressed
in units of the solar mass, respectively; f&oo is twice the
orbital frequency in 100 Hz, and R&oo is the distance
from the detector to the source in 100 Mpc. The dom-
inant part of the amplitude ( h2 ) comes from the quadru-
pole radiation given by the standard quadrupole formula;
the remaining terms in all the above formulas are post-
Newtonian corrections. It should be remembered that
the number of events within 100 Mpc is estimated to be
about three per year. '

=7.97po mo f iso 1 0 ~ 030 1+
1.24po

mo

X (mof 1oo )

(5.6)

We expect that the shot-noise function Sh (f )—as given
by Eq. (2.17)—will accurately represent the dominant

The above expressions for amplitudes correspond to
rms averages over orientations of both source and detec-
tor, as we11 as over a period of the binary —see Ref. 11
for details. It is relevant at this point to note that, if one
were lucky enough that the gravitational wave impinged
on the detector in optimum orientation conditions, i.e., a
wave vector orthogonal to antenna plane and linear po-
larization matching the interferometer's arms, then the
above values would be increased by a factor of &5.
While the averaged amplitude (h2 ) is appropriate when
considering coincident detection by a network, this possi-
ble enhancement of the amplitudes of the post-Newtonian
components seen by a single antenna may significantly
improve their detectability.

The characteristic time for the change of the period P
of the binary, due to the radiation reaction, is given (in
seconds) by
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type of noise only above a certain frequency. Below it,
other sources of noise (such as thermal and seismic noise)
will be more important, and therefore Eq. (2.17) cannot
be assumed to describe correctly the noise down to f=0.
We will adopt the simplest model for low frequencies,
namely, that the noise is infinitely large for frequencies
below a certain cutoff f,:Also, above another frequency,
the tidal effects will start to inAuence the evolution of the
binary system; this happens when one of the components
of the binary fills its Roche lobe. Then, depending on the
masses of the members of the system, the component that
fills its Roche lobe either undergoes immediate tidal dis-
ruption or there is a How of its mass through the
Lagrange point to the other component. ' According to
the estimates of Clark and Eardly, for typical neutron-
star binaries, this happens for orbital frequencies above
400 Hz —i.e., for dominant gravitational-wave signals
above 800 Hz. Therefore, in our evaluation of signal-to-
noise ratios, we shall also introduce an upper cutoff' of
800 Hz.

To calculate the signal-to-noise ratio given by formula
(5.1), we need to evaluate Fourier transforms of the gravi-
tational waves with the amplitudes given above [formulas
(5.2) —(5.5)]. In general, the gravitational-wave form h (t)
is given by

h (t)= A(f (t))cos 27r J f (t')dt' (5.7)

In our case, for frequencies up to several hundred hertz,
the frequency of the wave f (t) is a slowly varying func-
tion of time. One can then use the following approximate
formula for the modulus of the Fourier transform of h ( t):

lh(f)l = & (f)/"]/4f, (5.&)

(5.9)

Using the latter formulas and the expression for the spec-
tral density of noise in the interferometer, given in Sec.
II, we obtain the following results for signal-to-noise ra-
tios corresponding to various gravitational wave ampli-
tudes [subscripts in (S/N) correspond to subscripts in
the average amplitudes ( h, ) ]:

Smo
(S/N)] = 0.2530

mo

1/2 2/3 2

(5.10)
f,",,',

'

1/2 1/3 2

(S/N)2= 12.0940 po mo J2
R ioo f,', ,

1/2 2/3 2
po mo 3

R ioo f, ,

1/2 1/3 2

(S/N)4= 0.3820
Rioo f, ,

mo
(S/N)3= 1.71 A 0 mo

(5.1 1)

(5.12)

(5.13)

where f, is the frequency cutoff in 100 Hz and
100

where the dot denotes a derivative with respect to time.
In our case it is convenient to express lht l

in the follow-
ing form, where I stands for number of orbital frequen-
cies:

0.514 pm
. 1/2

~ I 1/2

50 W
(5.14)

Here M+ and D are given by formulas (2.13) and (2.14),
and we have written co7./2=7rf]oor 2, with f,oo the
signal's frequency in 100 Hz and ~ 2 given in hundredths
of a second. V„ t is the maximum value of the recycling
factor, given by R], =R2(1 —A )—cf. Sec. II above.
For a 3-km antenna, it is hoped that the thermal noise
will be less than photon-counting noise for frequencies
above 100 Hz. There should also be sufFicient seismic iso-
lation for such range of frequencies. We therefore set
f, =1 for the coming discussion.

100

We have investigated the integrals (5.10)—(5.13) numer-
ically for all the configurations of the laser interferome-
ter. For each configuration we have found values of the
parameters of the detector that maximize the signal-to-
noise ratio in each case. In Table II we give a summary
of our results.

In the parameter entries to that table we have added
(where appropriate) the bandwidth parameter t(.f, the in-
verse of the signal's storage time (cf. Sec. III):

(5.16)

In a narrow-band configuration, /t f is the FWHM band-
width; in broadband operation, b,f is still a measure of
bandwidth —it is the frequency at which the signal falls
by a factor of 3/5. In this case, Af is equal to the cavity
linewidth, which is twice Thorne's "knee frequency. "'
As we shall see, tt.f is especially suited for the representa-
tions of signal-to-noise ratio contour maps.

As can be seen in Table II, maxima for delay lines
occur for very high values of N, the number of beam
reflections in the mirrors. This is a mathematical proper-
ty of our (S/N) integrals, but these maxima are physi-
cally impracticable —huge mirrors would be needed to
enable such numbers of beams in the interferometer's
arms. A sensible value for X, according to the British-
German proposal to build a detector, is around N=30.
In Table III we give the values of the antenna parameters
fo and bf which maximize the (S/N) integral for a
fixed N=30, along with the corresponding value of the
integral. It is remarkable that the latter very closely ap-
proach the optima obtained for narrow-band dual recy-
cling for a Fabry-Perot interferometer —cf. the respective
rows in Tables II and III. In Table IV we give actual
signal-to-noise ratios for two binary systems, which can
be considered as plausible examples of the ones expected
in practice. It is interesting to note that, by making the
detector narrow banded, an improvement in the signal-
to-noise ratio of between 1.5 and 2 is obtained for all
coalescing binary signals. This is a general property of
the signal and noise power spectra we are dealing with.
A proof of this general result is given in the Appendix.

J =R V P sin( )n 2 coPt s f f ]00 —2 M M (]7 2n)/3
100 + — ]oo

(5.15)
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TABLE II. Comprehensive description of optimum antenna performance for all configurations con-

sidered in this paper and all components (Newtonian and post-Newtonian) of radiation form a coalesc-

ing binary-star system. Results are presented as the values of the signal-to-noise ratio integrals JI
(I=2,3,4) in formulas (5.15)—see also (5.10)—and (5.13) in the text. Figures have been obtained by

means of computer-aided numerical analysis. Note that no maximum has been found for J4 and dual

recycling in Fabry-Perot interferometers, hence the vacancy in the corresponding entries. This means

that making the detector narrow banded in dual recycling can produce no improvement over standard

recycling when applied to optimize detection of h4 with a Farby-Perot antenna.

Configuration
Optimal parameter values

J3
Integ rais

J3 J4

Cavities
No recycling

Standard recycling

Dual recycling

R 1
=0.9977

b,f=37
R &,. =0.982
hf =290

R 1, =0.9997
fo = 107
Af=6

R 1
=0.9976

hf=39
R 1, =0.980

b,f=321
R „=0.9996

fo =108
elf=7

R, =0,9975
b f=40

R „=0.977
b f=376

No
Max.

0.007

0.32

0.78

0.009

0.42

0.83

0.012

0.62

No
Max.

Delay lines
No recycling
Standard recycling

Dual recycling

N= 375
N=237
N= 467

R „=0.937
fo=107
Df=5

N= 359
N=211
N=457

R I,. =0.930
fo =109
bf=6

N= 341
N= 176
N= 442

R „=0.919
f0=113
elf=7

0.006
0.42

1.23

0.008
0.54

1.32

0.010
0.75

1.46

Entries in Table IV correspond to optimum performance
of the detector with respect to the various components of
radiation, i.e., h„hz, h3, or h4, independently. In prac-
tice, however, one will have to make a choice as to which
is the kind of signal one wants the detector to be most
sensitive to—since optimum tuning for all four at the
same time is impossible. So a question suggests itself im-
mediately: If the detector is optimized for hz (no doubt
the most sensible choice to begin with), how good is its
performance to sense h, , h3, and h4? The answer to such
question is that it will not vary too much from the values
in the tables above, the reason being that, in each case,
maxima occur for like values of the parameters. For ex-
ample, if we tune the interferometer to have the max-
imum (S/X)z with dual recycling (N=30), then sensitivi-
ty goes down by only 1.2% and 1.3%, respectively, for h

&

and h3 and h4 with respect to their maximum values in
Table IV. A detailed search of all the possibilities shows
that degradation in the signal-to-noise ratio for post-

Newtonian components by tuning the antenna to the
Newtonian is always below 2%.

In a set of figures we have shown contour maps of the
signal-to-noise ratio integral Jz of a Newtonian chirp. In
Fig. 6 we have shown the isoheight contours of J2 for a
Fabry-Perot interferometer in terms of the parameters fo
and b,f. Note the existence of a quite sharply peaked
maximum corresponding to a narrow-band system tuned
to a frequency just above the seismic cutoff f, This may.

be interpreted as being the result of concentrating the re-
gion of good sensitivity at a frequency where the power in
the signal is high. There is also a lower and smoother
maximum for fo=0, b,f=290 Hz, which corresponds to
standard recycling.

In Figs. 7—10 we have presented contour plots of J2
for recycled delay lines. Since the signal-to-noise ratio in
this case depends on three parameters —number of
reAections of the laser light within each interferometer's
arm and frequencies fo and b,f we have shown three—

TABLE III. Optimal values in Table II for delay lines occur for very high values of the parameter N.
In this table we give a more realistic account of the interferometer's performance by taking N= 30. For
dual recycling a search has been pursued in the (fo, Af) plane for that particular value of N.

Configuration
Optimal parameter values

J2 J3 J4
Integ rais

J3 J4

No recycling
Standard recycling

Dual recycling

(N= 30)
(N= 30)
(N= 30)
fo=107
Af=6

(N= 30)
(N= 30)
(N= 30)
fo =108
Af=7

(N= 30)
(N= 30)
(N= 30)
fo =111
Sf=8

0.0002
0.10

0.77

0.0003
0.16

0.82

0.0005
0.30

0.88
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TABLE IV. Actual signal-to-noise ratios for two plausible examples of coalescing binary systems.
Entries corresponding to delay line interferometers have been chosen to be optimum but compatible
with the restriction N=30. A most remarkable result is that narrow-band dual recycling produces, for
this value of N, almost identical signal-to-noise ratios as it does in a Fabry-Perot interferometer, when-
ever the latter is set to work at its best efficiency.

Signal-to-noise ratio
Gravitational-wave

amplitude NR
Cavities

SR DR NR
Delay lines

SR DR

0
1.2
0
0.05

20 =m, 0 =1.4
0 0
8.1 12.6
0 0
0.35

0
0.20
0
0.01

0
4.5
0
0.13

0
12.5
0
0.22

0.03
1.4
0.02
0.06

m20 m10/
0.2 0.25
9.4 14.6
1.2 1.7
0.40

0.004
0.20
0.03
0.009

0.11
5.2
0.73
0.29

0.22
14.5
1.6
0.46

corresponding cross sections of J2, successively associat-
ed with holding N, fo, and Af fixed. Thus, in Fig. 7, we
have given the cross section associated with N= 30,
which, as discussed above, constitutes a realistic example
(rather than the enormous N=467 in Table II). In Fig. 8
we hold fixed fo = 107 Hz, here one can see two peaks
(like in Fig. 6), the sharper of the two corresponding to
the maximum reported in Table II. Figure 9 also has fo
fixed (fo=0) and, thus, the antenna operating in broad-
band dual recycling. Finally, in Fig. 10 we keep b,f con-
stant and again two maxima appear, at almost the same
value of fo. These last figures are basically illustrative,

S&N It~~iEBRi"-1L, N=-7~3 (CaV i t i eS)4

since one does not expect to have in practice much free-
dom to choose the parameter 2V, the number of
reAections. However, the value of X, together with our
assumed arm length of 3 km, may be taken as indicating
a storage time for the delay lines. Thus apparently large
values of X may one day become accessible if much larger
detectors are ever contemplated. This combined set of
figures allows signal-to-noise ratios to be read off for
essentially any detector configuration.

VI. CONCLUSION

In this paper we have discussed the detectability of the
gravitational radiation from coalescing compact binary

3. 5 S'. . i,",~iEGRA, I~i= —7- 3 iDe Lani I ines)4

:..5

2. 5

!
CONTOUR KEY

1 8. 83

2 8. 18

3 8. 28

4 8. 31

5 8. 48

b 8. 4b

L ~ D

'0

1.5'0

t Q".~GLAIR KEY

8. 83

3, 8. 28

H. 3'

Tuning frequency (100 Hz) b 8. 58

FICx. 6. Contour map of the signal-to-noise ratio integral.
J,—cf. formula (5.15) in the text —for the Newtonian com-
ponent of the radiation emitted by a coalescing binary-star sys-
tem. The interferometer is operated in dual recycling and the
arms are assumed to be Farby-Perot cavities; frequencies are
given in 100 Hz. Note a maximum at fo=0 corresponding to
standard recycling.

Tuning frequency (100 Hz)

FIG. 7. Same as before, except that delay line arms are now
assumed. The map corresponds to N =30—rather than the
mathematical optimum ¹467.It very much resembles the
previous one, which means that performance is quite similar for
these two configurations of the antenna.
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FIG. 8. Signal-to-noise ratio integral J2 for delay line inter-
ferometers with dual recycling for a fixed value of the tuning
frequency set to fo= 107 Hz. The maximum reported in Table
II can be seen along with another one for %=30—cf. Table III.
The X-axis range stretches from X=2S to 600.

systems by the new generation of proposed laser inter-
ferometers. We have seen that long detectors with fairly
high laser powers, using light recycling, will be necessary
in order to achieve reliable detection, but that quite good
signal-to-noise ratios are possible with such a system.
Thus, a 3-km interferometer with 50 W of effective
power, using broadband recycling with the parameters
assumed earlier, will see the coalescence of a binary sys-
tem consisting of two 1.4MO neutron stars at a distance
of 100 Mpc with a signal-to-noise ratio, on average, of
about 10. With fortunate orientation, this number can be
as high as 20 in a single detector.

Furthermore, making the detector narrow banded with
dual recycling and matching the region of good sensitivi-

S~ INTEGRAL,
588

588-

8=-7&3 (De lay L ines)

M

488-

O
Q

Q
388-

0

288-
R

I

8. 5

Bandwidth (100 Hz)

CONiGUR KEY

8. 858

2 8. 148

3 8. 228

4 8. 288

5 8. 328

6 8. 358

FIG. 9. Same graph, but with no frequency offset (f0=0).
Np maximum can be seen —the slope continues indefinitely (but
very smoothly) beyond the right margin of the viewpoint region.

FIG. 10. Last remaining possibility: We hold fixed the
detector's bandwidth and plot J, in terms of fo and X. Because
of extremely abrupt slopes, however, the map corresponds to
elf=30 Hz rather than to the 5 Hz of Table II. Qualitative
features are kept after this change, though. Note once more the
presence of two peaks, one of which corresponds to a very high
value of %, the other lying on the lower boundary of this
parameter's range.

ty to the region of high signal power may give a
significant improvement in signal-to-noise ratio. For the
3-km interferometer that we have taken as our example,
the optimum bandwidth is about 6 Hz —twice the op-
timum for periodic signals. This gives an improvement in
signal-to-noise ratio, compared to a broadband system, of
a factor of —1.5. Alternatively, the volume of space that
becomes observable by the narrow-band system is larger
by a factor of -3.5.

The Newtonian component of the radiation for our
1.4MO neutron-star binary at 100 Mpc would give an
average signal-to-noise ratio of —12 for our optimized
narrow-band detector. Signal-to-noise ratios for other
combinations of sensitivity and bandwidth may be read
off the contour plots (Figs. 6—9) and formulas
(5.10)—(5.13) above.

Another question we have addressed in this paper is
whether the post-Newtonian components of the gravita-
tional radiation that occur at different harmonics of the
orbital frequency can be detected. Observation of odd
harmonics would allow the masses of the individual pre-
cursor objects to be measured, rather than just a com-
bination of their masses —this is especially important if
we are trying to confirm an observation of a black hole.
We have shown that the gain in signal-to-noise ratio de-
rived from making the detector narrow banded is compa-
rable for all post-Newtonian components and the
Newtonian one, despite their somewhat different frequen-
cy spectra. Furthermore, the optimum combination of
detector tuning, sensitivity, and bandwidth is negligibly
different for the difFerent components. Nevertheless, ob-
servation of the post-Newtonian components from typi-
cal binary systems looks difficult —cf. Table IV. This is
despite the fact that observation of the Newtonian com-
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ponent by a network of antennas, with the resultant
deduction of a direction, arrival time, and mass parame-
ter, will severely constrain the possible arrival times of
the post-Newtonian component, thus lowering the
threshold for detection. The most promising post-
Newtonian component for observation may weH be the
third harmonic. For example, a binary system consisting
of a 5Mo black hole and a 1.4Mo neutron star at 100
Mpc would produce an average signal-to-noise ratio in
our narrow-band detector of 3.1, which would be ade-
quate for confident detection (the Newtonian component
of such a system would be seen with an average signal-
to-noise ratio of 21). Allowing for the presence of four
detectors in the network (or a single fortunately oriented
one) would improve the effective signal-to-noise ratio by
another factor of 2, giving a measurement of 5m~/mo
for this system to —15%. This would clearly indicate the
presence of a black hole.

The discussion here has concentrated on the possible
signal-to-noise ratio produced by the gravitational waves.
Moreover, if a world wide network of detectors is to be
used as an astrophysical observatory, it is also important
to be able to measure the characteristics of the signal-
i.e., amplitude, direction, sweep rate, etc.—as accurately
as possible. While this problem has already been exam-
ined, a thorough treatment for all detector configurations
is still lacking. We plan to discuss this in future publica-
tions.
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APPENDIX A

We want to show in this appendix that, by making an
interferometric gravitational-wave detector narrow band-
ed, one can achieve an improvement in signal-to-noise ra-
tio which is of the order of &2 over optimum broadband
signal-to-noise ratio for the detection of coalescing binary

signals ("chirps"). We shall take the broadband
configuration to be standard recycling and the narrow-
band configuration to be either detuned recycling or
narrow-band dual recycling —both have the same sensi-
tivity functions.

To do so we will estimate the value of the ratio

(S/N)NB

(S/N)~BB
(Al)

for optimum performance in each case, and find out it is
of the order of 2. To estimate (S/X)NB is not very
difficult: If the bandwidth is quite narrow, one can easily
prove that

(A2)

whenever the bandwidth Af approaches zero; this result
is obtained upon simple analysis of expression (3.7) in the
text. If we replace this approximate formula into (5.1),
we immediately obtain

(S/&)Nii- —Ih (f0)I', (A3)

thereby getting (sr/4) f0
~ as an approximation to

(S/X) for a Newtonian chirp [except for a common
coefficient which cancels in (A 1)].

We next look at the value of (S/N) for broadband
operation mode. It is far less simple in this case to arrive
at a concise result like before. For now, integrals of the
type (5.1) are not easy to estimate because of contribu-
tions to their value of complicated functions over consid-
erably long independent variable intervals. In addition,
one must find a value of b,f [or, indeed, fd in formula
(3.6)] which maximizes the result. Numerical analysis of
this process, however, can almost be made with a pocket
calculator, the final result being that displayed in Table
II ~

Accepting that value, one finds

(S/X)NB -2. 10 .
(S/X)Bii

(A4)

This is a number very close to 2, and so improvement in
signal-to-noise ratio is very nearly V2, as announced
above.
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