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Vector-meson dominance, one-loop-order quark graphs, and the chiral limit
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We study six quark loop graphs involving the p meson coupling to quarks. In the chiral limit
these graphs justify most aspects of the vector-dominance model.

The vector-dominance model (VDM) of the 1960s con-
sists of four phenomenological observations.

(i) Universality of the p couplings to mesons, nucleons,
and even leptons

gpmn. gpNN gp

Present data in fact require g /4~ =2.9 from
I (p~~m)=149 MeV and g /4vr=2 Ofr. om
I (p~e+e )=6.g keV. The agreement in (1) is even
better because the pee coupling gp/4m is narrow-width
corrected from 2.0 up to 2.4.

(ii) The p-photon analogy with y-p vector vertex

in the Goldberger-Treiman relation (GTR) at the quark
level (with g„=1) g =mqz/f, where mq„ is the (non-
running) quark mass in constituent quark loops. This
holds in the linear cr model (LSM) at the quark level or
in the four-fermion Nambu —Jona-Lasinio (NJL) model.

Consider first the quark loop for the pion decay con-
stant f depicted in Fig. 1, which is proportional to
gm„„. Since f =mq„/g from the quark level GTR, one
power of mqk&0 cancels out leading to the log-divergent
"gap equation" in such constituent-quark (or LSM-NJL)
models. ' In the chiral limit q ~0, the resulting gap
equation becomes

(0~ V„'- ~p') =
gp

1 = —&4N, g
p mqv

(5)

transforms a photon to a p meson, such that the radia-
tive palmy rate relative to the m ~yy rate now pre-
dicts

g /e=2F r/F =17.g, (3)

due to the revised measured rate~ I (ptry)=67 keV. In
fact, the universal p couplings in (1) require this ratio to
be close to (3) for e =4vrtz, namely g /e = 16.6—1 g. 2 and
the VDM appears justified.

(iii) The VDM combined with current algebra further
suggests the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF) relation accurate to the 10% level:

m =2gg
where f =93 MeV is the pion decay constant. However,
this somewhat ad hoc connection between VDM and
current algebra has yet to be rigorously justified.

(iv) The SU(3) extension of the VDM to co and P vector
mesons in (i)—(iii) is also accurate within the 10% level.

In this paper we seek to unify the above VDM state-
ments (i)—(iv) by computing various constituent quark
loops and working in the chiral limit (CL). In this limit
we shall always employ constant point coupling g =g~qq

where d p =d p/(2') . In Eq. (5), N, represents the
number of colors traversing quark loops, and we have
worked in the CL q —+0 to simplify the momentum
structure of (5). For mqk =M~/3=313 MeV and f =90
MeV in the CL, the point coupling g =m k /f =3.5
substituted into (5) determines the implied UV cutoff in
this log-divergent gap equation to be A —700 MeV,
reasonably close to the scalar o. mass. This cuto8' scale
also holds for the NJL model.

To proceed to vector currents, we take the point cou-
pling of p to quarks as ,'g Py~7$. Th—en the p~mrr
meson VPP coupling g b,„(where b, =k' —k is the
difference of outgoing pion four-momenta) can be com-
puted from the two constituent quark loops of Fig. 2.
The particular (symmetric) choice of momentum routings
in Fig. 2 is known to generate no artificial surface terms
for 2k'=q+6, 2k =q —6, q =k'+k, and q 6=0 with
propagator denominators

D+ =
I (p + -,'e)' —m,'k lt(p —

l e)' —m', k ~

X[p + —,'6 —mq„+b, p] .

Then the trace terms of Fig. 2 are of the form

T„(k',k) T„(k,k')
D D+ + —,'~ —mq~+p ~)(p +—'ti —m k

—p tI){p + 'b m~ —b.p)(p + 'b m+— — — —

(6)
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FIG. 1. Quark loop for the axial-vector transition
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FIG. 2. Quark loops for the coupling constant g

It is important to appreciate that the relative antisym-
metrization between Fig. 2(a) and 2(b) cancels the other-
wise linear divergent parts of the quark triangle graphs.
After isolating the b,„=(k'—k)„covariant in g b,„and
in (6), the soft chiral-limiting (k, k —+0) value of the p~n
coupling constant is found from standard Feynman rules:

g ~—i —,'g ( 2g) 4X, Jd"p(p —mqk)

This result (7) is general to any choice of the SU(2) charge
states of p and m. At the (constituent) quark (LSM or
NJL) level we can now merge together Figs. 1 and 2 in
the CL. More specifically, substituting the log-divergent
gap equation (5) into the loop-graph result (7) for g
(also log divergent) we immediately deduce g ~g in
the CL, which is part of the VDM universality statement
(1).

Once VDM universality is a consequence of the chiral
limit (the q ~0 VDM limit also follows from the soft CL
k ~0, k'~0 by momentum conservation q =k'+k), the
standard KSRF relation (4) must also hold. In particu-
lar, g „—&g by (1) and likewise g ~~~g and then the
VDM requires the low-energy isospin-odd ~X scattering
amplitude to be v 'F'~'=g /I . But the soft CL along
with the slightly stronger statement of chiral symmetry
automatically requires current algebra (CA) partial con-
servation of the axial-vector current (PCAC) to hold.
The latter CA-PCAC assumption is known to imply that
the above low-energy re amplitude is v 'F'~'= I/2f .
Thus, chiral symmetry twhich includes the CL and (I)]
along with the (chiral-symmetric) linkage of the above
VDM and CA-PCAC expressions for v 'F'&' directly
predict the KSRF relation (4), which is the VDM state-
ment (iii).

Apart from VDM statements (i) and (iii), we can also
justify the VDM statement (ii) to one-loop order in the
quark model in the CL. In Fig. 3 we display the PVV
loop graphs corresponding to ~ ~y y and p ~~y de-
cays. The ratio of these one-loop-level diagrams just
reproduces the 2F /F amplitude ratio of Ref. 3 ac-
cording to the p-y g /e analogy in Eq. (2). Of course the
actual one-loop level graph of Fig. 3(a) is Steinberger's
version' of the Adler-Bell-Jackiw (ABJ) anomaly in the
CL," but with quarks instead of nucleons traversing the
triangle with gz =1 and g =m k/f is the GTR at
the quark level. Using the latter in Fig. 3(a) gives the
ABJ amplitude IF I =(a/vrf )=0.025 GeV ', within
2% of the observed rr ~2y amplitude. Now since
IF „ I

=0.222 GeV ' from experiment and from
I =k3F /12', the numerical p-) analogy (3) fol-
lows. In short, the VDM p-y analogy replacing the elec-
tromagnetic coupling ey„by the strong vector coupling
g y„ to quarks clearly corresponds to the ratio of the CL
quark triangle graphs in Fig. 3 ~

Moreover, the new measurements of co~~y and
m~ee allow one to extend the p-y analogy to co-y ac-
cording to VDM statement (iv). Specifically the decay
rate I (co~vry ) =717 keV predicts

g„/e =2F„ /F =56.3+1.7,
in excellent agreement with g„/e =56.3+1.2 obtained
from the new width I (topee)=0. 6 keV substituted in
I „=—,'a (g„/4~) 'm

Finally the loop diagram of Fig. 4 is the p-meson tran-
sition amplitude &0 V„' Ip ) at the one-loop quark level.
This amplitude is given by

mz gz 1 4 2p&p, +k p&+k&p, +g&, (m qk p —p k)
e„=—i 4X,e — d p (9)

where m k is the (CL) constituent quark mass. The
structure of (9) is quite similar to Fig. 1 and the conse-
quent gap equation (5) except that (9) is quadratically
divergent as the dimensionless UV cutoA' A~ ~. As
such, the value of (9) depends on the surface terms in the
A~ ~ limit when one combines the denominators in (9).
However, with A being finite, surface terms do not exist.

2I
g(k=m )P P

2',I k f(A),
16~

(10)

where f (A) is the integral in (9) with k =m =5. 1m k.
The integral for f (A) is quite tedious and lengthy. In-

I

~e then calculate (9) on the p mass shell k =m using
the standard Feynman procedure. Keeping A as a pa-
rameter, (9) becomes

(a) (b)

U$CI

FIG. 3. Quark triangle graphs for the radiative transitions (a)
~ ~yy and(b) p~~y.

FIG. 4. Quark loop for the vector transition
&oI v„'Ip'& =(m,'/g, )e„.
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F (0)=1= i4N, g f d"p(p——rn ) (12)

The latter is equivalent to our gap equation (5) derived
from the CL G-TR, only now the nonstrange constituent
mass m in (11) and (12) is the chiral-broken extension of
mzi, in (5). Consequently, the VDM universality (7) or

gp
=

gp is now a consequence of charge conservation
[F (0)= 1] and is true in any theory with a vector gauge
invariance (as is well known). However, the latter is true
in our quark-loop model only if m =0.

One final (the sixth) connection between VDM and the
CL quark loop model is the pion (~+) charge radius.
The VDM value is r + =&6/m =0.63 fm, very near the

experimental charge radius' r + =0.66 fm. For the CL
quark-loop graph of Fig. 2, differentiating the pion form
factor (11) immediately leads to'

stead we show its numerical evaluation in Fig. 5. For the
invariant cutoff A =(700 MeV/m„i, ) =5 as already
found in (5), f (A)=2. 4 and we find g (m )=7.5 from
Eq. (10). In the o-model range A =3—5, the value g
shifts by only 6%%uo (i.e., g =7.0—7.5). Such a cutoff scale
also appears to hold for the quadratically divergent NJL
four-fermion model. This range of values for g is also
compatible with the result g -2~-6.3 in the large-X,
limit. ' We believe it significant that the above one-loop
mass-shell value g -7 is near the pee and large-X, values

g —5 to 6, and that all these g estimates are close to the
universality coupling g =6.0 as obtained from the p
width. Thus, Fig. 4 with a cutoff consistent with the CL
gap equation (5) also appears compatible with the VDM.

With hindsight our chirah-IimitIng quark loop analysis,
while employing the GTR f g =m~„and slightly simpli-
fying the momentum structure of (3), (5), and(7), is pri-
marily needed together with chiral symmetry to derive
the KSRF relation (4). In fact, the soft momentum
limit q+~0 also links the radiative decay K ~Ey
[analogous to Fig. 3(b)] amplitude ratio' R
=~F +& o /F +~ + ~z =1.51 to the VDM ratio'

0
=2( 1 —5/2 ) = 1.5 for the usual constituent

quark-mass ratio (m, /m)=1+6=1. 5. Both the chiral-
limiting and VDM ratios above are close to the observed
%*~Ay ratio R =1.53+0.11.

However, the slightly weaker massless pion assumption
m =0 (rather than q ~0) is all that is required to
derive VDM universality (1). More specifically, replacing
the p in Fig. 2 by an off-shell photon with squared in-
variant momentum k and also crossing the outgoing w

to an incoming ~, the gauge-invariant pion current
F (k~) (q' +q )„ is generated by the quark-loop graph
when m =0, with the pion form factor'

F (k )= —i4N, g f dx fd"p[p rn—
+x(1—x)k ]

To derive (11) a rerouting of the loop momentum p is
needed to eliminate the linearly divergent surface term, '

which is the analog of the antisymmetrization in (6).
Then at k =0, charge conservation means that (11) be-
comes

I I I I [ I I I I
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FIG. 5. Plot of integral in Eq. (9) versus the dimensionless
cutoff A.

dF„(k )
r ~ =6

7T dI 2

g~

—o 4~ m qg

3 =(0.60 fm)
(2irf „)

(13)
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for N, =3 and the CL value' f =90 MeV. In fact, this
successful quark-loop result (13) was first derived eleven
years ago' and extended to kaon charge radii. ' '' The
latter approach, however, did not link the r + calculation
to VDM universality (1).

In conclusion, we have shown that the six chiral-
limiting quark graphs for f, p~2rr, y +mvr, n ~2y-',
p~my, and p ~y transitions lead to six relations linked
to the VDM: (i) g =g universality, (ii) p-y analogy
for gz/e =18, (iii) KSRF m =2gg, (iv) SU(3) exten-
sion to co and P, (v) IC*~Ky ratio, and (vi) sr+ charge
radius r and extensions to K charge radii.

Other approaches using Lagrangians instead of CL
quark loops also recover some of the above VDM results.
A hidden local symmetry scheme obtains the KSRF re-
lation for a parameter value a =2, while the physics of
the anomalous y~~~ vertex is shown ' to be consistent
with KSRF. This KSRF result apparently is countered
by a "vector limit" approach. Finally a
superconductivity-type effective Lagrangian has been ern-
ployed to simulate many properties of the VDM. From
our perspective, however, only the CL quark loop scheme
described in this paper appears to recover all six (experi-
mentally observed) aspects of the VDM without the in-
troduction of extra parameters.
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