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The geometrical branching model is further developed in a direction that allows the branching
part to be implemented by a Monte Carlo scheme of cascading cluster decays. A universal mass dis-
tribution is adopted for the determination of cluster masses. Good agreements with data on multi-

plicity distribution and average multiplicity are achieved.

Multiparticle production at low pT in high-energy ha-
dronic collisions has been described by a large number of
models, all of which can reproduce the gross features
very well. ' The geometrical branching model (GBM) is
one among them, which combines the geometrical prop-
erties of hadronic collisions ' with the stochastic proper-
ties of particle production. After the suggestion by
Bialas and Peschanski to investigate intermittency in
multiplicity fluctuations in various scales of resolution,
experimental data on normalized factorial moments have
revealed power-law behavior in leptonic, hadronic, and
nuclear processes. Since random cascade processes can
lead to intermittency, the GBM is well poised to account
for the observed effect in small rapidity intervals. How-
ever, before a Monte Carlo code can be developed to
demonstrate intermittency, there is one intermediate step
that must be taken to render the GBM suitable for such
considerations. This is, the branching process, which was
summarized by the Furry distribution previously, must
now be implemented by a specific scheme of successive
branching. It is the aim of this Brief Report to accom-
plish this limited objective.

Our basic input will be the massive cluster decays in
cascading. This mechanism in itself is, of course, not
new. Ochs and Wosiek have already shown that it can
lead to intermittency. Our concern at this point is not so
much intermittency as the formulation of GBM in such a
way that successive cluster decay can be amalgamated
with the Glauber-Gribov approach ' ' to high-energy
collisions. Our immediate aim is to show that a sensible

cluster cascading scheme can be described to reproduce
the multiplicity distribution in the whole rapidity space.
The subject of fiuctuations in small rapidity intervals is
deferred to a future investigation.

Let us first recall the eikonal description of 0.;„,which
is related by the Abramovski-Gribov-Kancheli (AGK)
cutting rule to the eikonal function A(b, s) for the elastic
amplitude by'

cr;„=f d b g —[2~(b s) j"e1

p=i ~'

where the summand is the contribution from p-cut Pome-
rons. To determine the multiplicity distribution P„,it is
necessary to specify what a cut Pomeron is, for which
only model descriptions have been given. For example,
in the dual-parton model" (DPM), which is formulated
in the momentum space, the lowest-order contribution to
a cut Pomeron consists of two chains stretched between
quark-diquark pairs. In the GBM we have represented
the multiplicity distribution of each cut Pomeron by the

k.
Furry distribution F„',whose self-reproducing property

J
gives rise to an effective F„'"'for a p-cut Pomeron con-
tribution, where k (p) is a parameter denoting the num-
ber of initial branching clusters. Thus, if we use tr„(b)to
signify the summand in Eq. (l), we have

1 fd'b y ~„(b)Fk'~'. (&)
Oin @=1

By adjusting k(p) it has been possible to fit the data on

43 2425 1991 The American Physical Society



2426 BRIEF REPORTS 43

I', throughout the CERN ISR energy range and then
with minijet contributions in the CERN SPS collider
range also.

As an initial attempt to combine geometrical and sto-
chastic properties of multiparticle production, it was sen-
sible to let the Furry distribution represent approximate-
ly the effects of branching so that we could judge quickly
whether we were aiming in the right direction. Now we
begin a second-level consideration in which the branch-
ing process is to be treated explicitly in a Monte Carlo
simulation with energy-momentum conservation applied
at each step. There are two issues to be addressed. First,
how many initial clusters are there and what are their
masses'? Second, how does a cluster decay? Since these
questions are central to our improved treatment, let us
discuss them at some length separately.

Since the average number of cut Pomerons at each im-
pact parameter b is specified by the probability m„(b),we
know that p can vary on the average from 1 to a large
value at small b. If a massive cluster is associated with
each cut Pomeron, then impact-parameter smearing re-
sults in an effective distribution of initial clusters for each
collision. This picture is different from, and perhaps
complementary to, the two currently fashionable models:
the DPM (Ref. 11) and the FRITIOF models, ' which have
no explicit impact-parameter smearing, but either have
two chains with varying lengths or have two excited
strings with varying effective masses. In our model we
use ~„(b)and stochasticity to determine the number of
initial clusters. More specifically, our procedure is to first
convert Eq. (1) into an integral over the scaled impact pa-
rameter R =blbo, where ho=(cr;„lm)', as in Ref. 2.
Then we rewrite Eq. (2) in the form

cluster decay. In a soft hadronic process no high virtuali-
ty is associated with any constituents. The valence
quarks that carry nearly half the incident momentum do
not interact strongly with soft partons because of the
large separation in rapidity; they hadronize into the lead-
ing particles in the fragmentation region. A description
of the hadronization in the central region that does not
give any preeminent role to any individual partons would
consider the interacting partons collectively in terms of
s-channel clusters that evolve in a self-similar way. This
point of view has received some support from the recent
interest in intermittency, which is essentially the phe-
nomenology of self-similarity. As mentioned in the previ-
ous paragraph, the leading cluster and the centrally pro-
duced ones are all included in our approach, since for
every R, p is summed over all values, the p=1 term con-
tributing principally to the fragmentation region.

Since we want to describe the cluster decay by a self-
similar process, we recall the statistical boost-trap model
of Hagedorn, ' who has for many years emphasized the
picture of fireball within fireballs in a self-consistent
description. Indeed, it was Hagedorn who first pointed
out that the mass spectrum of hadrons is an exponentially

m /To
growing one: e ', where To is the Hagedorn tempera-
ture. ' The distribution of cluster masses at temperature
T1S

( 1./To —1 /T))m
p(m) —m e

where T ( To and we shall consider T to be a constant in
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where 8," is a new branching distribution that we now at-
tempt to determine by Monte Carlo calculation. For
every value of R, we generate a value for p according to
the probability n„(R). We then have p initial clusters,
each having c.m. energy F.;, whose value is specified by a
randomly chosen variable x, according to E, =x, &s,
satisfying 0 & x, & 1 and g~

& x, = 1. These clusters un-

dergo successive binary decays in a manner to be de-
scribed below, and the distribution 8," can then be calcu-
lated at the end of the branching process. Note that this
procedure automatically gives rise to diffractivelike pro-
cesses at large R, since p= 1 is the only important contri-
bution to Eq. (3) in this case, and with x, =1 one-cut
Pomeron gives rise to a two-cluster fragmentation pro-
cess. At smaller R higher p values also become impor-
tant, and so the sharing of &s among the p initial clus-
ters forces the decay particles to populate the central re-
gion, resulting in a central plateau for the single-particle
inclusive distribution. Momentum conservation is im-
posed in each cut Pomeron when the clusters undergo
cascading.

The second issue of major importance is the nature of

)i;
(3 ))'. (i~

f0 8

10

o ISR

So
—4 I I I I I I I I I I I I I I

0 1 8 3

n/(n)
FIG. 1. KNO plot of the calculated result (in histogram) as

compared to the data, taken from Ref. 15.
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p(m)-m e (6)

as the universal mass distribution of clusters produced at
all stages of the successive decays. In Eq. (6), a and p are
parameters in our model to be adjusted to fit the data.

Specifically, our procedure is the following. For each
set of values of p and E;, i = 1, . . . , p, generated in our
Monte Carlo simulation, we let the initial cluster in the
ith-cut Pomeron decay into two clusters whose masses
m, and mz are determined randomly according to Eq.
(6). Energy-momentum conservation then fixes their lon-
gitudinal momenta, their transverse momenta being
neglected in this investigation. We then go to the rest
frames of the daughter clusters and repeat the decay pro-
cedure, always using Eq. (6) to determine the subsequent
cluster masses. The decay sequence is terminated when
the mass reaches a value below 2m . In this way we
determine BI' in Eq. (3). Because we have not considered
the charge and flavors of the produced hadrons, we take
all the final particles to be pions and regard the number
of charged pions as —,

' of the total produced particles.
We have found that by choosing a=0. 1 and p=0.01

tHe hadronic interaction. We adopt the general ideas of
Hagedorn as hints on our cluster decays and use

GeV ' we obtain approximately Koba-Nielsen-Olesen
(KNO) scaling for pp collision in the ISR energy region.
The resultant multiplicity distribution agrees well with
the data, ' as shown in Fig. 1. The normalized moments
C~ = (n ) l(n ) are shown in Fig. 2 as functions of &s.
The average multiplicity (n ), shown in Fig. 3, is also in
good agreement with the data. ' At higher energies mini-
jet production must also be taken into consideration, and
so I'„is expected to get broader.

We have not fine tuned the parameters to yield the best
fit because our present calculation ignores the transverse
momenta of clusters. We are encouraged by our results,
since they indicate that the GBM, when implemented by
cascade cluster decays in one dimension, can well de-
scribe the global data on P„and (n ). This is an im-
provement on our previous results, since we could not
calculate (n ) before. More importantly, we now have a
realistic scheme of branching, which will facilitate fur-
ther development into a comprehensive code. For that
we need to improve on our consideration of the trans-
verse degrees of freedom, the production of resonances,
the inclusion of charges and flavors, etc. After those im-
provements are made, we shall then be able to calculate
more reliably the rapidity distribution and the associated
quantities related to intermittency. The fact that this
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FIG. 2. Normalized moments of multiplicity distributions at
various energies. The data are taken from Ref. 15.

FIG. 3. Comparison of calculated average multiplicity (solid
line) with the data, taken from Ref. 15.
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model treats the geometrical features of hadronic col-
lisions properly and contains a self-similar scheme of par-
ticle production makes us feel quite hopeful that this ap-
proach will render a successful description of the soft in-
teraction of hadrons.
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