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We introduce a new model of mesons as quark-antiquark bound states. The model is covariant,
confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudos-
calar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly suc-
cessful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound
systems. In this fashion we are constructing a unified description of all the mesons from the m.

through the Y. Numerical solutions for other cases are also presented.

I. INTRODUCTION

An important component of the CEBAF experimental
program will be devoted to a detailed study of the quark
structure of nucleons and baryon resonances, and to a
search for signatures of the effect of these underlying
quark degrees of freedom on nuclear structure. While
there may be "smoking gun" signatures for such effects
which depend only on the comparatively easily under-
stood perturbative features of QCD, ' a thorough under-
standing of baryon and nuclear structure at the momen-
tum transfers available at CEBAF must also take the
nonperturbative aspects of QCD into account. A careful
treatment of confinement is therefore essential to such a
study.

Many models (the various bag models, ' Rip-Aop
models, ' and nonrelativistic potential models' ) already
exist and have proven useful in this context, and will con-
tinue to do so. However, one notable characteristic of all
of the most popular models presently used is that they do
not describe bound states in a Lorentz-covariant fashion.
While this may not be a serious limitation in the treat-
ment of inclusive processes, such as inelastic electron
scattering, ' in which one is probing the properties of a
static target nucleus, it is a serious handicap when
describing exclusive or semiexclusive events, in which a
particular hadron is to be observed in the final state. For
these processes, which will clearly play a large part in the
experimental program carried out at the new accelera-
tors, it is essential to have a framework in which the
quark-gluon bound states can be treated covariantly.

The goal of this paper, which we expect to be the first
in a series, is to develop a technique for modeling
confinement which is consistent with chiral symmetry
and which also is exactly covariant. We believe that both
of these requirements (exact covariance and consistency
with chiral symmetry) are essential if the results of such
models are to be expected to have any real predictive

power. Even at CEBAF energies and momentum
transfers, mesons and nucleons recoil at relativistic veloc-
ities, and we must be able to describe such a simple pro-
cess correctly. Furthermore, we believe that the equa-
tions should also conserve angular momentum exactly, as
this is still an important constraint at these energies.
And a proper treatment of the pion, essential for
nuclear-physics applications, cannot be expected unless
the implications of chiral symmetry are built in from the
start. The model introduced in this paper has been
developed with all of these requirements in mind and is,
to our knowledge, the first time chiral symmetry,
confinement, and exact covariance have been combined
in a single, solvable model. (However, see Refs. 17—19
for a model in which chiral symmetry and confinement
are built in through an instantaneous, and hence nonco-
variant, potential. )

As a demonstration of the workability of our method,
we show in this paper how it can be used to study the
structure of mesons. In later work we plan to add one-
gluon exchange (OGE), do a systematic study of the
meson spectrum, and eventually apply the method to the
study of baryons and simple nuclear systems.

The following features have been incorporated into the
model.

(i) Mesons are viewed as bound states of two constitu-
ent quarks that can be off shell. In this sense our model is
a simple generalization of the nonrelativistic (or semirela-
tivistic) models of Godfrey and Isgur, ' but the relativis-
tic propagation of off-shell quarks includes some addi-
tional contributions from qq pairs. The success of these
models in describing the meson spectrum encourages us
to believe that we will also be able to eventually describe
the meson spectrum successfully.

(ii) Exact covariance is achieved by working in momen-
tum space, where nonlocalities and energy dependences
can be treated comparatively easily.

(iii) The confining potential is made up of a constant
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part, which permits us to adjust the overall energy scale,
pius a relativistic generalization of the linear part known
to emerge, in the quenched approximation, from lattice
gauge calculations. In particular, the potential is con-
structed from a "leading" q term, regularized by sub-
tracting the leading singularity at q =0. The form of the
potential is derived directly from a consideration of the
nonrelativistic linear potential in momentum space, as
discussed in Sec. II. As in nonrelativistic models, ' our
potential is taken to carry color and thus is understood to
be multiplied by a X, .A, 2. In this way only color singlets
are confined. Throughout, the color structure is implicit
and will only be readdressed when it is considered neces-
sary to avoid confusion.

(iv) The spin-dependent structure of the confining po-
tential is chosen to be consistent with chiral symmetry.
[In this first paper we explore the simplest case of chiral
symmetry under the U(1) XU(1) group. This still gives a
large number of possibilities, and the best choice, togeth-
er with extension to the more realistic SU(2) X SU(2) case,
will be deferred to a later work in which we fit the meson
spectrum. ] We assume, in the spirit of the
Nambu —Jona-Lasinio (NJL) model, ' that the symmetry
is spontaneously broken, giving the quark a constituent
mass which arises dynamically from its self-interaction
with the confining forces. The pion then emerges natu-
rally as the Goldstone boson associated with this dynami-
cal symmetry breaking, and its nonzero mass also
emerges as a natural consequence of the symmetry break-
ing introduced by the small bare quark mass term in the
QCD Lagrangian. This is discussed in Sec. III and fur-
ther in Sec. IV.

The relativistic bound-state equations we introduce
have the feature that the relative energy variable is con-
strained by restricting the quark to its positive-energy
mass shell (referred to as the one-channel case) or, in the
case of very deeply bound states, including two channels,
one with the quark on its positive-energy mass shell and
one with the antiquark on its negative-energy mass shell.
(We will show in Secs. IV and V that the second channel
is very small unless the binding is very strong or the
quarks are very light, so that for weakly bound, heavy-
quark systems the one-channel case can legitimately be
considered as an excellent approximation to the more
correct two-channel case. ) This feature means that even
though the equations are exactly covariant, they depend,
like nonrelativistic equations, on the relative three-
momentum only and have a smooth nonrelativistic limit.
The one-channel version of these equations has been used
extensively for the study of few-nucleon systems in the
context of relativistic meson theory, and the two-
channel version was brieAy discussed previously, but
this is, to our knowledge, the first time these equations
have been applied to the study of quark bound states, and
also the first time it has been demonstrated that deeply
bound states can be successfully described in this manner.

There are a number of justifications for using a relativ-
istic equation in which the (heavy) constituents are re-
stricted to their mass shell. In the context of relativistic
meson theory, it can be shown that (a) the infinite sum
of all ladder and crossed ladder exchange diagrams is

necessary in order to derive a one-body equation for a
(light) particle (moving in an instantaneous potential
created by a spinless heavy particle) in the limit when the
mass of the heavy particle approaches infinity, and (b) the
two-body equation which sums this series efficiently in
the same limit is not the Bethe-Salpeter equation, but one
in which the heavy particle is restricted to its mass shell.
BrieAy, the reason for this result is that the parts of the
ladder diagrams in which both constituents are off shell
tend to cancel the crossed ladder diagrams, leaving only
the parts of the ladder diagrams in which the heavy con-
stituent is on shell. This happens in all orders, and in
some theories the cancellation is exact as the heavy con-
stituent mass approaches infinity.

It may seem strange (or even incorrect) to treat
confined quarks as on-shell particles. In response to this
anticipated objection, we offer the following.

(i) Confinement in our model arises from the linear in-
teraction between neighboring quarks in a color singlet;
the dynamical mass of such a confined quark is finite
We do not offer a method for the calculation of the self-
energy of an isolated quark, and in this sense our method
is complementary (or orthogonal) to that developed by
Roberts, Cahill, and Praschifka.

(ii) Since the self-energy of the confined quark is finite,
its propagator has the usual form, and because the singu-
larities which arise from the confining q terms are
"softened" by regularizing subtractions [see item (iii)
above and the discussion in Sec. IV), the poles of the
quark propagators are the dominant singularities, leading
to the equations we use.

(iii) The structure of the one-channel equation ensures
that the OGE terms, when added later, will be color
gauge invariant. We have not yet proved that this is also
true of the two-channel equation, but expect it to be so.

(iv) Putting quarks on shell is consistent with both non-
relativistic theory and the commonly used light-front for-
malism, where it is assumed that all quarks and gluons
are on mass shell.

One of the limitations of the present work is that the
quark self-energies in the bound-state equations have
been approximated by constants and have therefore not
been treated in a fully self-consistent manner. The
method of restricting quarks (or antiquarks) to their mass
shell makes it easier to carry out such a completely self-
consistent program, and this is planned for a subsequent
work. Preliminary results suggest that these effects may
lead to corrections as large as 50%%uo.

The paper is organized into six sections and one appen-
dix. In Sec. II we define the linear potential in momen-
tum space and introduce the one-channel equation. Sec-
tion III discusses how we use the ideas of the NJL model
to treat chiral symmetry and shows how the pion emerges
as the Goldstone boson. Section IV then combines the
results of the two previous sections, emerging with rela-
tivistic two-channel equations consistent with chiral sym-
metry. Numerical solutions of both the one- and two-
channel equations are obtained and discussed in Sec. V.
Some conclusions are given in Sec. VI. The Appendix
contains some technical issues concerning the regulariza-
tion of our confining potential.
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II. LINEAR POTENTIAL

A relativistic treatment is most conveniently carried
out in momentum space, where nonlocalities are easily
handled. This requires that the linear confining potential
be treated in momentum space also, and in this section
the details of how this has been done are presented.

V~(r)= e 'q "V„(q)=—o.—i .r
(2m)

e Er

—o. r ——
e~0 E

(2.4)

This condition is satisfied by the exact result (2.2b), but is
not satisfied by Vz. Explicitly,

A. Nonrelativistic case

To treat the nonrelativistic problem, it is convenient to
start with the relation

d2 6r
V(r) =o r = limo re '"= limo

e~O e~O dg r2
(2.1)

The potential in momentum space becomes

V(q)= f d r e'~'"V(r)=crlim d 4~
~-o de q +e

(2.2a)

1 4e=8~o lim +
( 2+ 2)2 ( 2+ e2)3

(2.2b)

= lim V„(q)+ 327TO E

(q +e )' (2.2c)

qf V(q)=0 .
(2~)

(2.3)

where V~ is defined through the last equation. At this
point it is tempting to let @~0 and to obtain the result
that the linear potential in momentum space is simply
V„(q). However, this is inadequate because the resulting

q potential is very singular at q =0 and does not even
describe the original linear potential. To see this, it is
useful to recall that the linear potential (2.1) is zero at
r =0, and, therefore,

VL (r) = lim —o
e—+0

o+— —or .
E e~o

(2.6)

For finite e this potential is not identical to the original
model (2.1), but has the same limit as e~O, and is there-
fore an equally good choice.

To adjust the mass scale, a constant term is often add-
ed. In momentum space this corresponds to

Vc(q) =(2rr) 5(q)2m+ C, (2.7)

where mR is the reduced mass of the qq system, and C is
a dimensionless constant. The total potential VT is then
the sum of V~ and V&.

The potential can now be inserted into a Schrodinger
equation, which in momentum space takes the form

showing that Vz approaches an infinitely large negative
value as e—+0. The additional term in (2.2c) "corrects"
(2.4) by supplying the (infinite) constant needed to nor-
malize the potential to zero at the origin. However, it
has an inconvenient form, because as @~0 it is sma11
everywhere except at q =0, where it is singular. In fact,
it behaves somewhat like a 5 function, and since its role is
merely to cancel the infinite constant in (2.4), we are led
to an alternative definition of the linear potential:

VL(q)=lim V„(q)—5 (q) f d q'V„(q') . (2.5)
e~o

This potential satisfies condition (2.3) identically, and its
Fourier transform is

P d kEq (p) = —f— , V,(p —k)% (k)
2mR (2~)

d k= —lim, V„p—k + k —0' p +2mRC%' p(2')
d k %(k)—%(p)=8no.

(2m ) (p —k)
+2m~Col p (2.8a)

where p and k are the outgoing and incoming momenta of the quark to which a momentum q=p —k is transferred.
Note that the e~O limit can actually be taken in the last step in (2.8a), because the wave-function subtraction
[4'(k) —%(p) ] cancels the strong singularity at p =k, ensuring that the integral on the right-hand side (RHS) is finite. It
is important to be able to take this limit, because the quarks are truly confined by the linear potential only when e=O.
This can be seen by examining (2.6) and (2.8a) in position space. For finite e the potential approaches 1/e as r ~ ~, so
that quarks with energies E & 1/e+2mR C can escape to infinity. This is the principal reason for preferring the form
(2.5) to that of (2.2c).

The nonrelativistic linear potential is scale invariant, and therefore the reduced quark mass can be scaled out of the
Eq. (2.8a) by introducing dimensionless momenta po =p/mz and ko =k/m„, giving

—po Eo V(po) =8rr—1 d ko +(ko) %(po)
+2CV(po) .

m~ (2~)' (po —ko)
(2.8b)
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The form of (2.8b) shows explicitly that the energy
E =mz Eo depends on two dimensionless numbers:
cro=o. /mz and C.

In order to test our progress thus far, we solve Eq. (2.8)
for the ground-state energy and compare with the exact
solution

E =m~[2C+2 33( —'o )'~ j (2.9)

+o.oro

where ro= (mRr ).
respect to ro gives

Minimizing this expression with

where 2.33 is the location of the first node of the Airy
function. [The I =0, 5-wave solutions to the Schrodinger
equation for a linear potential in position space are well
known to be given simply by the Airy functions. Solving
the Fourier-transformed integral equation (2.8) is, howev-
er, a more formidable task. ] Our numerical method, de-
scribed in detail in Sec. V below, converges quickly to
this correct value, as illustrated in Table I. The wave
function also agrees with the nonrelativistic result.

For applications to the relativistic problem, it is con-
venient to have a simple way to estimate the eigenvalues
expected, and this is provided by Feynman's famous
trick using the uncertainty relation. Taking ground-
state expectation values of (2.8) and using the uncertainty
relation to replace (po ) by ( 1/ mar ) gives

E=m~ 2C+—1 1
(2.10)

2 po

q =qo —q . If one of the two quarks is massive, the en-

ergy transferred to it, qo, is expected to be small, so that
the nonrelativistic limit should emerge as the quark mass
approaches infinity. However, this physical limit will not
emerge naturally unless some care is taken with the treat-
ment of qo. (Recall the discussion of this point in the In-
troduction). One way to maintain covariance exactly, but
also to allow the nonrelativistic limit to emerge naturally,
is to restrict the heavy quark to its mass shell, so that the
four-momentum transfer becomes

q =(E E„)——(p —k), E =(m, +p )'i (2.12)

where m, is the mass of the heavy quark. The energy
transfer now automatically approaches zero as rn, ~~.

This "potential" can be treated consistently to all or-
ders if it is taken to be the kernel of a relativistic equation
in which the heavy quark is restricted to its mass shell
throughout. For spin- —,

' particles, the kernel will be writ-
ten in the form

V)2(p, k;P)= V,s(p, k;P)QO)Oq, (2.13)

where the Dirac matrices 0, which operate on the Dirac
indices of particles 1 and 2, describe the spin-dependent
structure of the kernel, and V,z, a covariant scalar func-
tion, gives the momentum dependence of the effective
confining potential. The four-momentum variables are
related to the momenta of the quark p &

and the antiquark
p2 by

1
1/3

3E =m~ 2C+ —(oo)' (2.1 1) pi = 2~+p~ ~ pi p2 ~

p =-,'(pi+p~»
(2.14)

which is remarkably close to the exact value.

B. Relativistic case

The previous discussion will now be generalized to rel-
ativistic systems. To motivate the development, systems
with at least one massive quark will be discussed first, fol-
lowed, in this section, by only a few comments on light-
quark systems. More discussion of light-quark systems
will be given in Sec. V, but a complete treatment of these
systems is postponed for a later paper.

The obvious way to generalize the definition (2.5) is to
replace the nonrelativistic q by the relativistic

d kI (p, P) =—
(2~) 2Eq

V,fr(p, k; P)

mz —kz

Xgo, (m, +k, )r(k, P)(m, +k', )O, ,

(2.15)

with the direction of the antiquark momenta as shown in
Fig. 2 (Sec. III). The spin structure of the kernel will be
discussed in Sec. III; the form of V,~ will be discussed
here.

The relativistic equation which uses the kernel (2.13),
with the quark on mass shell, has the form

TABLE I. Comparison of our numerical solutions to Eq.
(2.8) with the exact analytic value given in Eq. (2.9). The mass
of the quark was taken to be 0.35 GeV, that of the bound state
0.69 GeV, and the constant C =0. We thus solved for A, =8~o..

d k

k
(2.16)

where I is the bound-state vertex function. The covari-
ance of (2.15) is obvious if the integration is expressed in
its equivalent covariant form

No. basis functions

4
6
8

10
12
14

~num

1.250 559 6
1.179 541 5
1.172 3112
1.171 010 2
1.170 197 5
1.170 163 9

10 (A,„„—A,,~„,)

0.080 461 3
0.009 443 2
0.002 212 9
0.000 911 9
0.000 099 2
0.000 065 6

Many choices of the 0's consistent with chiral symmetry
are possible and are discussed in Sec. III. The choice we
will make there has the property

QO, (m, +k, )y'(m2+lE'2)O, =2(m, m~ —k, k~)y

(2.17)
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which means that the pseudoscalar solutions of (2.15)
have a pure y structure:

r(p, P)=r (p, P))" . (2. 18)

Specifically, substituting the ansatz (2.18) into (2.15) and
using (2.17) gives the following equation for the scalar
function I 0.

with q defined in Eq. (2.12).
The relativistic equation and relativistic linear poten-

tial for heavy-quark systems are now completely defined.
Substituting (2.21) into (2.19b) gives

d k(2E p+—Ep C)%'(p) = —f 3 Vg g (p, k)
(2~)

d kI (p, P) = —f (2~) Ei,

m )m2 ki k2

m2 —k2

X %(k)— 4'(p)

X V, (p, k;P)I (k, P) (2.19a)
(2.23)

I o(k, P)
V,~ p, k;P

(2~)' ' 2&k —p
(2.19b)

d kf V(p, k;P)=0 .(2' )
(2.20)

[Because V is no longer local, (2.20) is conveniently ex-
pressed as an integral over the momentum of the incom-
ing, on-shell, quark. We could just as well integrate over
the momentum of the on-shell outgoing quark. ] Follow-
ing the principle that the subtraction which cancels the
singularities in V and implements the constraint (2.20)
should be in the form of a 6 function, with support in the
region where V is singular, and adding a "constant" po-
tential which is the relativistic generalization of (2.7),
gives the following form for V,ff.

V,s(p, k;P) = V~~(p, k)

d k'
&k&(p —k)f —Vii~(p»k')

E~

+C(2~) E„5(p—k) . (2.21)

Unfortunately, the term Vzz must include a cutoff' factor
(or form factor) not needed in its nonrelativistic counter-
part V~, because without such a factor the integral in
(2.21) will not converge at large k'. We take

where (2.19b) holds if m, =m&, and P =(p, 0), which will
be assumed for the remainder of the discussion.

The function V,~ is now constructed by following steps
which parallel the construction of its nonrelativistic
counterpart [Eq. (2.5)]. We require each step in the con-
struction to be manifestly covariant and to reduce, in the
limit as m, ~~, to the corresponding step in the con-
struction of (2.5). There were two principal steps leading
to (2.5): (i) the definition of V„(q) and (ii) the regulariza-
tion of its singular behavior at q =0 by the imposition of
the constraint (2.3). We have already discussed the rela-
tivistic generalization of V~(q); the straightforward re-
placement of q by —q, where q was defined in Eq.
(2.12), satisfies the two requirements of covariance and
smooth approach to the nonrelativistic limit. The
second step is also straightforward if (2.16) is used to re-
cast the constraint into a covariant form

where the wave function is

r, (p, P)
q'(p) =

2' p
(2.24)

Note that Eq. (2.23) reduces to the Schrodinger equation
(2.8) in the limit m ~ ~, provided that A —+ oo also, and
that p=2m +E and 2m& =m.

The q term in the relativistic kernel still scales with
the quark mass, but the form-factor mass A spoils this
scale invariance, unless it is restored by adopting the con-
vention that this mass is also to be scaled by the quark
mass:

A =m Ao, (2.25)

[po(1+ —,'C)+2 —po+C]%(ro) = —croro+(ro), (2.26)

so that Ao (instead of A) is to be fixed. Since this scale in-
variance is an important feature of the linear potential we
are modeling, and since the cutoff mass does not
represent a scale of physical significance, we will adopt
this convention and choose a value of Ao which ensures
that the relativistic kernel approximates the behavior of a
linear potential as nearly as possible. [Since Ao is one of
the parameters of our model, its final value will be deter-
mined in a later work from fits to the entire meson spec-
trum. In this paper we choose AO=1. 7, as discussed in
Sec. V.] With this choice the dependence of the relativis-
tic equation (2.23) on the quark mass can be scaled away
just as was done for the nonrelativistic equation, and its
solutions depend sensitively on the same two dimension-
less parameters O.

o and C.
Equation (2.23) forms the backbone of our covariant,

relativistic confining model. However, to include the
light mesons, and especially the pion, we still need to in-
corporate chiral symmetry and also extend our on-shell
reduction, natural in the heavy-quark limit, to that of the
light-quark case. These are done in Secs. III and IV, re-
spectively. Before proceeding to do so, we first wish to
discuss the structure and solutions of Eq. (2.23) in a little
more detail.

Two families of solutions are of particular interest.
When o.

o ((1 and C is not too close to —2, it follows that
po = (p ) /m ((1, and the qualitative behavior of the
solutions can be understood by expanding the equation in
powers of m

V~„(p, k) = —8~a 1 1

q4 A4+q4
(2.22) where now all quantities with a subscript 0 have been

scaled by the quark mass. Using the uncertainty princi-
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pie, this gives the following estimates for the size and
mass of the lowest bound state:

2+C
7 0

p=m 2+ C+2 1+—C o.1
0

1/3 (2.27)

FIG. 2. Equation for the vertex function.

Note that the size and mass of the bound state are now
correlated through the constant C; in particular, as
C —+2, the bound-state mass and radius both approach
zero. This behavior is not an artifact of the nonrelativis-
tic approximation; examination of the exact equation
(2.23) shows that if C = —2, the solution is

%(p)= (for p, =o), (2.28)

where 2V is a constant. The slow falloff of this function
with p, the relativistic analogue of a constant, corre-
sponds to a 6 function in position space. In Sec. V we
will see how we use this correlation with the constant C
to get the pion, a nearly zero-mass bound state, correctly,
and we will show that the estimate (2.27) agrees quite well
with the actual calculations.

III. CHIRAL SYMMETRY

As previously discussed, the goal of the model is a
unified description of all the mesons, from the pion to
charmonium and the other heavy-quark systems. In the
last section we saw how to generalize the nonrelativistic
linear potential models known to describe successfully
charmonium to a covariant setting. Such a step is clearly
necessary in order to either deal with boosts or with the
lighter-quark systems. The pion, as the lightest of the
mesons and believed to be the Goldstone boson associat-
ed with the breaking of chiral symmetry of the QCD La-
grangian, must be addressed separately. As this involves
a separate and independent line of development from that
presented in Sec. II, we will in this section drop the on-
shell, three-dimensional reduction made there and instead
work in the full, four-dimensional Minkowski space. In
Sec. IV we will then merge, through various approxima-
tions, the results of the two sections and thus finally fully
define our model.

In recent years the old theory of NJL (Ref. 21) has
been resurrected as a possible model for the chiral-

symmetry-breaking mechanism of QCD. Originally
describing pions as bound states of nucleons, the theory
has received a much more plausible application in the
context of QCD as modeling the low-energy interactions
of quarks. In NJL chiral symmetry is dynamically bro-
ken through the self-interactions of the fermions. The ex-
istence of a deeply bound pseudoscalar state subsequently
follows naturally. We adopt this approach and also as-
sert that QCD breaks chiral symmetry dynamically.
Since low-energy QCD certainly contains a lot of dynam-
ics, such an approach appears quite natural. However,
unlike NJL where the quarks only interact at a point and
thus lose all information about the infrared structure of
QCD, dynamical symmetry breaking is implemented
within our potential approach. We are thus in effect gen-
eralizing NJL to include confinement.

Since we have no fundamental Lagrangian describing
our potential, we work from analogy with NJL. The po-
tential interaction of the quarks is modeled as an ex-
change interaction (as would occur in a simple boson-
exchange picture), involving two three-point vertices with
the exchanged momentum determined by energy-
momentum conservation. The spinor structure of this in-
teraction, 0, is as yet undetermined. From general con-
siderations it must be chirally symmetric, but not all such
choices for 0 will yield a zero-mass pion (in the case of
zero bare quark mass). Nevertheless, there is still a large
set {0 ) that do, and the exact form of 0 will have to
be deferred to a later work when we fit the entire meson
spectrum.

Following NJL, consider the self-consistent (Hartree)-
Fock equation for the two-point Green's function at the
one-loop order, shown schematically in Fig. 1. Defining

(3.1)

as the quark's self-energy, Fig. 1 gives

gfX'(p)+2'(p) =i f V,s(p —k)
d "k

(2~)

X+0; 0;
k' —mo —X(k)

(3.2)

FIG. 1. Self-consistent Dyson equation for the quark self-
energy. Blobs represent the full quark propagator, while the
heavy dashed line schematically represents the potential.

where m, is the bare mass of the quark.
We next write down the bound-state equation for two

dynamical quarks using the ladder approximation, shown
schematically in Fig. 2. As in NJL, we use the full quark
propagator. Define I (p, p) as the vertex function, where
P is the invariant mass squared of the bound state, Fig. 2
gives
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I (p, P)=i J V, (p —k)QO, "S k+ —1 (k, P)S k ——0,
d4k „P P

(2m ) 2
(3.3)

where

S(q) =
g —mo —X(q)

(3.4)

We will now show how, with a particular choice of 0, these equations are consistent with a zero-mass pion bound
state when mo is zero. As a first example, consider invariance under the SU(2) X SU(2) group and take 0 so that

QO; 0; =1 y—,y2r, r2, (3.5)

i.e., the sum of scalar-isoscalar and pseudoscalar-isovector exchange terms. The self-energy equation then becomes

d4k mo+X'(k)
X'(p) = 2i — V,s-(p —k)

(2~) '
k [1—X"(k )]—[mo+X'(k)]

2yv( ) 4
d k

V ( k)
p'k[1 X (k)]

(2') k [1—X'(k )] —[mo+X'(k)]

With the same interaction, the bound-state equation for a zero-mass pion with a vertex function of the form

r(p, p) =r,(p)

becomes

(3.6)

(3.7)

d4k
I (p)TQ —l1

(2~)4 I k2[ 1 yv(k 2) ]2 [m +ps(k 2)]2]2

X([id[1—X"(k )]+ma+2'(k }jlo(p)y Ik'[1 —2'(k )]+Mo+2'(k )]

+y Itt'[1 —2'(k )]+m +X'(k )]I (p}y Ik'[1 —X'(k )]+m +2'(k )]y ) . (3.8)

Passing all the y 's to the left (as we have already done in the above with the r's), we get, for I 0(p),

d4k I (k)
I'o(p) = —2i V,s.(p —k)

(2m. ) k [1—X'(k )] —[mo+X'(k)]
(3.9)

A comparison of the self-energy and pion equations shows that, in the case of the zero bare quark mass m o
=0 the pion

equation is ensured of having a solution, namely,

&'(p) = I 0(p) . (3.10)

On the other hand, if mo&0, the pion equation is inconsistent with the self-energy equation. Hence, if mo =0, there is a

pion state with zero mass, while if mo&0, there is no such state. We have thus generalized the mechanism of dynami-

cal symmetry breaking of NJL from pointlike quark interactions to interactions acting over an arbitrary distance and

have thus incorporated in our model all the main qualitative features of low-energy QCD, namely, chiral-symmetry

breaking and confinement.
The choice of 0 is not unique; other structures exist that will yield a zero-mass pion solution when rno =0. Interest-

ingly, one structure invariant under the simplest chiral U(1) X U(1) group that does not have this property is the sum of
scalar-isoscalar and pseudoscalar-isoscalar terms, i.e.,

QO; 0; =1 1'i1'z (3.1 1)

In this case there is no dynamical symmetry breaking and hence no zero-mass pion state. With respect to the chiral

U(1) X U(1) group, one structure for 0 which does give dynamical symmetry breaking is

(3.12)

i.e., the sum of scalar, pseudoscalar, and vector terms (all isoscalar), where U is an arbitrary, nonzero, constant. This

form has the advantage of being independent of the quark flavor and will thus, perhaps, be a more natural choice for

fitting the meson spectrum. However, in this case a more complicated structure for the vertex function is required in

order to solve the pion equation, namely,
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I (p, P)=I,(p, P)ry + I (p, P)ry P + I (p, P)ry gf . (3.13)

The equations for the vertex function greatly simplify if v = 1 and the form for I (p, P) is then again given by Eq. (3.7).
Because of this simplification, we have chosen to use this particular form for 0 for the remainder of this first, intro-
ductory work. Again, the optimal form for 0 is part of our parameter fitting, and the selection of a final form, togeth-
er with the extension to the more realistic SU(2) X SU(2) group, will have to be deferred to a later work when we are
fitting the physical mesons. For subsequent use in the next section, we now simply state our results for the self-energy
and vertex function equations with this last (v = 1) form for 0 . For the quark self-energy, we get

4 mo+X'(k)
X'(p) = 2i — V,~(p —k)

(2~) '
k [1—&'(k )] —

[ +X'(k)]
(3.14)

d k
k

p.k[1—X'(k)]
(2m)

' k [1—X'(k )] —[mo+X'(k)]

which is nearly identical to our earlier result [Eq. (3.6)]. The vertex equation becomes

d4k V.a(P —k)1 o(k)
I o(p) = 2i—

(2~)' D(+)&( —
)

p2
k — A (+)2 (

—
) 8(+ )—8( —

) (3.15)

where

A (+ ) = 1 —X„(k+—,'P),
8 (+)=mo+X, (k+ ,~P), —

D(+)=(k+—'P)'&(+)' —8(+)' .

(3.16)

Once again, if the pion mass is zero and mo is zero, the
equation for I o(p) reduces identically to that for the sca-
lar self-energy X'(p).

We must now discuss how the potential V,o-(p —q) ap-
pearing in Eqs. (3.14) and (3.15) is defined and thus wed
the results of this section with those of Sec. II. This
brings us to Sec. IV.

IV. CONFINEMENT WITH CHIRAI. SYMMETRY

Our model for the relativistic description of heavy-
quark systems was defined in Sec. II. The treatment of
light-quark systems, in particular the pion, requires the
construction of an interaction consistent with chiral sym-
metry. The general framework for the construction of
such an interaction was outlined in Sec. III. The task of
this section is to work out the details of how such an in-
teraction is embedded in the relativistic formalism intro-
duced in Sec. II and in this way define a relativistic model
for the treatment of light-quark systems which is con-
sistent with chiral symmetry.

A. Quark self-energy

The first step is to cast the self-energy relations [Eqs.
(3.14)] into a form consistent with the relativistic equa-
tion introduced in Sec. II, in which one of the quarks is
restricted to its mass shell. In preparation for this, note
that the self-energy bubble, shown in Fig. 1, has singular-
ities arising from the internal quark propagator and from
the linear kernel, which contains the q term and "sub-
traction" which regularizes the strong singularities of the

k [1—X'(k )] =[mo+X'(k )]2 . (4.1)

Assuming that the dependence of X' and X' on k is very
weak, so that their derivatives with respect to k can be
neglected, this approximation gives the following result
for the quark self-energy relations (3.14):

d kX'(p )= —2 J (2n) 2Eq

mo+ X'
V,a(p —k)

(1 —X')'
(4.2)

d k 1
p X'(p )=2J (27r ) 2E~

1
V.s.(p —k)poE~

1 —X'

where the second relation has been evaluated in the rest
frame of the quark, and X'=X'(m ) and X'=X'(m ).
Specializing to the case when the external quark is also
on shell and renormalizing the potential strengths by
0. /(1 —X") ~o. and the masses by m /(1 —X')~m, gives
the following two relations for m and a =X'/(1 —X"):

d k 1= —j V,~(p —k),
(2~)

d'kma= Vzp —k(2'�)

(4.3a)

(4.3b)

Since both the external and internal quarks are on shell in

linear term at q =0. The detailed form of the subtrac-
tion term is not known for the case when both of the
quarks are off shell, but we know there must be such a
term even in this case. The role of this term would be to
soften the singularities at q =0.

If the quark self-energy bubble is evaluated by integrat-
ing first over the energy component qo and if the singu-
larities at q =0 are softened by the subtraction, we are
led naturally to the idea that the integral can be approxi-
mated by retaining only the contribution from the
positive-energy quark pole at
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relations (4.3), we may substitute the form of V,a given in
Eq. (2.21). Note that, because of the constraint (2.20), the
linear term makes no contribution to the dynamical mass
shift, and Eq. (4.3a) relates this shift to the constant C:

mpC= — 1— (4.4)

As the bare quark mass approaches zero, C should ap-
proach the critical value of —1. However, in Sec. II we
saw that the mass of the composite system approached
zero when C approached —2, not —1. The reason for
this discrepancy is that the bound-state equation does not
yet include all of the contributions essential to a complete
description of bound states with masses p~0. The addi-
tional contributions which are necessary will be derived
and discussed in Sec. IV B.

Before turning to this discussion, we ofFer a few addi-
tional remarks and comments about the Eqs. (4.3). (i)
Note that both the linear and constant terms contribute
to the equation for the renormalization constant a. It can
be readily seen that the contribution from the linear term
is positive, and therefore a is bounded from below by the
contribution of the constant term. This in turn permits
us to prove that the renormalization factor must be posi-
tive,

(a)

FICx. 3. Position of the poles [Eq. (4.6)] in the quark propaga-
tors evaluated for k =0 and (a) p-2m and (b) p-0.

light. In such cases the problem is very relativistic, and
the additional component cannot be neglected.

To see how this additional component arises, examine
the singularities of the propagators for the two oft-shell
quarks, which occur in Eq. (3.14). Ignoring the self-
energy factor X (or, alternatively, approximating it by a
constant in the vicinity of the poles and renormalizing),
there are four poles in the complex kp plane, shown in
Fig. 3. These are at

1 Pl p=1+a ~ 1+C= ~0,
1 —X' m

(4.5) kp =Ek ~p EE' 1a

showing that, in the approximation leading to (4.4), the
mass renormalization does not change the sign of the
quark masses. (ii) To treat the dependence of functions
X' and X' on k self-consistently, it is sufficient to expand
them to first order in (k —m ). These additional deriva-
tive terms modify our results by as much as 50% and
deserve further study. (iii) It may seem unphysical to
treat bound quarks, which cannot exist in isolation, by re-
stricting them to their mass shell. As we mentioned in
the Introduction, in our model the quarks only appear to
propagate freely when they are in the vicinity of other
quarks, and it is the linear potential interaction between
neighboring quarks which provides the confinement; the
self-energy of the confined quarks is finite.

We turn now to the issue of how to reconcile the rela-
tivistic equation with the chiral constraint (4.4).

B. Equations for almost-massless bound states

As mentioned above, Eq. (2.23) is not a suitable start-
ing point for the description of the pion because, as the
current quark mass m0~0 and (therefore) C~ —1, it
does not automatically produce a solution for a bound
state with zero mass. Instead, zero-mass bound states
occur only when C~ —2. In this section we will show
that this inconsistency arises because a second channel,
or component, of the relativistic wave function has been
omitted from (2.23). This component turns out to be
negligibly small except in cases where the bound-state
mass is very close to zero or when the quarks are very

= —Ek —
—,'p+&e 1b,

kp —Ek + ~p lc 2a

= —Ek +—,
' p+i e 2b,

(4.6)

where the poles of the quark and antiquark are labeled 1

and 2, respectively, and positive-energy poles (for the
direction of momenta shown in Fig. 2) are designated by
the letter a, negative energy ones by b. The positive-
energy poles lie in the lower half-plane and negative ener-

gy ones in the upper half-plane.
Equation (2.23) can now be obtained from Eq. (3.15) by

doing the integration over kp and retaining the pole 1'a

only. This procedure can be justified in two difterent
ways. First, it can be viewed as an approximation to Eq.
(3.15) justified by the facts that (i) the singularities com-
ing from the linear potential are "softened" by imposition
of the constraint (2.20), the same argument used to justify
the reduction of the quark self-energy, and (ii) the pole
(la) gives the dominant contribution from quark propa-
gator poles [in the loosely bound case shown in Fig. 3(a)
where p is close to 2m]. (The singularities coming from
the wave function are also assumed to give smaller con-
tributions. ) Alternatively, in the context of relativistic
meson theories, where light mesons are exchanged be-
tween two heavy bosons, examination of the infinite sum
of all ladder and crossed-ladder exchange diagrams shows
that, in the limit where the heavy mass is infinitely larger
than the exchanged mass, this ladder sum is given exactly
by the solution of the relativistic equation in which one of
the heavy bosons is restricted to its mass shell, i.e., Eq.
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(2.23). The latter justification is clearly more convincing,
but it also is not clearly relevant to the system under
current study. In any case the use of Eq. (2.23) can be
justified on fairly general grounds.

Review of the above discussion shows why the method
fails for bound states of nearly zero mass and how to
correct it. We see that as p~O, the two poles (la) and
(2a) approach each other, and coincide when p=O [see
Fig. 3(b)]. Clearly, in this case we cannot neglect the pole
at (2a) in favor of the one at (la). Furthermore, the resi-
dues R of the two poles are roughly proportional to the
inverse of their distances from pole (2b), and this ratio is

R2, 2EI, —p
R i, 2EI,

(4.7)

showing that pole (2b) is unimportant for loosely bound
systems (where p is close to 2m), but of equal importance
when p is small. The correct equation for bound states
with nearly zero mass must therefore include the contri-
butions from pole (2a), which results in the introduction
of another component of the wave function (with the an-
tiquark on shell) and two coupled equations for these two
components.

The new coupled equations have the general structure

r, (k, P) r, (k, P)
I ~(p, P)= —f 3 V»(p, k;P) + V,2(p, k;P)(2'�) 2Ek —p

'
2Ek +p

I,(k, P) I 2(k, P)
I 2(p, P)= —f, V~, (p, k;P) + V22(p, k;P)(2~)' ' '

2Ek v' —' 2Ek+v

(4.8)

In completing the definition of V,z for each element of

Vii

(a) (b)

FIG. 4. Representation of the two vertex functions and four
potentials. A quark line with an x is on shell.

where I
&

and I 2 are the two components of the vertex
function, as illustrated in Fig. 4(a), and the four Vs are
the components of a matrix interaction kernel [Fig. 4(b)].
The subscripts 1 and 2 now designate how the relative en-
ergy ko is fixed, with (1) the quark and (2) the antiquark,
on shell, according to the relations (la) or (2a) of Eq.
(4.6). The energy denominators appropriate to each
channel were obtained as in the derivation of Eq. (2.19).

The energy transfer is different for each of the Vs, and
this the key to their definitions. From Fig. 4(b) one readi-
ly sees

q2=(E EI, )2 —(p —k—) (for V&& and V2z),

q2=(E Ek —p) —(p——k) (for V,2),
q2=(E +p EI, )

—(p —k—) (for Vz& ) .

the potential matrix, we continue to impose the con-
straint (2.20), building up the kernel from three contribu-
tions: (i) the "leading" q term defined in Eq. (2.22),
with the appropriate q taken from (4.9), (ii) an appropri-
ate 6 function subtraction with support in the region
where V," is singular, designed to ensure the constraint
(2.20) and regularize the strong singularities in V, and (iii)
a "constant" potential of the same form used in Eq.
(2.21). These principles require that V&t

=
V~&

= V, tr, as
defined in Eq. (2.21). The definitions of the off-diagonal
potentials requires further discussion.

The first step in the definition of V, 2 and V2& is
straightforward and unique. Our leading q

" terms, as
defined above, are denoted by Vzz and V~'~. To imple-
ment the second step, we must first decide how to impose
the constraint (2.20). Consider V2&(p, k) first. Because it
is not symmetric in p and k, it will not be possible to re-
quire that (2.20) hold for both the initial and final chan-
nels at the same time. Stated another way, the imposition
of the constraint on the incoming channel 1 will mean
that another constraint Iin which the RHS of (2.20) is not
zero, but a finite function] will hold for the outgoing
channel 2. We choose to impose (2.20) on the incoming
channel 1 for V2& and, as required by Hermiticity, impose
it on the outgoing channel (also 1) for V&2. Next, the
second step requires that we find the region where q =0.
This involves a surprising amount of analysis and is de-
scribed in the Appendix. The singularities of Vz~ and
Vz'z can be easily characterized using a cylindrical coor-
dinate system oriented in the direction of p, with com-
ponents k~ and k~~. In this coordinate system the singu-
larities lie on conies of revolution, bounded either by
points where k~ =0 or where both k~ and k~~ ~~. When
kj =0,

k~~ may be either positive or negative, correspond-
ing to k either parallel or antiparallel to p. For a given
magnitude of p and bound state mass p, there is, there-
fore, a range of values of the magnitude of k over which
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V is singular. We will denote the lower and upper limits
of this region by k, and kz, respectively. The values of k,
and kz for different regions of p and p are given below
and in the Appendix.

Now that the locations of the singularities of V&& and
V~~ are known, we must decide how to carry out the
subtraction (in channel 1) which will remove them from
the effective potential. In cases where the wave function
depends only on the magnitude of k, which is the case

here, we will remove, or "cut out, " the entire region be-
tween k& and k& and perform an additional subtraction at
the boundary of the region. The removal of the entire in-
terior of the singular region is justified by the observation
that the precise location of the singularity inside the re-
gion depends on both k~ and k~~, and hence any subtrac-
tion which depends only on the magnitude of k will can-
cel completely. For Vz, the final result of these con-
siderations gives

d k'
V~'~(p, k) —Ei, 5[/(p)k, p —k]f V~~(p, k') if k (k, ,

V„(p,k;P)= 0 if k, &k &k, ,

3

V~'~(p, k) —E„6(k~p —lt)f„, V~'„(p, k') if k~ (k,
(4.10)

where

p(2E +p) p(2E +p)
k, = p—,k =p+

2(E~ —p+p) ' 2(E +p+p)

and

1 if p &m and p )—1+p Ol

g(p)= . 2 m p

(4. 1 1)

(4.12)

the philosophy initially developed in Sec. II. The last
step in their construction is the choice of a "constant"
term, similar to the last term in Eq. (2.21). So far, we
have not found a unique way of constructing this term.
We know that chiral symmetry requires that the diagonal
and off-diagonal potentials be equal when p=o, and in
this paper we chose the constant terms to be equal for all

p, the simplest choice consistent with this requirement.
With this choice the coupled equations (4.8) become

(2E p+E C)%',—(p)+E C+~(p)
—1 otherwise

V, ~(p, k;P)= V~, (k,p;P) . (4.13)

(see the Appendix for details). Note that the definition
(4.10) ensures that any integrals over Vz& are finite by
completely removing the interior of the region where Vz&
is singular and by subtracting terms which regularize
Vz'z at the boundary of the region of singularities. Note
also that our definition ensures that Vz& will equal the
linear terms in V,z [the first two terms in (2.21)] when
p=0.

The other potential V&z can now be obtained in one of
two equivalent ways. First, we may use Hermiticity to
conclude that

d k= —f 3 V~~(p, k) P, (k)—
(2' )

d k—f V,~(p, k)4~(k),
(2~)'

(2E +p+E„C)4~(p)+E CV, (p)

d k= —f V~ „(p,k) +~( k)—
(2~)

d k—f, V~ ~ (p» k) +i(k)"~"
i (2')

d k
V~'„(p, k) %,(k)—

k & kz (2~)3

+i(p)

(4.14)

'1',(p)

, (k, )
k

'P, (k~ )

Alternatively, it should be possible to find a form similar
to (4.10), but with the appropriate q taken from Eq.
(4.9), k& and kz modified as described in the Appendix,
and (new) subtraction terms consistent with the (new)
constraint which holds for channel 2, as discussed above.
Such a form would be convenient because it would ex-
press the subtraction directly in terms of the integration
variable IC, but in this paper we will rely on (4.13).

So far, the definitions of the off-diagonal potentials
have been a relatively straightforward generalization of

1,(p, P) I ~(p, P)'P'= 2E — ' 'P' 2E +p p
(4.15)

The extension of our model to deeply bound states is
now complete. Note that if the extra channel described
by %~ is neglected, Eqs. (4.14) become identical to the
one-channel equation (2.23), and that if p=0, the equa-

where the explicit form for V, z remains to be worked out,
and the coupled wave functions are
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tions have the solution

(4.16)

go=4(1+ C)+6[o ii(2+ C) (1+C)]'i (4.18)

fz
fi

2m p
2m +p

Note that both the size and mass of the bound state ap-
proach zero as C~—1 and that the strength of the extra
channel grows as p~O, becoming equal to the larger
channel when p=O. All of these results are well repro-
duced by the exact solutions, as discussed in the next sec-
tion. Finally, using Eq. (4.4), the bare quark mass may be
expressed in terms of f, and fz, and the dynamical mass
m:

fi fz-
fi+fz (4.19)

This concludes our theoretical discussion of Eq. (4.14).
We now turn to a review of the numerical results.

V. SOLUTIONS

In this section we discuss our numerical techniques and
present solutions to our bound-state equations in two lim-
its: (i) the heavy-quark case, where m ))o., and (ii) the
light-quark case, where m -0..

provided C = —1, as required by chiral symmetry. Equa-
tions (4.14) reconcile the requirements of relativity with
chiral symmetry.

As in the one-channel case discussed in Sec. II, we can
use the uncertainty relation to estimate the behavior of
the solutions to (4.14). For the heavy-quark case studied
in Sec. II, the linear parts of the off-diagonal potentials
are much smaller than the linear parts of the diagonal po-
tentials (see Figs. 5 and 6 in Sec. V) for all but the small-
est bound-state masses, and so we will neglect them. We
will also assume that the wave functions %'i and %'z have
the same shape, with different normalizations f i and fz,
respectively (this is also true of the exact solutions). Then
the coupled equations for the expectation values become

[po( 1+—C)+2+C Izo]f i +( 1+—po )Cfz = 0'orof i

(1+—Jzo)Cf i+[go(1+—,'C)+2+C+po]fz= pro"ofz

(4.17)

where the energy has been expanded as in the derivation
of Eq. (2.26). Solving these equations for po, minimizing,
and then calculating fz If, gives the estimates

1/31+C
cro(2+ C)

tion to the equations in two extreme limits: (1) the true
nonrelativistic limit, where %i(p) is simply the Fourier
transform of the first Airy function and %z(p)-0, and (2)
the zero-mass pion case @=0, where q', (p) =%z(p)= 1 IE (p). These two limiting solutions behave very
differently at large momenta p (the nonrelativistic solu-
tion having a rapid falloff, whereas the zero-mass pion
case has a long tail), and the challenge is to develop a
technique for solving the equations that can interpolate
between these two limits. In addition, there is the techni-
cal problem of handling the poles in the integrands aris-
ing from the potentials V», V,2, and V2, .

To solve the equations, we first expand each wave func-
tion %'i(p) and ~pz(p) in terms of a finite set of basis func-
tions I b, (p) ] and then solve for the coefficients of this ex-
pansion, and for the value of the constant C. A principal
reason for using analytic basis functions is that there are
then no difficulties in performing the integrations over
the singularities in the integrand. For each basis function
bI(p), each term in Eq. (4.14) is first evaluated and then
expanded in terms of the set I b, (Iz) ]; for example, we ex-
pand the product E(p)b (p). Since this product [or any
of the other terms in Eq. (4.14)] is not in general exactly
expressible as a linear combination of the finite set
I b;(p) ], a linear least-squares procedure is used to obtain
the best fit possible. For a basis set with n functions, we
thus construct (for given p, oo, and Ao) from Eq. (4.14) a
generalized eigenvalue problem Ax=XBx, where A and
B are matrices of dimension (2n)X(2n) containing the
coefficients of the linear least-squares expansion, the
eigenvector x is of length (2n) whose entries (which we
are solving for) are the expansion coefficients of the wave
functions %,(p) and %z(p), and the eigenvalue A, is the
constant C. We solve for A, and x using standard tech-
niques and identify the ground state as that solution with
the least negative (i.e., closest to zero) eigenvalue. We
then iterate the procedure, increasing the number of basis
functions in the set [b;(p)] until the solution converges.
For the set [ b; (p) ], we use

b (p) =N, L exp p
m, 2 m,

(5.1)

where L is the jth Laguerre polynomial, m& is an arbi-
trary mass parameter, and XI is a normalization factor
with dimensions of inverse mass. The advantages of this
choice of basis functions are (1) the b are orthogonal
over the interval 0 ~p + oo, and (2) in the limit n ~ ao,
the set [b;(p)] is complete (any analytic function is ex-
pandable in terms of them), and therefore the method
must in principle ultimately converge to the correct solu-
tion, independent of m&. In practice, though, to obtain
convergence rapidly the choice of mI is crucial and at
times problematic.

A. Numerical methods B. Results

In this first paper we choose to solve the coupled equa-
tions (4.14) for the constant C as a function of the
bound-state mass p and with (at this point, arbitrarily)
fixed parameters o.

p and Ap. We already know the solu-

The first application of our numerical technique has al-
ready been presented in Sec. II where we solved the non-
relativistic equation (2.8) and quite accurately reproduced
the known analytic results (see Table I). The fully cou-
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pled relativistic equation is a much more complicated
problem. One relevant issue concerning these equations
and already brieAy mentioned in Sec. IV is the structure
and relative sizes of the diagonal and off-diagonal in-
tegrals in Eq. (4.14). Whereas one cannot unambiguously
discuss this point for every m and p without knowing the
full solutions 'P&(p) and qI2(p), a comparison of these in-
tegrals over the first Laguerre basis function b, (p) should
be indicative. In Figs. 5 and 6 the integrals of bl(p) over
V» and V~I [as they appear in Eq. (4.14)] are presented
as a function of the dimensionless variable (plm) for two
different values of p/m. [Recall that V&z has been
defined from V2, though Hermiticity, Eq. (4.13)]. We see
that these curves are smooth and that the off-diagonal in-
tegrals are slowly developing into the V» contribution as

FIG. 5. Integrals of the first Laguerre basis function over the
potentials V» and V» plotted vs the dimensionless variable
p/m. The solid curve closest to zero is V», the other is V».
The dashed line is the integral using the nonrelativistic
definition of the potential VL [Eq. (2.5)). The mass in our cutoff
function A& = 1.7, the mass in the Laguerre basis function
mt =0.17m, and p/m =0.5. Note that V» is all but ignorable.

the bound-state mass approaches zero. In fact, it is only
for the most deeply of bound systems that the off-
diagonal elements V2I (and hence V, z) are at all apprecia-
ble. For simplicity we have thus accordingly set these
terms to zero. These curves also depend on the Laguerre
mass m& and the cutoff mass Ao. We took Ao=1. 7. Al-
though our value is at this stage somewhat arbitrary, Ao
has been chosen so that the integral over V» traces fairly
closely its corresponding nonrelativistic version VL in Eq.
(2.5) and thus preserves the low-energy, linear-confining
features of our potential. The integral over Vl has like-
wise also been included in these figures. The value of the
Laguerre mass, mI =0.17m, is the same as the one used
to obtain the solutions in both the heavy- and light-quark
regimes. Although convergent solutions do not depend
on m&, gross errors in the choice of the Laguerre mass
(such as a factor of 10) make such solutions unobtainable
with only a few basis functions (n —10).

1. Case of heauy quarks (m ))o')

In this situation there are two scales to the problem,
and accurate, numerical solutions are subsequently rela-
tively easy to obtain until the very smallest bound-state
masses. For o. we take a value consistent with lattice
studies and nonrelativistic models: o-=0.2 GeV . For
the heavy-quark case, we then take m =3.5 GeV, ap-
proximately a factor of 10 larger than what might be con-
sidered a reasonable value for the constituent mass of the
up and down quarks. This value for m is also, coin-
cidently, approximately the mass of the bottom quark. It
should be emphasized that in this section we are only ob-
taining test solutions to our equations and that no physi-
cal meson should yet be associated with any of these solu-
tions. In particular, we are not claiming that a deeply

0,0 I I f I

0.0

—0.5

—0.4

—1.5

—2.0 &
0 0.4 0.6

/2m
0.8

—0.8
0.1 0.2

//rn
0.3

FIG. 6. Same as Fig. 5 except that now p/m =0.125.

0.4

FIG. 7. Solutions for the constant C as a function of p/2m
for both the one- and two-channel bound-state equations in the
case of a heavy-quark mass. Our numerical solutions are the
large circles, while the curves are the estimates for the one- and
two-channel solutions given in Eqs. (2.27) and (4.18), respective-
ly.
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FIG. 8. Ratio %2{0)/%'&{0)as a function of p/m. We use the
same notation as in Fig. 7.

FIG. 10. Same as in Fig. 9 except now the quarks are deeply
bound, p/2m =0.25. The quarks are clearly now highly rela-
tivistic.
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bound pseudoscalar state of bottom quarks exists. We
could have equally chosen to work in this section with a
value of both o and m 10 times smaller.

For this case both the one- and two-channel equations
[(2.23) and (4.14), respectively] were solved for a variety
of bound-state masses. The results are shown in Figs.
7—10. Figure 7 plots the value of the constant C for both
channels versus the bound-state mass p. The circles are
our numerical solutions. The smooth curves are the esti-
mates made in Secs. II and IV for the relation between p
and C, and given by Eqs. (2.27) and (4.18), respectively.
%'e see close agreement between our solutions and these
estimates. Figure 8 plots the ratio of +z(0)/%, (0) for the
two-channel solutions, and the estimate for this ratio

given in Eq. (4.18). Again, there is close agreement be-
tween the two, perhaps beyond what might be expected
since these estimates involve a nonrelativistic expansion
of the energy factor E(p), which is certainly incorrect in
the limit C~ —1.0 (or —2.0 in the one-channel case).
However, the success of these estimates probably relies
more on the small size of era ( -0.02) and the ignorability
of the off-diagonal integrals (as suggested in Figs. 5 and 6)
than the average size of the momenta p.

In Figs. 9 and 10 the wave functions for both the one-
and two-channel solutions are plotted for two illustrative
bound-state masses. In the first case of small binding en-
ergy (@=6.0), relativistic corrections are of the order of
10% as might be expected. More interesting is the fact
that the wave function Vi(p) is unchanged in going from
the one- to two-channel equation —the presence of the
second channel being completely absorbed by a
modification of the value of the constant C. For more
tightly bound solutions (e.g. , @=1.75), this is no longer
the case and +,(p) is significantly modified, becoming
broader in momenta space. In this case %2(p) is also
more significant. The necessity for using the fully cou-
pled, relativistic equation in this limit is clear.

0.25

0.00

0 0.2
I I I I I I I I I I I I I I

0.4 0.6 0.8

FIG. 9. Our solutions for the wave functions for both the
one- and two-channel equations for the case of a lightly bound

system of heavy quarks {p/2m =0.8S). The wave functions
have been normalized such that %&{0)=1. The solid and dashed
curves are the two-channel solutions +& and %'2, respectively,
while the dotted curve is the one-channel solution. In this limit
we see that a nonrelativistic reduction is quite sensible.

2. Case of light quarks (m —o')

Solutions have thus far been obtained in this case only
for large bound-state masses (p-2m). For more deeply
bound systems, our numerical techniques have not so far
given stable solutions. What is probably needed is a set
of basis functions that individually more closely approxi-
mate the correct solutions, for even in the case of the
lightly bound systems the convergence of the Laguerre
series was slow, and we found great sensitivity in the
value of the constant C and in the exact shape of the
wave functions at large momentum (although the relative
sizes of the two channels are much more stable). We thus
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defer a full analysis of the light-quark case to a subse-
quent paper and only present here our results for the
lightly bound systems. These are still instructive.

We work with a quark mass m =0.35, while the
coe%cient of the linear potential o. =0.2 as before. The
solutions 'Pi(p) and %z(p) for a bound-state mass @=0.6
are shown in Fig. 11. Note how much larger %z(p) is
here than in the analogous p =6 solutions for the heavy
quarks shown in Fig. 9. Preliminary results for more
deeply bound systems (@=0.14) strongly suggest this
trend continues and that 0', (p) and %'z(p) rapidly ap-
proach equal value. As expected for the case of light
quarks, even moderately bound systems are highly rela-
tivistic and use of the fully coupled, two-channel equation
is absolutely necessary. No nonrelativistic (one-channel)
reduction can be made.

The solution in Fig. 11 corresponds to a value of the
constant C ——1.3. The fact that C( —1.0 is not yet
understood in conjunction with our quark self-energy re-
lation [Eq. (4.4)], which would appear to suggest such a
value is unphysical. The source of this discrepancy may
be due to one or more of the following factors: (i) the ap-
proximations made concerning the quark propagator in
deriving the bound-state equations (4.14), namely, the
simplification of replacing the full quark propagator by a
Feynman propagator with a constant mass, (ii) ambigui-
ties in defining the off'-diagonal constant potential, (iii) the
neglect of the off-diagonal elements Vz, and V, z, or (iv)
inaccuracies in our numerical method for the determina-
tion of C, which may be as large as 20% in the light-
quark case. Although an intriguing issue, especially con-
sidering the nice results obtained for C vs p in the heavy-
quark case presented in Fig. 7, we feel that further discus-
sion of the constant C must be postponed until a full sys-
tematic study of the liqht-quark case has been successful-
ly completed.

VI. CONCLUSIONS

A new model of mesons has been introduced that is co-
variant, confining, and includes chiral symmetry. In this
fashion we are developing a unified description of all the
mesons, from the ~ to the Y. The exact definition of our
approach awaits later work when the small number of pa-
rameters in our model are determined by fitting the full
meson spectrum. Our equations are analytically solvable
in the limit of absolute chiral symmetry (i.e., zero pion
mass) and reproduce the very successful nonrelativistic
linear potential models in the case of lightly bound,
heavy-quark systems.

We have obtained numerical solutions for a pseudosca-
lar bound state in the case of heavy quarks and arbitrary
bound-state mass. Further work along these lines
remains for the case of light quarks. One important in-
gredient that needs to be added is the effect of one-gluon
exchange. As OGE effects are expected to be especially
large in the case of light quarks, their inclusion will be an
important part of the next stage of development.
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APPENDIX

In this appendix we will determine the location of the
singularities of Vz~ and V&~. These occur when q =0.
Introducing components of k parallel to and perpendicu-
lar to p and defining k~~ =k~~ —p, the location of the
singularities can be determined from Eq. (4.9), which be-
comes

1.0

I I I I

j
I I I I I I I I

(E E„+p) =(kIi—) +ki, (Al)

0.8
where in Eq. (Al) and all subsequent equations the upper
sign refers to V~'z and the lower one to V~~. Expanding
the square on the LHS gives

0.6 (E +p) +E +2pkii =2Ek(E~+p (A2)

0.4

0.0
0

FIG. 11. Solution for the wave functions of the two-channel
equation in the case of a lightly bound system (p/2m =0.85) of
light quarks. As opposed to the analogous case of Fig. 9, no
nonrelativistic approximation is possible.

If both sides of this equation have the same sign, it may
be squared without introducing spurious roots. Since the
RHS is always positive for V~~, this reduces to the fol-
lowing restriction on k

I~

if it is to be a root of (A2):

(E +p) +E +2pkI )0 . (A3)

For V~~ there are two cases depending on whether or
not E is bigger or less than p:

(E p) +E +~~k~~ +0 (A4a)

(E —p) +E +2pkI~ (0 . (A4b)

If E is greater than p, the roots must satisfy condition
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(A4a), while if E is less than p, they must satisfy (A4b).
Keeping this in mind, (A2) can be squared and written in

the form

aki+P(k~~ —k, )(k~~ k„—) =0,

a=4(E +p, )

P=a —4p =4(E +p+p)(E +p —p),
p(2E +p, )

k, =p+
2(E +p+p)

p(2E~+p )
kb=p+ 2(E„—p+p, )

(A6)

Equation (A5) shows that the singularities lie on conic
sections of revolution, which are ellipsoids if P) 0 and
hyperboloids if /3 & 0.

Consider the potential V~'„ first. In this case P is al-
ways positive, and the singularities lie on an ellipsoid of
revolution bounded between kb (which can be negative)
and k, (which is always positive and larger than kb).
Furthermore, k, is never so negative that it violates the
condition (A3). Expressed in terms of the magnitude of
k, we see that the singularities are first encountered when
k = ki, ~, and that when k )k, there are also again no
more singularities. Cutting out the region where the lo-
cation of singularities depends on both k~ and k~~ gives
the results recorded in Table II, with k, =

~ kb ~

and
kz =k, . Finally, k, &0 means that k is antiparallel to p,
requiring the g defined in Eq. (4.12) to be —1, and the
range of p over which this occurs is as given in Eq. (4.12).
The boundaries of the singular region are shown in Figs.
12(a) and 12(c).

The direct analysis of V~~ is considerably more com-
plicated because P can be negative. As p is increased
from zero, 13 is first positive, but then changes sign when

FIG. 12. Heavy solid lines are the boundaries of the singular
regions of the potentials Vz~ and Vz'„. (a) V~'~ for p&m, (b)
VR'~ for p & m, (c) Vq~ for p) m, and (d) V~'q for p) m. In
each figure the vertical axis is k, the horizontal axis is p, and the
shaded lines are asymptotes.

p reaches the critical point

/m' —p'/
~crit (A7)

If p &I, this happens because F. —p+@ goes through
zero at this point, causing kb~+ ~ (when p &p,„;,) and
then (when p )p, „,, ) increase from —ao. The large nega-
tive value of k& is associated with the second branch of
the hyperboloid of revolution, which need not be con-
sidered, however, because this root is spurious, violating
the inequality (A4a). Hence the only singularities of
V~„, for p & m, lie between k, = ~k, ~

and k~ =ki, (if
p &p„.„,) or kz ——oo (if p )p„;,), consistent with Table II.
Next, if p )I, the critical point is reached when

TABLE II. Boundaries kl and k2 of the region of singularities of the off-diagonal potentials V» and

V» for different values of the momenta and bound-state mass p.

2 2

If" p &—
2p

and p~m
p(2E —p)

2(E~ +-p —p)
p(2E —p)p+ 2(E, —p —p)

2 2

If p&
2p

and p) m

Otherwise
p(2E —p)

2(Ep+p —p)

V21
p(2E~ +p)

2(E, —p+p)
p(2' + p)

p +
2(E~+p +p)
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E +p —p=0, because the other factor in 13, E~ —p —p,
is always negative. But when p &p„;„it turns out that
neither k, nor kb satisfy the inequalities (A4), showing
that they are both spurious roots and that Vz~ has no
singularities when p &p„;,. In the language of Table II
and Eq. (4.10), this means that k& =k2= ~. Finally,
when p )p„;„the root k2 is spurious, and the singulari-
ties lie along only one branch of a hyperboloid of revolu-
tion, bounded by k, = ~k, ~

and ~, as given in Table II.
In both cases k, is positive, and hence k is parallel to p,

only if p)p [I—p/2(rn+p)]. The boundaries if the
singular regions for V, 2 are shown in Figs. 12(b) and
12(c). Note that these are related to those of Vz, by
p~k, as required by hermiticity.

An explicit form for V,2, similar to that given for V2,
in Eq. (4.10), can be obtained by using Eq. (4.13) and the
definitions of k& and k2 worked out above and summa-
rized in Table II, but since we have neglected these terms
in this work, this will be postponed to a subsequent pa-
per.
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