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We study hadron thermodynamics with Wilson quarks. The crossover curve between the high-
and low-temperature phases is determined as a function of gauge coupling and hopping parameter
on 8 X4 lattices. Screening lengths are calculated in the vicinity of the crossover region, and meson
masses are calculated along the crossover curve on 8 X 16X4 and 8'X 16 lattices, respectively.

I. INTRODUCTION

The study of lattice QCD at high temperatures is im-
portant for an understanding of the theory, and has po-
tential applications to cosmology and nuclear physics. A
great deal of effort has gone into studies with Kogut-
Susskind quarks, ' but much less work has been devoted
to high-temperature QCD with Wilson quarks. 6 In
this paper we present results from a recent simulation
with Wilson quarks.

For the study of hadron thermodynamics, Kogut-
Susskind quarks have the advantage of retaining a rem-
nant of chiral symmetry, a U(1) symmetry. Therefore,
for zero quark mass, the lattice theory has a Goldstone
boson in the broken-symmetry phase, and ( gP) is a bona
fide order parameter. The chiral limit can be approached
by simply decreasing the quark mass towards zero. How-
ever, for finite lattice spacing the flavor symmetry among
the pion states is broken, and full chiral symmetry is
achieved only in the continuum limit. By contrast, the
Wilson quark action explicitly breaks chiral symmetry
for finite lattice spacing. In order to identify the chiral
limit one must search in the two-dimensional parameter
space of the gauge coupling 6/g and hopping parameter
~ for a one-dimensional manifold. Given the difterent
types of behavior of the two formulations for finite lattice
spacing, it is important to check that they approach the
same continuum limit.

At present we are unable to study hadron thermo-
dynamics in the continuum limit. An intermediate goal
is to bring simulations with Wilson quarks to the same
level as those for Kogut-Susskind quarks. As a step in
that direction we report on a study of hadron thermo-
dynamics with two flavors of Wilson quarks at a tempera-

ture of 1/4a, where a is the lattice spacing. We have lo-
cated the crossover curve between the high- and low-
temperature phases as a function of the gauge coupling
and the hopping parameter. We have measured hadron
screening lengths in the vicinity of the crossover curve,
and zero-temperature meson masses along it. Our results
are in good agreement with earlier studies. In partic-
ular our results for the crossover lie on a smooth curve
with those of Bitar et al. , Gupta et al. , and Ukawa,
and our results for the screening lengths are in good qual-
itative agreement with Ukawa's. Finally, we find that
the zero-temperature pion mass is large in the entire re-
gion of 6/g and sc that we have scanned.

In Sec. II we describe our simulation, and in Sec. III
we discuss our results.

II. THE SIMULATION

We have carried out simulations with two degenerate
flavors of Wilson quarks using the hybrid Monte Carlo
(HMC) algorithm. After integrating out the fermion
fields the effective action for the theory is

S,s-=Ski, +0&"(MtM)

where S~ is the pure gauge part of the Wilson action, N
is the pseudofermion field introduced in integrating out
the fermion fields, and M is the Wilson fermion matrix:

M; =a.g [(y„+r)U; „"o;,

We take r = 1. The statistical weight for the field
configurations is exp( H, tt), where—
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H, tt= g P; „+S,!r, (3)

TABLE I. The parameters for the thermodynamics studies
on 8 X4 lattices and the spectrum calculations on 8'X 16 lat-
tices. b, t is the step size for the integration of Hamilton s equa-
tions, AC is the acceptance rate for the Metropolis step, and
CG the number of conjugate-gradient iterations per inversion.

and the P; „are traceless anti-Hermitian matrices which
play the role of momenta conjugate to the U; „.

The HMC algorithm is an exact algorithm, but care
must be taken to avoid systematic errors. One step in the
algorithm is the numerical integration of Hamilton's
equations for H,z. This requires the introduction of a
finite time step At. As long as the numerical integration
algorithm is time-reversal invariant and area preserving,
the errors due to a finite step size are eliminated by the
Metropolis acceptance-rejection step at the end of each
integration trajectory. The leapfrog method is used for
this purpose. However, time-reversal invariance is violat-
ed if roundoff errors destroy the unitarity of the U, „ma-
trices. Our tests indicate that these errors can be made
negligible by reunitarizing the U; „after each time step
At, and we have done so. In contrast, reunitarizing after
every simulation time unit, that is, every I/b, t steps, leads
to observable systematic errors.

We have used an integration trajectory length of one
simulation time unit. At the end of each trajectory a
Metropolis acceptance-rejection decision is made for the
entire trajectory, and the P; „and N fields are refreshed.
Since it is necessary to evaluate (MtM) '4& at each time
step, one would like to make ht as large as possible.
However, the Metropolis acceptance probability declines
as At is increased, which sets an upper limit on At. For
the thermodynamics studies on 8 X4 lattices we have
taken AT=0.05 for all but the largest value of ~=0.19,
and have obtained acceptance rates between 0.75 and
0.80. For ~=0.019 we required Et=0.04 to obtain the
same acceptance rate. For the zero-temperature calcula-
tions on 8 X16 lattices, At values in the range 0.05 to
0.025 were used, and yielded somewhat lower acceptance
rates. Our simulation parameters for these two calcula-
tions are given in Table I. Those for the screening-length
calculations are quite similar to the ones for the spectrum
studies.

The vector (M M) '4 is calculated using the
conjugate-gradient algorithm with incomplete lower

upper (ILU) preconditioning by checkerboards. s The
stopping criterion is 10 ) ffr ff/ff@ff, where ffr ff

and ffNff
are the norms of the vectors r and @. Errors in the in-
tegration of Hamilton's equations arising from the finite
stopping criterion do not lead to a violation of time rever-
sal provided that the starting solution is time-reversal
symmetric. As a result, they are eliminated by the
Metropolis step. However, the acceptance-rejection step
requires a calculation of the total energy, and therefore of
ffM 'off. Errors in this quantity can lead to systematic
errors in our results. Our production runs are carried out
in 32-bit precision, with the global sums in 64-bit pre-
cision. (The ETA 32-bit precision is several bits less ac-
curate than the IEEE standard. ) We have made limited
tests in full 64-bit precision which indicate that such er-
rors are under control. The average number of
conjugate-gradient iterations needed to satisfy our stop-
ping criterion for the thermodynamics and spectrum cal-
culations are given in Table I. We use the same criterion
for the screening length and spectrum measurements
with @ replaced by an appropriate source vector.

Our thermodynamics studies were carried out on 8 X4
lattices. The primary aim of this phase of our work was
to locate the crossover between the high- and low-
temperature regimes as a function of 6/g and ~. To this
end we monitored the real part of the Polyakov loop, the
plaquette and ( gg ). The Polyakov loop gave the
clearest jump in all cases. We studied hopping parame-
ters in the range 0.12~&~0.19. For each value of ~
studied we made a rough determination of the crossover
point by scanning through different values of 6/g . We
generated 800 trajectories at each value of 6/g, and
made measurements at the end of each trajectory. The
real part of the Polyakov loop for the scan at ~=0.17 is
shown in Fig. 1. The location of the crossover points was
then determined more accurately by making runs of 3000
trajectories for several values of 6/g . The real part of
the Polyakov loop for the long runs at ~=0.17 is shown
in Fig. 2.

For ~=0.16 and 0.17 hadronic screening lengths were
calculated on 8 X16X4 lattices for a range of values of
6/g in the vicinity of the crossover points. We also cal-
culated zero-temperature masses on 8 X 16 lattices at the
values of ~ and 6/g corresponding to the high-
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FIG. 1. Time history of the real part of the Polyakov loop.
6/g changes by 0.02 every 800 time units. Its values are indi-
cated on the graph.
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FIG. 2. Time history of the real part of the Polyakov loop for
K=0.17 and 6/g =5.12, 5.13, and 5.14.

FIG. 3. The crossover value of 6/g as a function of K on
8'X4 lattices. The squares are the results from this study, the
bursts are from the work of Bitar et al. (Ref. 6), the crosses
from the work of Gupta et al. (Ref. 4), and the diamonds from
Ukawa (Ref. 3).

temperature crossover on 8 X4 lattices. For the screen-
ing length and spectrum calculations we used pointlike
sources and sinks with the quantum numbers of the vr, p,
o., and a

&
mesons. In all cases 2000 trajectories were gen-

erated, with measurements taken every ten trajectories.
The correlation functions were blocked in units of two,
and the masses and screening lengths were extracted us-
ing correlation fits as described in Ref. 9.

III. RESULTS

The time histories shown in Figs. 1 and 2 are typical of
our results for other values of ~. In particular, we did not
observe any tunnelings in our long runs at fixed coupling.
From Fig. 2 it is clear that for ~=0.17 the crossover
value of 6/g is between 5.12 and 5.13. In Fig. 3 we show
the crossover values of the gauge coupling, 6/g, , for our
entire data set on 8 X4 lattices. %'e include on this
graph earlier results of Bitar et al. , Gupta et al. , and
Ukawa.

We have performed spectrum calculations on 8 X 16
lattices for 0.16~~~0.19 with the gauge coupling set
equal to 6/g, . We have measured only meson masses,
and our results for the m, p, o. , and a, are given in Table
II. All masses are given in lattice units. The results for
the o. and a& masses should be treated cautiously as we
did not obtain a plateau in the effective mass plots for
these heavy particles.

In Fig. 4 we plot I as a function of ~. The pion
masses that we have measured on 8 X 16 lattices are not
small. Thus, if one defines the chiral limit as the vanish-
ing of the pion mass on zero-temperature lattices, this
limit is not reached in the low-temperature phase on
8 X4 lattices for the values of x and 6/g that we have
studied. However, other definitions of ~, on finite-
volume lattices have been proposed. ' '" Bitar, Ken-

TABLE II. Zero-temperature masses in lattice units. The
last column gives y per degree of freedom for the correlated fit
which is quoted in the table.

Particle

al

Mass

K=0.16, 6/g =5.28
1.213+0.004
1.287+0.0005
2.24+0.05
2.23+0.04

X'/&DF

9.1/3
2.8/2
0.6/1
2.5/1

K=0.17, 6/g =5.12
1.088+0.003
1.210+0.005
2.36+0.09
2.33+0.09

2.1/2
3.0/2
1.1/1
0.2/1

al

K=O 18' 6/g:4 94
0.934+0.003
1.117+0.005

2.9+0.3
2.5+0.1

1.0/3
2.0/2
2.5/2
2.0/2

al

K—0 19' 6/g 4 76
0.722+0.003
1.020+0.009

2.1+0.2
2.2+0.1

0.3/2
5.3/3
0.6/1
2.8/1

nedy, and Rossi have suggested that ~, be determined by
the location of zeros in the fermion determinant. They
showed that these zeros are configuration dependent, so it
is not surprising that this definition of ~, leads to a
different result on a finite lattice than a measurement of
the zero-temperature pion mass, which is necessarily an
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FIG. 4. m as a function of ~ for points along the crossover
curve on 8 X 16 lattices.

FIG. 6. Hadron screening lengths as a function of 6/g for
~=0.17.

average over many configurations. They concluded that
the chiral limit is reached in the low-temperature phase
on 8 X4 lattices for 6/g (5.0.

Hadron screening lengths have proven to be a useful
tool for the study of chiral-symmetry restoration in the
high-temperature phase. ' ' We have calculated screen-
ing lengths in the channels with the quantum number of
the ~, p, o., and a„on 8 X 16X4 lattices. In Figs. 5 and
6 we plot the inverse screening lengths, or screening
masses, as a function of 6/g for ~=0.16 and 0.17, re-
spectively. The screening masses are given in units of
I/a =4T. The crossover values of 6/g for these two
values of ~ are 5.27+0.01 and 5.125+0.005. Here the
temperature increases with 6/g . Thus, we see that the ~

I I I I I I I I I I I I I I I

and o. screening masses tend toward each other as the
system is heated above the crossover temperature, as do
the p and a& masses. The effect is not as dramatic as for
Kogut-Susskind fermions' since we are not close to the
chiral limit. Note the dip in the m. screening mass at the
crossover point. The o and a& screening masses are
larger in the low-temperature phase. As a result, the
correlation functions fall off very rapidly with distance,
and a plateau is not found in the effective mass. Just as in
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FIG. 5. Hadron screening lengths as a function of 6/g for
a =0.16.

FIG. 7. The dimensionless ratio T, /m as a function of
m /m along the crossover curve. The squares are from the
present work with Wilson quarks, and the circles are from a
previous study with Kogut-Susskind quarks also at N, =4 (Ref.
13). Reading from left to right the Wilson points are for 6/g
and sc values (4.76,0.19), (4.94,0.18), (5.12,0.17), and (5.28,0.16),
while the Kogut-Susskind points are for 6/g and quark mass
values (5.2875,0.025), (5.32,0.05), and (5.375,0.1).
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m =(0.87+0.01)+(0.283+0.009)m~ (4)

with g /NDF =0.6/2. If we set the energy scale by taking
m to have its physical value at I =0.0, then T, is es-
timated to be 221+3 MeV. ' The same calculation for
Kogut-Susskind quarks at N, =4 yields T, = 142+6 MeV.

the case of the zero-temperature masses, our results for
these quantities should be treated cautiously.

It is well known that the crossover coupling for four
time slices, N, =4, corresponds to a lattice spacing that is
far too large to be in the scaling region. As a result, it is
not surprising that at this lattice spacing Kogut-Susskind
and Wilson quarks give significantly diA'erent results.
Spectrum calculations have been carried out for two
flavors of Kogut-Susskind quarks at the crossover cou-
pling for N, =4 with quark masses 0.1, 0.05, and 0.025 in
lattice units. ' In Fig. 7 we plot the dimensionless ratio
T, /I = 1/4am as a function of I /m from that
study (circles), and from our present work with Wilson
quarks (squares). The statistical errors are smaller than
the plotting symbols. The dotted line is the physical
value of m /m to which we would extrapolate these re-
sults. The strong difT'erence between the two quark for-
mulations is evident.

Another indication of the diAerence between the two
quark formulations at the present lattice spacing can be
seen by estimating T, in physical units. From the data of
Table II we can make a linear fit to I as a function ofI . We fin

Of course the errors quoted in Eq. (4) and for T, are sta-
tistical only. If we make a linear fit of m as a function
of ~ from the data of Table II, we find that I =0.0 for
~=0.207+0.002; however, the fit is a poor one with

y /NDF =25/2. From Fig. 3 we see that if this value of ~
is reached at all by the crossover curve, it is only in the
strong-coupling regime. It is possible that our extrapola-
tion has simply taken us to a point in the high-
temperature phase. Clearly this calculation should be
taken with great caution. We include it to illustrate the
diA'erence between the two lattice formulations of quarks
at N, =4.

It is essential to extend the study of Wilson thermo-
dynamics to larger values of N, in order to determine
whether the chiral limit exists in the low-temperature
phase, and in order to study the approach to the continu-
um limit. A start in this direction was made in Ref. 4,
and we hope to return to this problem in the near future.
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