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Anomalous magnetic moment of the muon arising from the extensions
of the supersymmetric standard model based on left-right symmetry
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Extensions of the supersymmetric standard model to SU(2)L XU(1)» X U{1)& L and to'3"
SU(2)L, XSU(2)& &U(1)& I with Higgs triplets are considered. Calculations of all possible contri-
butions to the anomalous magnetic moment of the muon are made and the resulting constraints on
the masses of supersymmetric partners are examined in detail.

I. INTRODUCTION

Supersymmetric models are inevitably used to examine
the muon anomaly. Although the experimental measure-
ments are not quite as accurate as in the electron case,
the contributions of supersymmetry are considerably
larger and indeed are likely to be observable in the new
generation of g —2 experiments presently begun.

In the present paper the muon anomalous magnetic
moment and the constraints it imposes on the supersym-
metric partner masses are examined in the context of an
extension of the standard supersymmetric model to con-
tain the left-right model [SU(2)L X SU(2)~ ].

The paper is organized as follows. In Sec. II the ra-
tionale for using locally broken supersymmetry (super-
gravity) to solve the gauge hierarchy problem, the reason
for considering the left-right extension of the standard
model, and a full description of the particle content and
Lagrangian are given. In Sec. III the mass mixing ma-
trices for particles used in the model are developed. In
Sec. V the calculation of (g —2)„and the resulting con-
straints' on the masses of supersymmetric partners are
presented. Conclusions and prospects are found in Sec.
V.

II. DESCRIPTION OF THE MODEL

There is no doubt that the standard
SU(3)c XSU(2)L XU(1)r gauge model is an extremely
successful theory reproducing all the previously known
features of electroweak theory and predicting new ones,
since confirmed. Successful as it is, there are many
reasons to believe that this theory is not complete.

The scalar sector of the standard model is the least
tested part of the model. The Higgs particles have
several nice properties, among which is the ability to pos-
sess a nonvanishing vacuum expectation value (VEV)
without breaking Lorentz invariance. But their masses
are subject to quadratic divergences in perturbation
theory which would push them to orders of the Planck
mass, unless the perturbation theory series would cancel
to 26 decimal places. tThis is known as the gauge hierar-
chy problem (GHP). ]

As a plausible way to incorporate gravity into unified
models, but also to deal with the gauge hierarchy prob-

lem, the model proposed in this paper incorporates super-
symmetry. Supersymmetry resolves the GHP by includ-
ing a bosonic-fermionic partner for every fermion and/or
boson in the nonsupersymmetric theory. Boson and fer-
mion loops give contributions of opposite signs to the
mass of the Higgs boson. In the unbroken supersym-
metry limit, bosonic and fermionic partners have equal
masses and couple with the same strengths, and so their
corresponding perturbation theory series cancel exactly.
In broken supersymmetry the superpartners no longer
have the same mass, but the divergences are more
"friendly" and the naturalness problem does not reem-
erge.

Exact supersymmetry would require the mass of the
scalar partner of the electron (selectron) to be degenerate
in mass with the electron. Such a light particle should
have been observed by now. Moreover, as shown by Fay-
et, exact supersymmetry would also mean that the
anomalous magnetic moment of all the leptons would be
identically zero. This occurs because every loop in the
calculation of the magnetic moment has a counterpart
loop composed of opposite-type particles to cancel them.
As shown by Dimopoulos and Georgi, global breaking
of supersymmetry is unacceptable for three reasons.

(1) Such a model still contains light scalar particles,
which should have been observed by now; in particular, a
scalar partner of one of the quarks (squark) must always
be lighter than the lightest up or down quark.

(2) In global supersymmetry the vacuum energy is an
order parameter. Breaking occurs if E„„WO, implying a
nonzero cosmological constant.

(3) As shown by Hawking et al , there rema. in quadra-
tic divergences in the calculation of the Higgs-boson mass
because of the couplings of the Higgs boson to gravitons.
Such a coupling as seen in Fig. 1 yields a contribution of

6mH „„;,y=O(A /mpt), (2.1)

In broken local supersymmetry, usually referred to as
supergravity, a spin- —, partner to the graviton (gravitino)

where the Planck mass mp&=(2. 8X10' )/&8' GeV, in
the absence of a cutoff A =m p] and

5mgs„„,,„=(10' GeV)
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FIG. 1. Quadratic divergences coming from interaction of
the Higgs particle with gravitons.

naturally occurs. The contribution to the Higgs-boson
mass arising from the coupling of the graviton to the
Higgs boson cancels the contribution from the gravitino.

Consider then a supersymmetric extension of the stan-
dard model. The most general superpotential has the
form

W=h„QH„U'+hd QHdD'+h, LHdE'

+piH Hd+p2H L+/q Q LqD

+h [p q]pipLqEp +k&E HdHd+X[p q]pe UpDqDp ~

(2.2)

The last term violates baryon-number symmetry and
corresponds to a rapid proton decay. The next to last
four terms violate lepton number. If the coefficients p2,
g „, h( )„, A, i, and A,(„)„areset to zero, the terms can-
not be regenerated at the tree level because of the non-
renormalization theorem of supersymmetric field theory.
Setting the coefficients to zero corresponds to the "stan-
dard" supersymmetric model. Nevertheless, the theory
is unsatisfactory as there is no theoretical justification for
setting the coeKcients to zero.

The simplest possible extension of the supersymmetric
standard model in which no baryon-number- or lepton-
number-violating terms are present a priori is based upon
the gauge group SU(3)c X SU(2)I XU(1)I z XU(1)z
Calculations of the anomalous moment of the muon and
neutral-current constraints in this model have been con-
sidered by Frank and Kalman. Having introduced a
partial right-handed symmetry [U(1)l ], it is interesting

3R

to consider the full left-right-symmetry extension of the
standard model.

The original motivation for the introduction of left-
right- (LR-) symmetric models based on the gauge group
SU(2)1 X SU(2)z XU(1) was to provide a possible mecha-
nism for parity violation in weak interactions. In this
framework the weak interaction respects all space-time
symmetries, as do the strong, electromagnetic, and gravi-
tational interactions. The asymmetry observed in nature
at low energies is then attributed to the noninvariance of
the vacuum under parity symmetry. A bonus of this ap-
proach is that it reproduces all the features of
SU(2)l XU(1)r at low energies.

There are other important reasons for considering this
kind of LR model. Foremost among them is the question
of the neutrino mass: If the neutrino has a mass, then
this class of model becomes the most natural framework
in which to work. In addition, if it turns out that quarks
and leptons are themselves the results of a more funda-
mental substructure, and that the forces operating at the
substructure level are similar to QCD, ' then there are
strong arguments which point to SU(2)I
XSU(2)z XU(1)~ I as the weak-interaction symmetry,

and four triplets

b, l (1,0,2) and b, z(0, 1,2),
51 (1,0, —2) and 5~ (0, 1, —2) .

(2.4)

Supersymmetry is responsible for the doubling in the
number of Higgs fields; 4„and 4d are needed in order to
give masses to both the up and down quarks, and 61 and
6z, with B-L quantum number —2, are introduced to
cance1 the anomalies in the fermionic sector that would
otherwise occur. The gauge fields consist of an SU(2)~
triplet Wii'i, an SU(2)r triplet Wil, and a U(1)ii I singlet
V„. The gauge coupling constants are gI, g~, and g~.
The model is constructed in such a way that, before sym-
metry breaking, it contains three gauge symmetries and a
discrete parity symmetry, i.e., gl =g~. The breaking of
symmetry is accomplished in three stages

SU(2)1 XSU(2)~ XU(1)~ I XP

:SU(2)i XSU(2)~ XU(1)~
Mp

SU(2)i XSU(2)~ XU(1)~ I = SU(2)i XU(1)y,
Mw

R

(2.&)

SU(2)1 X U(1) i, --U(1),
Mw

I.

At the first stage only the parity symmetry is broken (cVIP

is the mass scale at which this breaking occurs; no gauge
boson of that mass is produced). This results in gl Wg~,
and leaves WI and Wz massless. The second stage
breaks SU(2)z XU(1)B z to U(1)r and is achieved
through (hz )WO. The Higgs multiplets can be chosen
in such a way that the parity symmetry and SU(2)~ are
broken at the same scale, i.e., Mp:Mw ~ The final stage

R

rather than SU(2)I XU(1)r. The 8 L—quantum num-
ber" (baryon number minus lepton number) is the only
anomaly-free quantum number left ungauged in the stan-
dard model, a fact which seems to suggest a deeper sym-
metry structure. By replacing the gauge generator U(1) r,
which has no physical significance, with U(1)ii I, all the
generators of the theory acquire a physical meaning.

Another compelling reason to consider LR models is
found in CP violation. In the Kobayashi-Maskawa (KM)
parametrization of generation mixing, for three genera-
tions, all CP violations are dependent on only one param-
eter 5KM (the KM phase) and there is no hint as to why
the observed CP violation has milliweak strength. The
LR model can give rise to CP violation for only two gen-
erations and can account for its strength by relating it to
the suppression of V+ 3 currents. '

Proceeding to study the supersymmetric left-right
model, the particle content of the model is given in Table
I. The Higgs sector of the theory consists of two bidoub-
lets

(2.3)
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Field

Matter

Component
fields

TABLE I. Quantum numbers of particles.

SU(2) X SU(2) XU(1)
quantum number Name

d L

1

2 0
left —handed up quark
left —handed down quark

LL e

R
0 1

2

0

1

3

right —handed up quark

right —handed down quark

left —handed neutrino

left —handed electron

e 0 1

2

right —handed neutrino

right —handed electron

1

2
0 1

3

left —handed up squark
left —handed down squark

R
0 1

2
1

3

right —handed up squark

right —handed down squark

LL
L

1

2
0

left —handed s neutrino
left —handed s electron

L
R

0 1

2

right —handed s neutrino

right —handed s electron

Gauge

WL
8'R

V

~R
~V

Higgs

8'L+, O'L, 8'L
WR, 8'R, WR

V

~R~~Rs~R

triplet
singlet
singlet
triplet
singlet
singlet

singlet
triplet
singlet
singlet
triplet
singlet

singlet
singlet
singlet
singlet
singlet
singlet

gauge boson
gauge boson
gauge boson
gaug1no
gaugino
gaugino

0
1

+
1

0
4z

1

2
1

2
0 Higgs boson

gO
0 Higgs boson

gO
0 Higgs boson

gO

0 Higgs boson

1

v'2
gO

0 Higgs boson

0
1

+
1

0
1

2 0 Higgsino
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Table I ( Continued).

Higgs

+

1 g +
v'2

Higgsino

+

g0
Higgsino

Higgsino

05

1

&2

Higgsino

(~, )= 0 0

UR 0 (2.6)

0
0 a'e'

(4) causes WI and W~ to mix with a CP-violating
phase e' .

It should be noted that all LR models contain a bi-
doublet field N, whereas the additional Higgs fields can
be members of doublets or triplets. The choice of a trip-
let representation is preferred because, as Mohapatra and
Senjanovic show, it has the ability to generate a large
Majorana mass for UR and, at the same time, a small one
for UL, thus providing a natural explanation for the small-
ness of the UL mass. The doublet-Higgs' representations
generate only Dirac masses and, consequently, achieve
the objective of a small UL mass in a more contrived way.

The VEV's of the Higgs field used in this paper are
then taken as

of breaking is brought about by (ixi)%0 and (but this is
not essential) (hr )WO.

As in the standard model, in order to ensure that
U(l), remains unbroken, only the neutral Higgs fields
are allowed to have nonzero VEV's. These values are

0 0

UL 0

For this, the following assignments have been made:

UL 0, K —0

The first one is a stringent case of the phenomenological-
ly required hierarchy' vz ))max(i~, i~'))) vL, the second
one is due to required cancellation of fIavor-changing
neutral currents.

The LR-symmetric model presented here o6'ers several
interesting possibilities for a further refinement of elec-
troweak theory. It is particularly appealing for the fol-
lowing two reasons: It restores parity to the status of a
conserved quantum number in electroweak theory —just
as it is in the other fundamental interactions —and it in-
troduces B —L as a generator of gauge symmetry.

The full Lagrangian is then

(2.8)

A. Gauge Lagrangian

The first part of the Lagrangian concerns itself with
the gauge fields. It contains the kinetic and self-
interaction terms for the vector fields and the Dirac La-
grangian of the gaugino fields. The covariant derivative
D„ is of the general form 8„+igT,G„', where T, are the
generators of the gauge group and G„ is the gauge field:

g,„g, 4'~.WL + 2XLopDpkL

V V + X crBX (2.9)

«), =

0 0 0
(+„&= 0 0, (+,&=

(2.7)

B. Matter Lagrangian

This piece contains the kinetic terms for the fermionic
and bosonic matter fields (the Higgs fields are also includ-
ed in this category), as well as the interactions of the
gauge and matter multiplets:
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IgR lg Vr W„— V QRp

+LLO p ~p
gL L lgV ) lgR lgW„+ V„LL+LRP„a„— ~.WR+ V LR

+Tr (r b, l ) o„B„—

+Tr (r ER) Ir„B„—

r W„—igvV„r b,I +Tr (r 5I ) o„B„—
r

lgR r W„ig, V—„rbR +Tr (r 5R) o„B„—

lgL

2
w. W„+igv V„r 6L

lgR

2
~.W„+igv V„7"6R

+Tr 4„cr„B„— ~ W„— ~.W„4„+Tr @do.P 2 P Q d )M p
w. W„— w. W„@d2

2
lgL lg V

2 " 2
wW+ V„L +

lgR lg Vr W„"— V„QRp

2
gR lgV~.W„+ V„ IR2

+Tr B&N„— ~.W&N„+N„~ W +Tr 8 Nd-
'gr

p

2
lgL

2
w W C'd+Cd ~.W

2

+TI lgL ~.W„—ig v V„
lgI L+Tr 8„— w W„+l'gv V„&.5L
2

+Tl
2

~ W„—igv V„~.AR +Tr ~.W„"+igv V„& 6R

gL gV gR gV+iQ I —r Al + —A, v Q~+H. c. +iQ R —r AR+ —A, v QR+H. c.
2 3 2 R ~2 R 3~2 v R

+ —L 1(gl r A,l —
gVA, V)LI +H. c. + —L R(gRr A, R gVA. V)LR +—H. c.

2 R R R V V R

+i 2Tr[(r bz ) (glr Al +2gvkv)r bl ]+H.c.+i&2Tr[(r 51) (glr Al —2gvAv)r 5I ]+H.c.
+i&2Tr[(r bR ) (gRr AR+2gvA v)r bR ]+H.c.+i&2Tr[(r.5R ) (gRr AR

—2gvA v)r SR ] H. c.

+ —Tr[N„(gl r AI +gRr AR )4„]+H.c. + —Tr[4&d(gl r.ll +gRr AR )4z]+H. c.
2 " " '

&2 (2.10)

C. Yukawa Lagrangian

This piece involves the self-interactions of the matter multiplets; again, this includes the Higgs multiplets:

Xv= I ho (Ll 4'uLR )+hd (LI+dLR )+h„(QI O'„QR )+hg(QI 4'd QR )+h„(L 14 uLR )+hd (L I 4'dLR )

+h„(Q I O'„QR )+hg(Q I C d QR )+h„(L RC'„LI. )+hd (L RC'dLI. )+h„(Q R&„QI.)+hg(Q „@dQI.)

+Tr[pI(rI4„rI) 4d ]+Tr[pz(r bl )(r 5I )]+Tr[p3(r AR )(r 5R )]+hzR(LI rIr 61Ll +L„r,r ARLR )

+hlR(L I.rIr. hlLI +L Rrlr b, RLR )]+H.c'. (2.1 1)

D. Scalar potential

v= [ri'+ —,
' iDi'+ v,.«,

where

(2.12)
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IFI'=lhpg Q +h.'L L I'+IhgQ 0, +hdL L I'+lhp@. 0 +hg@ Q I'+lhp@. 0 +hg@d0 I'

+ Ih„@„LR+hd+dLR+2hLR7 BALLL I
+ Ih„C&„LL+hd @dLL+2hLR7 ARLR I

+H. c.

,'ID—I =
—,'gLQ gA 7LA + —,'gRQ gA 7RA + —,'g1, gA VA

(2.13)

(2.14)

where A =QL, QR, LL, LR, 4„,@d, b.L, b,R, 5I, and 5R, and 7L, 7R, and V are the generators of the gauge groups:

V~Qf1 &~( I h„Q LC'„QR +hgQ L 4'dQR +h„L L 4 „LR +hd L L 4'dLR +hLR (L L 717'BALLL +L R 7,7 AR LR )

+Tr[p1(714 „71) 4d ]]+Tr[p2(7 bL ){7'5L)] +Tr[p 3( 7bR )(7.5R )]+H.c. )

+mQL Q LQL +mQR Q R QR ™LLLLL +171LR R R
2 4 2 f 2 f 2 (2.15)

E. Soft-breaking Lagrangian

This is the term which gives Majorana mass to the gauginos:

L, f mI (ALAL+XLXL)+mR(ARAR+XRXR)+mv(A&A&+X&X&) . (2.16)

III. MASS EIGENSTATES

The choice of VEV's of the Higgs fields [Eq. (2.12)]
makes it possible to analyze the generation of mass for
the gauge bosons in two separate stages. In the first
stage, (AR ) generates masses for WR, WR, and V. The
two neutral states mix, yielding the physical fields ZR and
B. In the next stage, taking place at a much lower-energy
scale, N„d, which couples to both left- and right-handed
fields, mixes WL and 8R. However, the amount of mix-
ing is so small that, effectively, the right-handed fields can
be considered to have decoupled from this part of the
theory, and only 8'L—,HL, and B acquire mass from this
stage. Once again, the neutral fields mix and the familiar
ZL and A„are formed.

For the first stage of symmetry breaking, the relevant
term to consider in the Lagrangian [Eq. (2.12)] is

lgL LgR
Tr B„4„— ~.W„+„+4„

lgl+Tr B„+d— ~.W„@d++d ~.W„P 2
(3.6)

Since 8'R and ZR have effectively decoupled from this
part of the theory, the charged bosons emerging from this
stage are, to a good approximation, 8'L, whose masses
are simply calculated as

symmetry group U(1)~, which survives the breaking of
SU(2)R &&U(l)R I . JYz and ZR, being very massive,
decouple from the low-energy theory, leaving only B„to
go through to the next stage of symmetry breaking.

For the second stage of symmetry breaking, the terms
to consider in Eq. (2.12) are

2

2
w. W„—ig v V„ (3.1)

1
M11, = —gL(1~„+1~d )'

L
(3.7)

Substituting the VEV ( b, R ) for b,R, we obtain the physi-
cal fields

As for the neutral bosons, O'R now has to be written in
terms of the fields B and ZR.

gR ~R —2gv~
ZR

(g
2 +.4g 2

)
1/2

gR V+2gv 8 RB=
(g2 +4g2 )1/2

(3.2)

(3.3)

gRZR +2gvB
( 2+4 2)1/2

Defining g', the gauge coupling constant of U(1) r, as

gRgv

(
2 +4g 2

)
1/2

(3.8)

(3.9)

and their masses are

1
Mz = ~- 1'R(gR+4gv)'"

M~=0 .

(3.4)

(3.5)

the neutral mass eigenstates are found to be

gL 81 —2g'B
ZL

(
2 +4g ~2)1/2

with

{3.10)

The new massless state B„ is the gauge boson of the mass=[(1~„+1~„)(gL+4g' )]' (3.11)
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and the massless photon 3„given by

2g'8 I +gI B
P

( 2+4 I2)1/2 (3.12)

In the following the mass eigenstates for supersym-

metric partners are developed following the two-stage
symmetry-breaking examples developed in the gauge-
boson sector. The development owes much to the discus-
sion of mixing matrices by Haber and Kane. '

The terms in Eqs. (2.10), (2.11), and (2.16) relevant to
the mixing of gauginos and Higgsinos are

X &=iV 2 Tr[(r hr ) (gI r Al +2g~k~)r EL ]+H c. +i &2Tr[(r br ) (ger Az+2g„i, , )r b,„]+H.c.

+ —Tr[4„(gLr Al +g~r Az )4'„]+H.c. + —Tr[C'd(gLr'kL+gzr'kz )C'd]+H. c.
2 2

+Tr[p2(r. bl )(r ol )].+Tr[p3(r b~ )(r 5~ )]

+mI (Al AL+A. LA, L )+mz(AzAz+kzA. z)+m, (A,, A,, +X,X„)+Tr[p&(r&fur&) 4d] . (3.138)

Considering first the charged gauginos and Higgsinos (charginos), the first step is to substitute the VEV's of the Higgs
fields into Eq. (3.13a) yielding

+cm [ ~R( gRVR~R+gR+d0d )+ ~LgL+d4'd + ~RgR u0u + ~LgL u4u

+mI AL Al +m&Az A~+p, P„+Pd +p, P „Pd ]+H.c. , (3.13b)

where, for simplification, it is assumed that p2=p3=0.
Then the two stages of symmetry breaking are considered separately. First, charged fermions combine into four

component Dirac spinors from the X~ part of the Lagrangian

X „,= (i +2g~ v~ )A, ~ b, ~ +H. c. (3.14)

At this stage supersymmetry is unbroken and the mass of W~, &2gzv~ is the same as that of 8'~+. The particles
produced at this stage are very massive and decouple from the low-energy theory.

At the next step the remaining terms in the Lagrangian

0 X' q+
X,= ——(g, p ) ~ 0 +H c. ,

2
(3.15)

where

P+—= ( ill+, —ii~, g„+,Pd ), —

—:( iA,I, ——iA,~,Pu, Pd ),
and

(3.16)

X=
mg

&L~u N~~a

0 0

0 gLv~

0 g~v~
(3.17)

The mass eigenstates are defined as

Xi+=V;, 0&+ X; =U;, 0, &i =1»3 4

where V and U are unitary matrices chosen such that

U*XV ' =MD,

(3.18)

(3.19)

where MD is a diagonal matrix with non-negative entries. Positive square roots of the eigenvalues of X X will be the di-

agonal entries of MD.

~' = vx'xv-'= U'xx'(U*)-' (3.20)

Thus the diagonalizing matrices U* and V are obtained by computing the eigenvectors corresponding to the eigenval-
ues of X X and XX, respectively.

The Lagrangian for the neutral gaugino and Higgsino (neutralino) mass terms analogous to Eq. (3.13) is
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—i AR 2gR vR 6 R + 1 XV2 2gvvR bR +i l(R —gR lr„p,„—1 AL —gI
o~- —o . o ~- -o . o 1 ~ . o 1 -o

~R gR+d4 2d+ ~L gL d4'2d ™L~L~L™R~R~R+IV~V~V+ Pl(t' u4 d +H
2 2

(3.21)

The mass eigenstates that "condense out" at the first
stage of symmetry breaking are all those involving vz,
I.e.,

Proceeding as before, define mass eigenstates by

y; =Njgi (i,j=1,2, 3), (3.25)

1
NMH —vR(g ) Yg +H. c. ,

2
(3.22)

where N is a unitary matrix satisfying

2V* YN '=NB, (3.26)
where

(go)'=( —u'„—1 zo„, & ', ), (3.23)
where XD is a diagonal matrix with non-negative entries.
The eigenvalues of

and
2

Y Y= —2g~gv

—2g~g v

4g 2 (3.27)
0 gz

0 2gv
—g~ 2g~ 0

(3.24)
0 gR +4gv

are twice (gR+4gv), and 0. The diagonal entries of ND,
and the diagonalizing matrix N is given by

gR /i/2(gR2+4gv) / —2g, /+2(gR +4gv)
2

gR /v'2(gR2+4gv)' —2gv/&2(gR+4gv)' +
2

(3.28)

2gv/«R+4gv)'" gR /(gR+4gv)'"

Using Eqs. (3.25) and (3.26), the physical neutralinos resulting from the first breaking are

+Z1

l (gRXR 2gvkv)

Q2( 2 +4 2 )1/2

+l (gR A, R 2gvkv)

(g
2 +4g 2

)
1 /2

(3.29)

with mass =0.
Thus the neutralino spectrum, at this mass scale, con-

sists of two Majorana fermions, degenerate in mass, and a
massless Majorana fermion. The two massive states can
be written as a single Dirac spinor:

with mass=(l/2)vR(gR+4gv)'

—i(gRAR 2gv~v) +
Q2( 2 +4 2 )1/2

(3.30)

l(gRX R 2gvX v)

( 2+4 2 )1/2

(3.33)

XZ2=
l(gR R 2gvkov) 6 R+
+2(g2+4g2)1/2

i(gRA, V2+g A V)R—

(g2 +4 2 )1/2

+ i (gR A, V+2gvk R )

( 2+4 2)1/2

with mass =(1/2) VR(gR+4gv)'/, and

(3.31)

(3.32)

In the absence of supersymmetry-breaking terms, this
is exactly as expected: g is the superpartner of ZR, and

y~ that of 8„. To complete the symmetry that exists be-
tween ordinary particles and their superpartners,
decouples from the low-energy theory, and the massless
yz goes through to the next stage of symmetry breaking.

In view of the rearrangements that have taken place
among the fields at the high-energy scale, the particles
taking part in the low-energy interactions are no longer
those of Eq. (3.21). Specifically, A, R and A, v have to be
rewritten in terms of k, and k&, which are defined by
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glv1ng

gR AR 2gVA, V

( 2+4 2)1/2

gR A, V+ 2g VAR

(
2 +4g 2

)
1/2

(3.34)

(3.35)
(c)

gR Xz +2g VA, B
~R

( 2+4 2 )1/2

gR ~B 2g V~z

( 2+4 2)l/2

(3.36)

(3.37)

I
/

"x,a,I
I

1

I
(e)

t&2

\

The mass Lagrangian of the light neutralinos, XNML, is
obtained by substituting for A,R and Xv, and removing the
contributions of the fields which have decoupled (i.e., b. ~
and A,, ). The result of this is

1 i' 2gygii K

NML
— 1 kL ~—gLKu0 lu +

Y2 (g11+4g V)

«g&2gyg gKd42d

( 2+4 2 )1/2

mR 4g vkB k,B m vgR A,BA,B
2 0 0 2 0 0

+mLA. LA,L+ +
gR + gV gR +4gV

(g)

+21M,pupd +H. c. (3.38)
FIG. 2. Additional one-loop diagrams contributions to

(g —2)„.

The identification of the mass eigenstates follows the now
familiar procedure.

IV. g —2 OF THE MUON

le I'(q )uo @~u .
2m

(4.l)

Then the muon anomaly is defined by

The collection of graphs not present in the supersym-
metric standard model, but occurring in the present mod-
el are displayed in Fig. 2. Consider the term calculated
from the graphs of the form

and Nanopoulos' and by Grifols and Mendez. ' Addi-
tionally, the graph in Fig. 2(f) is considered by Barbieri
and Maiani the graphs in Figs. 2(h) and 2(c) involving v
by Kosower, Krauss, and Sakai, and finally Figs.
2(a) —2(d) involving N, and Fig. 2(b) by Frank and Kal-
man. The new contributions in this paper are based on
Figs. 2(g), 2(i), and 2(j) and some modifications to these
based on Figs. 2(a) —2(c). Note that the graphs in Figs.
2(a) —2(d) involve a coupling of charginos to physical sca-
lar neutrinos v, 2. In the results given below, we use the
usual convention that

a„:—(g —2)„/2=F(0) . (4.2) vI =v= v, cos8 —v2sint9 (4.3)

The graph in Fig. 2 involving y was first considered by
Fayet. In addition, the graphs in Fig. 2(a) involving V

and Fig. 4(e) involving Z are considered by Ellis, Hagelin,

vR =N=v&sin8 +v2cosO

The contribution to (g —2)„from Figs. 2(a) —2(d) is

(4.4)

a'+
p

2 4

g l V, , l
[cos 8g'(x„)+sin Og'(x2;)]WL 8'L

96~
2 4+, & I

&;21'[»n'&g'(x„)+cos2~g'(x2;)]~, ~,
96~

L2 4 L2 4

+ ", X l~, , l'[F'(x„)++'(x„)]+ ", g lv;, l'IF'(x„)++'(x2, )]HL~L+H', Hz
96~ 96~
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g (ReV;*, V;3)[cos Og'(x„) —sin Og'(xz;)]WLH L
96m

L 4

g (Re V,.*, V4)[cos Og'(x„) —sin Og'(x~()] Wi H L,
96m

, g (ReV;~V;i)[»n'Og'(x&;)+cos'Og'(x„)]WgH g96~

h h 4+, g (Rev;3V;4)[F'(x&;)+F'(xi;)]H L, H L
96m

L 4

z g (ReVzV4)[sin Og'(x„)+cos Og'(xz;)]W~H z
96m

4

g (ReV, V, z)cosO sinO [F(x„)+F(xz;)]WL Wz
8m

h 4
+

q g (ReV,*, V3)cosOpinO„[F(x„)+F(xi;)]WLH ~
8m.

u

Sm

4

g (ReV, ', V4)cosOpinO [F(x„)+F(xz;)]WLHz

gR dh

Sm

uh

8m

4

y (ReViV3)cosO sil18 [F(xi;)—F(x~;)]&AH I

4

g (ReV;*&V;~}cosOpinO [F(x„) F(x~; )]W—zH L (4.&)

From Fig. 2(g),

(~~) gR m
2 2

a '=5
96~2 m28'~

From Fig. 2(i),

hLR
2

a„' '= —
z [cos O„G'(x, )+sin 8 G'(xz)] .

(4.6)

(4.7)

From Fig. 2(j},
2

hLR
a„' '=

~
[cos Og'(x&;)+sin Og'(xz, )], (4.8)

where

mG'(xk ) =
m&

2+ 5XI, —xk 3XI,
2 2

2(1 —xk ) (1—x„) m a
(4.9)

mF'(xq )=
m—

& -5xkm -2xkm

(1—xk )

6xk
1nxk

(1—xk )
(4.10)

F(xk ) =
7?l —.

1 3Xkm 2Xkm
1nxk

(1—xk ) (1—xk )
(4.11)

xl, =m /m -, and Vis the unitary mixing matrix defined in Eqs. (3.18)—(3.20). Based upon supergravity, '
k +m

Plh„d-—g
mw

(4.12)

with g =gL ——gR, and m everywhere refers to the muon mass. The contributions from Figs. 2(1) and 2(f)—2(h) are un-
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changed from Frank and Kalman, but we repeat them here for completeness. In the following we use the usual con-
vention

p& =p&cosa„—p2sina„,

pL =p2slncxp +p2cosA

From Fig. 2(1),

1 1
P

Pl pg

2

[cos P[cos a„g'(x» )+sin a„g'(xzi )]247T cos g p

(4.13)

(4.14)

(4.15)

+sin p[cos a„g'(x,~)+sin a„g'(xz~)]} ——sin 8~+2 sin 8 (4.16)

where

G'(xk ) =
fPZ

2+ 5xkm —
xkm 3xkm

2(1 —xk ) (1—xk )
+ Xkm =

f72

2I p
+m

(4.17)

2+ 2
(z i~ &1 +&2

Q
48~2

4

tan 8ii, [cos a„g'(xi )]+
2 2

2tan 8~ —1 [sin a„g'(x, )+cos a G'(xz)] ', (4.1g)

where

Ig'(xl, ) = I—
From Fig. 2(f),

2+ 5xk —xk 3xk
3

+ 4 lnxk, xk
2(1 —xk ) (1—xk )

Pl 2

2
mz

(4.19)

where

z sin2P[(cos a„cos28ii, +sin a„2sin~8~)[g(xii)+g(x&z)]
32m' cosOg

+ ( sin a„cos28 ii +cos a„2 sin 8@,)[G (xz, ) +G (x zz ) ]}, (4.20)

1+xk
G(xk )= +

m (1—xk )~

2xkm
lnxk

(1—x1, )

m 2

Xkm =
71l—

(4.21)

Based upon supergravity, '

m

mass of the most massive neutralino in the loop

Finally, from Fig. 4(h),

(4.22)

2 2 2[z) ~&+~2
a

48~2 mz'.

4

tan'e +
2

tan2L9~ —1 (4.23)

a„(expt) = 1 165 922(9) X 10 (4.24)

Since the anomalous magnetic moments are so accu-
rately measured, it is essential for any major change in
particle theory that one must check that the addition of
new particles will not adversely aft'ect the present theoret-
ical success. The present experimental value from the
last CERN g —2 experiment is

a„(WS)= 1.95(1)X 10 (4.25)

The most recent calculated total theoretical value of all
standard-model contributions " is

where the number in parentheses represents the error in
the last significant figure. The Weinberg-Salam (WS)
standard-model contribution is
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TABLE II. Different scenarios of supersymmetric particle masses in GeV chosen to cover values of a„ in the range =+10 '. The
contribution of the Z ' is very small, and the effect of its variation is not shown.

m

400
35
35
40
60
60
60
60
60
60
60

200
60
50
30
30
70
20
16.5

400
200
100
40
60
60
60
60
60
60
60

200
60
60
60
60
70
20
16.5

I—
V)

10
10
10
10
10
30
10
10
10
10
10

201
10
10
10
10
30
12
16

10
10
10
10
10
30
10
10
10
10
10

201
10
10
10
10
30
12
16

I p

11
11
11
11
11
11
11
13
15
18
25

202
25
25
30
40
50
11
10.001

m
X2

11
11
11
11
11
11
13
13
15
18
25

202
30
30
30
40
50
11
10.001

m„

10
10
10
10
10
10
10
12
12
17
17

203
20
20
20
20
40
10
10

m„P2

10
10
10
10
10
10
10
12
12
17
17

203
20
20
20
20
40
10
10

mz'

60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

9.2 X
9.0 X
8.4 X
6.2X
7.9 X
8.0 X
5.6 x
5.2 X
3.8 X
2. 1 X
5.8 X
1.5 X
4.9 X

—6.7X
—4.8 X
—1.2X
—3.0 X
—1.4X
—2.4X

10
10
1O-'
1O-'
1O-'
1O-'
1O-'
1O-'
10
1O-'
1O-'
1O-'
10

—1P

10
—1P

1O-'
1O-'
1O-'
1O-'
10

1.5

(a)

0.5

I ~ I I I I I I I I I I
I I I I I I 1 I I I I I I I

I I I I I I I I I
I I I I I I I I I

—0.5

OO
I

C)

—1.5

—2.5

I I I I I i i I I I i I I I I I I i I i I i

40 60 80 100 120 140 160 180 200 220 240

-+ (GeV)
X2

FIG. 3. (a) Variation of a„:—(g —2)„/2 as the mass of the heavier chargino I + is increased. The masses of the other supersym-
X2

metric particles are kept at their lower bound: m + =40 GeV, m p =m p =30 GeV, m„=m =25 GeV, m =m =40 GeV, and
Xp 1 2 ~2

m, =60 GeV. The components of a„contributing to the change in its value are also shown. (b) Same as (a) except that the masses of
both m + and m + (set equal to each other) are increased. (c) The mass of the heavier neutralino, m p is increased while all other

] X2 X2
masses are kept at their lower bound. (d) Both the m p and m p masses, set equal to each other, are increased. (e) The effect of in-

X ] Xp

creasing the mass of one of the s rnuons. Only two of the components of a„affected by this change are shown; the others contribute
significantly less. (f) Same as (e), but with both s-muon masses, set equal to each other, increasing. (g) The effect of changing the mass
of one of the s-neutrinos. (h) Same as (g), with both s-neutrino masses (equal to each other) increasing.
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a„(theory) = 116591 920( 191 ) X 10 (4.26)

where the error comes predominantly from the hadronic
contribution. When the new muon g —2 experiment
(E821) which is in progress at the Brookhaven National
Laboratory (BNL) and associated experiments needed to
improve the hadronic contribution to a„(theory) are

completed, it will be possible to test the prediction of the
standard model at the one-loop level. Any deviation
from that prediction [Eq. (4.25)] would most likely be due
to supersymmetry.

In calculating values of the supersymmetric contribu-
tion to the anomalous magnetic moment, it is immediate-

ly seen that the values of 0 and a„are unimportant. The
maximum contribution for V; occurs when they are all

1.5

0.5

co
I
C)

(VLV )+ a I V%I)
C a

—2.5

I I I I I I I I I I I I I I I I I I I I 1 I
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—05

oo
I
C&

—1.5 a (total) IZ)+ a (ZH)Oa

—2.5
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m-t) (GeU)
X2

FIG. 3. (Continued).
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In the SU(3)XSU(2)L XU(1)I ~ XU(1)~ L gauge

group, V has the simple form

cosy+ +sing+,
+ s?ntp+ cos++

an. The value of I3 has littlefound in Frank and Kalrnan. e va

su ers mmetric partic es oneAect of the masses of the supe y
ma netic moments was considere . e

first question that was posed was t e e ec o

I I I I II I I I I I I I I I
\ ~ I ~ I I

~ I I 1 I I I I I1 I I I I I
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FIG. 3. {Continued).
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