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Extensions of the supersymmetric standard model to SU(2), ><U(1),3 rXU(1)g_; and to

SU(2), XSU(2)g XU(1)z_, with Higgs triplets are considered. Calculations of all possible contri-
butions to the anomalous magnetic moment of the muon are made and the resulting constraints on
the masses of supersymmetric partners are examined in detail.

I. INTRODUCTION

Supersymmetric models are inevitably used to examine
the muon anomaly. Although the experimental measure-
ments are not quite as accurate as in the electron case,
the contributions of supersymmetry are considerably
larger and indeed are likely to be observable in the new
generation of g —2 experiments presently begun.

In the present paper the muon anomalous magnetic
moment and the constraints it imposes on the supersym-
metric partner masses are examined in the context of an
extension of the standard supersymmetric model to con-
tain the left-right model [SU(2); XSU(2)g ].

The paper is organized as follows. In Sec. II the ra-
tionale for using locally broken supersymmetry (super-
gravity) to solve the gauge hierarchy problem, the reason
for considering the left-right extension of the standard
model, and a full description of the particle content and
Lagrangian are given. In Sec. III the mass mixing ma-
trices for particles used in the model are developed. In
Sec. V the calculation of (g —2), and the resulting con-
straints! on the masses of supersymmetric partners are
presented. Conclusions and prospects are found in Sec.
V.

II. DESCRIPTION OF THE MODEL

There is no doubt  that the  standard
SU@3)c XSU(2);, XU(1)y gauge model is an extremely
successful theory reproducing all the previously known
features of electroweak theory and predicting new ones,
since confirmed. Successful as it is, there are many
reasons to believe that this theory is not complete.

The scalar sector of the standard model is the least
tested part of the model. The Higgs particles have
several nice properties, among which is the ability to pos-
sess a nonvanishing vacuum expectation value (VEV)
without breaking Lorentz invariance. But their masses
are subject to quadratic divergences in perturbation
theory which would push them to orders of the Planck
mass, unless the perturbation theory series would cancel
to 26 decimal places. [This is known as the gauge hierar-
chy problem (GHP).]

As a plausible way to incorporate gravity into unified
models, but also to deal with the gauge hierarchy prob-
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lem, the model proposed in this paper incorporates super-
symmetry. Supersymmetry resolves the GHP by includ-
ing a bosonic-fermionic partner for every fermion and/or
boson in the nonsupersymmetric theory. Boson and fer-
mion loops give contributions of opposite signs to the
mass of the Higgs boson. In the unbroken supersym-
metry limit, bosonic and fermionic partners have equal
masses and couple with the same strengths, and so their
corresponding perturbation theory series cancel exactly.
In broken supersymmetry the superpartners no longer
have the same mass, but the divergences are more
“friendly” and the naturalness problem does not reem-
erge.

Exact supersymmetry would require the mass of the
scalar partner of the electron (selectron) to be degenerate
in mass with the electron. Such a light particle should
have been observed by now. Moreover, as shown by Fay-
et,> exact supersymmetry would also mean that the
anomalous magnetic moment of all the leptons would be
identically zero. This occurs because every loop in the
calculation of the magnetic moment has a counterpart
loop composed of opposite-type particles to cancel them.
As shown by Dimopoulos and Georgi,? global breaking
of supersymmetry is unacceptable for three reasons.

(1) Such a model still contains light scalar particles,
which should have been observed by now; in particular, a
scalar partner of one of the quarks (squark) must always
be lighter than the lightest up or down quark.

(2) In global supersymmetry the vacuum energy is an
order parameter. Breaking occurs if E, .50, implying a
nonzero cosmological constant.

(3) As shown by Hawking et al.,* there remain quadra-
tic divergences in the calculation of the Higgs-boson mass
because of the couplings of the Higgs boson to gravitons.
Such a coupling as seen in Fig. 1 yields a contribution of

8m | graviey=O(A*/m3y) (2.1)

where the Planck mass mp =(2.8X10'%) /V87 GeV, in
the absence of a cutoff A=myp; and
Smélgmv“yz( 10" GeV)? .

In broken local supersymmetry, usually referred to as
supergravity, a spin-3 partner to the graviton (gravitino)

2369 ©1991 The American Physical Society



2370

GRAVITON

FIG. 1. Quadratic divergences coming from interaction of
the Higgs particle with gravitons.

naturally occurs. The contribution to the Higgs-boson
mass arising from the coupling of the graviton to the
Higgs boson cancels the contribution from the gravitino.’

Consider then a supersymmetric extension of the stan-
dard model. The most general superpotential has the
form

W=h,QH,U+h,QH,;D +h,LH,E*
+M1Hqu +:u'2HuL +/;;ququDrC
+hip Ly L Ef+MEH Hy+ A, 1, UsD, Dy .
(2.2)

The last term violates baryon-number symmetry and
corresponds to a rapid proton decay. The next to last
four terms violate lepton number. If the coefficients u,,
/;,q,, ﬁ[p’q],, Ay, and k[p‘q], are set to zero, the terms can-
not be regenerated at the tree level because of the non-
renormalization theorem of supersymmetric field theory.
Setting the coefficients to zero corresponds to the ‘“‘stan-
dard” supersymmetric model.® Nevertheless, the theory
is unsatisfactory as there is no theoretical justification for
setting the coefficients to zero.

The simplest possible extension of the supersymmetric
standard model in which no baryon-number- or lepton-
number-violating terms are present a priori is based upon
the gauge group SU(3) XSU(2), XU(1 )13R XU(l)g_p.

Calculations of the anomalous moment of the muon and
neutral-current constraints in this model have been con-
sidered by Frank and Kalman.” Having introduced a
partial right-handed symmetry [U(1) g ], it is interesting

to consider the full left-right-symmetry extension of the
standard model.

The original motivation for the introduction of left-
right- (LR-) symmetric models based on the gauge group
SU(2); XSU(2)g XU(1) was to provide a possible mecha-
nism for parity violation in weak interactions. In this
framework the weak interaction respects all space-time
symmetries, as do the strong, electromagnetic, and gravi-
tational interactions. The asymmetry observed in nature
at low energies is then attributed to the noninvariance of
the vacuum under parity symmetry.® A bonus of this ap-
proach is that it reproduces all the features of
SU(2); XU(1)y at low energies.

There are other important reasons for considering this
kind of LR model. Foremost among them is the question
of the neutrino mass:® If the neutrino has a mass, then
this class of model becomes the most natural framework
in which to work. In addition, if it turns out that quarks
and leptons are themselves the results of a more funda-
mental substructure, and that the forces operating at the
substructure level are similar to QCD,!° then there are
strong arguments which point to SUQ2),
XS8U(2)g XU(1)z_; as the weak-interaction symmetry,
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rather than SU(2), XU(1)y. The B —L quantum num-
ber!! (baryon number minus lepton number) is the only
anomaly-free quantum number left ungauged in the stan-
dard model, a fact which seems to suggest a deeper sym-
metry structure. By replacing the gauge generator U(1)y,
which has no physical significance, with U(1)z _;, all the
generators of the theory acquire a physical meaning.

Another compelling reason to consider LR models is
found in CP violation. In the Kobayashi-Maskawa (KM)
parametrization of generation mixing, for three genera-
tions, all CP violations are dependent on only one param-
eter 8xy (the KM phase) and there is no hint as to why
the observed CP violation has milliweak strength. The
LR model can give rise to CP violation for only two gen-
erations and can account for its strength by relating it to
the suppression of ¥ + A4 currents.?

Proceeding to study the supersymmetric left-right
model, the particle content of the model is given in Table
I. The Higgs sector of the theory consists of two bidoub-
lets

®,(5,4,0), ®,(4,1,0) (2.3)
and four triplets
A;(1,0,2) and Ag(0,1,2),
(2.4)

6,(1,0,—2) and 06f(0,1,—2).

Supersymmetry is responsible for the doubling in the
number of Higgs fields; ®, and ®, are needed in order to
give masses to both the up and down quarks, and §; and
Og, with B-L quantum number —2, are introduced to
cancel the anomalies in the fermionic sector that would
otherwise occur. The gauge fields consist of an SU(2),
triplet W4, an SU(2), triplet W¥, and a U(1); _, singlet
V,. The gauge coupling constants are g;, g, and gy.
The model is constructed in such a way that, before sym-
metry breaking, it contains three gauge symmetries and a
discrete parity symmetry, i.e., g, =gg. The breaking of
symmetry is accomplished in three stages:!'>

SU(2), XSU(2)g XU(1),_, XP
——SU(2), XSUQR) XU(1)5

P

Wr

(2.5)
SU(2), XU(1)y —U(1)

em °
MW

L

At the first stage only the parity symmetry is broken (M,
is the mass scale at which this breaking occurs; no gauge
boson of that mass is produced). This results in g; g,
and leaves W; and W, massless. The second stage
breaks SU(2)p XU(1l)p_; to U(l)y and is achieved
through (A )#0. The Higgs multiplets can be chosen
in such a way that the parity symmetry and SU(2), are
broken at the same scale, i.e., Mp :MWR . The final stage
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TABLE I. Quantum numbers of particles.

Y

&

a
A
bl
Al
(S1=}

Field Component SU(2), XSU(2)g XU(1)g .
fields quantum number Name
Matter
u . . left—handed up quark
Q d|, 7 0 3 left —handed down quark
u . . right —handed up quark
Or d |, 0 2 3 right —handed down quark
v . left —handed neutrino
L e, 7 0 -1 left —handed electron
right —handed neutrino
L 0 i -1 .
R e |p 2 right—handed electron
~ u . . left —handed up squark
O d|. 7 0 3 left—handed down squark
~ u . . right —handed up squark
Qr d & 0 z 3 right —handed down squark
_ v . left—handed s neutrino
L, 7|, 7 0 —1 left—handed s electron
_ v . right —handed s neutrino
Lr z|r 0 7 —1 right —handed s electron
Gauge
W, wrwo ,wp triplet singlet singlet gauge boson
Wy Wi, Wiy, W3 singlet triplet singlet gauge boson
4 4 singlet singlet singlet gauge boson
AL ALLALLAY triplet singlet singlet gaugino
Ar AR ARLAY singlet triplet singlet gaugino
Ay Ay singlet singlet singlet gaugino
Higgs
8 o 1 , |
D4 67 & » 7 3 0 Higgs boson
-—lr A + A ++
V2
Ap 1 0 2 Higgs boson
AO —_ _1___ A +
V2 L
_l__ A + A+ +
V2
Ar 0 1 2 Higgs boson
AO — _!__ A +
V2 R
1 s 0
Vil 5
oL 5 1 5 1 0 —2 Higgs boson
V2 e
1 0
vi °
o 0 1 -2 Higgs boson
FT T ,
1 1 1] Higgsino
u,d
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Table I (Continued).

Higgs
éz+ A+t
_ V2
y; 1 1 0 2 Higgsino
A0 L X+
V2 L
L_A+ At
i V2 L
R X0 —LZ* 0 1 2 Higgsino
V2 R
1 0
) ‘/56 5
or L 1 5 - 1 0 —2 Higgsino
Ty L
1 5= 50
_ V3 ® ®
or 5—- 1 5- 0 1 -2 Higgsino
V2T s

of breaking is brought about by {® )70 and (but this is
not essential) (A, }70.

As in the standard model, in order to ensure that
U(1),,, remains unbroken, only the neutral Higgs fields
are allowed to have nonzero VEV’s. These values are

0 0
<AL>_ vy 0 ’
0 0
B)=|, o 2.6)
) k 0
(@)= 0 «'ei®

(®) causes W; and Wy to mix with a CP-violating
phase @,

It should be noted that all LR models contain a bi-
doublet field @, whereas the additional Higgs fields can
be members of doublets or triplets. The choice of a trip-
let representation is preferred because, as Mohapatra and
Senjanovic’ show, it has the ability to generate a large
Majorana mass for vy and, at the same time, a small one
for v;, thus providing a natural explanation for the small-
ness of the v; mass. The doublet-Higgs'* representations
generate only Dirac masses and, consequently, achieve
the objective of a small v; mass in a more contrived way.

The VEV’s of the Higgs field used in this paper are
then taken as

0
<A>R= ol <AL>:<6L,R>EO;
(2.7
_ Ky _ 00
<¢)u>_ 0O 0o} (¢d>— 0 Ky

For this, the following assignments have been made:
v, =0, k'=0.

The first one is a stringent case of the phenomenological-
ly required hierarchy'® vy >>max(k,k’)>>v; ; the second
one is due to required cancellation of flavor-changing
neutral currents.

The LR-symmetric model presented here offers several
interesting possibilities for a further refinement of elec-
troweak theory. It is particularly appealing for the fol-
lowing two reasons: It restores parity to the status of a
conserved quantum number in electroweak theory—just
as it is in the other fundamental interactions—and it in-
troduces B — L as a generator of gauge symmetry.

The full Lagrangian is then

L=L et Loaer+L,—V+Loy -

gauge matter

(2.8)

A. Gauge Lagrangian

The first part of the Lagrangian concerns itself with
the gauge fields. It contains the kinetic and self-
interaction terms for the vector fields and the Dirac La-
grangian of the gaugino fields. The covariant derivative
D, is of the general form 9, +igT,G},, where T, are the
generators of the gauge group and G|, is the gauge field:

Logpge=—+WE -W'+1X,5,DEA,

gauge
—1 R ywuv 13 R
Twyv Wk +7}‘R0’;LD;4)\R

=3V VP +HIA, T 9,y 2.9

B. Matter Lagrangian

This piece contains the kinetic terms for the fermionic
and bosonic matter fields (the Higgs fields are also includ-
ed in this category), as well as the interactions of the
gauge and matter multiplets:
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_ —_ gy igy igy
Linsier=+017, (8, —-mWi= ==V, |0, +0}7, |3, —7 W=V, |2k
ig i
+L[7, [8,~ Wit ngV L +L}5,|d ——giR— wR+ "V, |Lg
+Tr (18,15, |, ~ﬁrw —igyV, |TAL | +Tr |(r:5,) 9, _B “Witig, vV, |78
L ) 8y T AL ri(rd.) ) TW,TI8yV, |TOL
+Tr (B )15, (8, — SR WR—ig, ¥, |7-Bg |+Tr |(80)'5 o= B W tig, v, |55
R 2 T° —1ig, u T'Qp r {70 ) T u gy u T°OR
= _ gL . i8r R | = = _ igr igr =
+Tr | 8,5, 3,— — 7 Wi———7 Wi |®, |+Tr |$,0, a#——z—f-wp’;——i—r-wff]%
ig ig ’ ig ’
_OL  wL_%V _BR P14
| BT W 6VQ+6# 27~wu 6VQ
ig g ’ ’
L | 4
+|19,———7 Wt —=—— — =2 . WR
W Wit =, L, 3, 2 WK + 5 V Ly
g 2 2
+Tr|3,®, e W0, +®, ——7WK| +Tr|d q>d—5L—T Wid,+®,—— 8z WK
2 2 P
ig ’ ig ’
L L .
+Tr | |3,— = 7 Wy—igyV, |TAL | +Tr| (3, wT— T WitigyV, |78,
ig ’ ig ’
+Tr| |3 —TRT WR—ig, ¥, |7Ag | +Tr| |3, ——RTW +igyV, |78g
+igt [ B, + 222 Q, +H.c.+i0 § | 227 dg +——2, |0z +H.c.
\/2 3‘/ 4 L R ‘/2 R 3‘/2 V R
+ T/ITZ T(gLm A —gyAy)L, +H.c.+—=L L (gpmAg —gyA,)Lg +H.c.

2 V2
+i\/§Tr[(T-AL)Jr(gLT%L+2ngV)'r-ZL]+H.c.+i\/§Tr[(T'8L)T(gLT-KL—ZgV?uV)rSL]-*-H.c.
+iV2Tr[(7Ag ) (gr 7 Ag +28 Ay )7Bg ]+ H.c. +iV2 Tr[ (-84 (g Ag —2gyA, )78, ] H.c.
+—=Tr[®] (g, Ay +gpmAg )®, | +H.c. + —=Tr[®(g, A, +gg Az )&, ]+H.c. (2.10)

V2 V2

C. Yukawa Lagrangian

This piece involves the self-interactions of the matter multiplets; again, this includes the Higgs multiplets:
={(hHL]® L) +hHL] D Lg)+
+h2 0]
+Tr(py (1@, 7))@ 1+ Tr{py (7B )78, )+ Trps(r- B W78 )+ hy g (LT 7 A Ly + LT 7-AgLy)

+h2AQ[0,0:)+hAQ]®,0x)+HHE [ &, L) +hHL ] DyLy)
@uQR)+h,?(QI¢dQR )+hHL Rq)uLL)+hd(L R‘PdLL)‘f-huQ(Q R<I>,,QL)+h$(Q r®,0.)

+hLR([~, ZTIT-ZLLL +L 1€7'17'-1~3RLR )} +H.c.

D. Scalar potential

=|F?+1IDP+ Vo »

where

(2.11)

(2.12)
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|FI?=|h20; Qr +hEL, Lo+ |h$2Q; Op +hiL, L2+ |h2®, Op +hE®,0x 1>+ 12D, 0; +hED,0, |*

+|hlo, Ly +h} q>,,LR +2h, g7 ALLL|2+IhL<I> L, +hi®,L; +2h g AgLy|*+H.c.

2
1D*=1g,

2+%8R 2;
R

2_+_lg

(2.13)

S AWA' (2.14)

where A=0;,0r,L;, Lz, ®,, ®,, A;, Ag, 8;,and 8g, and 7, Tz, and V are the generators of the gauge groups:

Ve =ms({(h20 1 ®,0p +hLO [ ©,0p +hIL [ @, Ly +hiL @ Ly +hyg (L Frir-A L+ k77D Eg)
+Tr{p (1@, 7)) @, 1} +Trluy(r-Ap W78, ) ]+ Trus(7-Ag M(7-8 )]+ H.c.)
+méLQ2QL +méRQTRQR +mi, L I,EL_FmIZ,RZIZER . (2.15)
E. Soft-breaking Lagrangian
This is the term which gives Majorana mass to the gauginos:
Loq=mpAGA AR ) +mp(ARAE FAGA %) +my(Ayhy, +A,A)) . (2.16)

III. MASS EIGENSTATES

The choice of VEV’s of the Higgs fields [Eq. (2.12)]
makes it possible to analyze the generation of mass for
the gauge bosons in two separate stages. In the first
stage, (Ag ) generates masses for Wi, W3, and V. The
two neutral states mix, yielding the physical fields Z; and
B. In the next stage, taking place at a much lower-energy
scale, ®, ;, which couples to both left- and right-handed
fields, mixes W; and Wj. However, the amount of mix-
ing is so small that, effectively, the right-handed fields can
be considered to have decoupled from this part of the
theory, and only W;", W}, and B acquire mass from this
stage. Once again, the neutral fields mix and the familiar
Z; and A, are formed.

For the first stage of symmetry breaking, the relevant
term to consider in the Lagrangian [Eq. (2.12)] is

2
ig
___.B_TW

+Tr > —igyV, |T-Ag (3.1)

Substituting the VEV (A, ) for Ay, we obtain the physi-
cal fields

_ 8r Wr—28,V
R= m ) (3.2)
R
grV +2gy WR
m (3.3)
and their masses are
1
Mz, =75 Velgr +4g)'"” (3.4)
Myz=0 (3.5)

The new massless state B, is the gauge boson of the

[

symmetry group U(1)y, which survives the breaking of
SUQ)g XU(1)p_;. Wi and Zg, being very massive,
decouple from the low-energy theory, leaving only B, to
go through to the next stage of symmetry breaking.

For the second stage of symmetry breaking, the terms
to consider in Eq. (2.12) are
ig gR ’

— L R
Tr |3,®, Wi, + @, — 7 W-

igr,

+Tr |3, —— wL<I>d+q>d—T WE (3.6)

Since Wi and Zy have effectively decoupled from this
part of the theory, the charged bosons emerging from this
stage are, to a good approximation, W;5, whose masses
are simply calculated as

My, ~— (3.7)

L'_v_-\7;2~gL(Kfl +i3)172 .

As for the neutral bosons, W5 now has to be written in
terms of the fields B and Z:

gRZR +28VB
0
Wr= ViR (3.8)

Defining g’, the gauge coupling constant of U(1)y, as

8rE
'E*’Z—R'Vz—l/z , (3.9)
(gg +4g7)
the neutral mass eigenstates are found to be
wP—2g'B
z =8L7L 82 (3.10)
(g} +4g')V
with
mass=[(«2 +x3)(g2 +4g'H)1'"?, (3.11)
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and the massless photon 4, given by
28'W+g, B
A4,= Z—L*,—ZEI‘Z' . (3.12)
(g7 +4g'%)
In the following the mass eigenstates for supersym-

]
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metric partners are developed following the two-stage
symmetry-breaking examples developed in the gauge-
boson sector. The development owes much to the discus-
sion of mixing matrices by Haber and Kane.!®

The terms in Egs. (2.10), (2.11), and (2.16) relevant to
the mixing of gauginos and Higgsinos are

Loy =iV2Tr[(r-A) (g7 Ay +2gyAy ) B 1+ H.c. +iV2Tr{(m-Ag ) (ggm-Ag +2g,A, )7 Bz ] +H.c.

+—Tr[®l (g, 7A, +grmAg)®, 1 +H.c. + ‘/#5

V2
+ Ty AL )78, ) ]+ Tr[us(7-Ag N 7-8g)]

+mp (AGAL + RN )+ mpg(AGAL +A %A %) +m, (A A, +A,A,)+Trp (1,8, 7)) ®,] .

Tr[®) (g, 7AL +grTAg ) ®,]+H.c.

(3.13a)

Considering first the charged gauginos and Higgsinos (charginos), the first step is to substitute the VEV’s of the Higgs

fields into Eq. (3.13a) yielding

Lc.m.:[iklz(‘/ingRZ;+gRKd$;)+i)LZgLKd$;+i)"IJ{gRKu$;+i)"ZgLKu$u_

+mpAf AL tmpgAg AR td b b b4 1+H.c.,

where, for simplification, it is assumed that u,=u;=0.

(3.13b)

Then the two stages of symmetry breaking are considered separately. First, charged fermions combine into four
component Dirac spinors from the £, part of the Lagrangian

Ly =(iV2ggrvg AgA F +H.c.

(3.14)

At this stage supersymmetry is unbroken and the mass of Wi, \/igR vy is the same as that of Wy . The particles
produced at this stage are very massive and decouple from the low-energy theory.

At the next step the remaining terms in the Lagrangian

1 A
,ch—z(w*,z/r) X o ||y +H.c. ,
where
vr=(—idf,—iA{, b .60,
Y =(—ikp, —irg, b, ,04) ,
and
my 0 0 grxy
0] mpg 0 grky
X= 8Lk, 8&rky, O My

0 0 —u; O
The mass eigenstates are defined as
X\ = ij’/}j+’ Xi =Uy¢;, ,j=1,2,3,4,
where ¥ and U are unitary matrices chosen such that

U*xv-l=m,,

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

where M, is a diagonal matrix with non-negative entries. Positive square roots of the eigenvalues of X X will be the di-

agonal entries of M,:

Mi=vx'xv-i=vu*xxt(u*)"'.

(3.20)

Thus the diagonalizing matrices U* and V are obtained by computing the eigenvectors corresponding to the eigenval-

ues of XX and xx7, respectively.

The Lagrangian for the neutral gaugino and Higgsino (neutralino) mass terms analogous to Eq. (3.13) is
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. = < . = = . 1 . 1 +
"LNM: _I}V(I){VzgR URA% +l}"(!)/2‘/2ngRA(I)Q +l}"(}2 ‘/E gRKuatlJu _l)"OL ‘/—EgLKu(p(l)u

. 1 - . 1 - ~0 T
—’7‘% ‘/—EgRKd¢gd+l)"0L ‘/—EgLKd¢gd+mL}‘(I).}‘?. +mR7‘92)‘(1)€ +mvk(%/l?/+2#1¢2¢2 +H.c.

The mass eigenstates that “condense out” at the first
stage of symmetry breaking are all those involving vy,

i.e.,

Ly =— %”R (E9)TYE+H.c.

where

(EOT=(—ir%, —iA0,A %),

and
0 0 —gr
Y=0 0 2g,
—8r 28y O

(3.22)

(3.23)

(3.24)

gr/V2(gh+4gi)?

N=|gg/V2gh+4agi)?

28y /(g +4gp)?

—2,/V2(gi +4gi)'? —

—2gy /V2gk +4gi)'? +

gr/(gk +4g)'"?

43
(3.21)
[
Proceeding as before, define mass eigenstates by
X?=N;& (i,j=1,2,3), (3.25)
where N is a unitary matrix satisfying
N*YN =N, , (3.26)

where N, is a diagonal matrix with non-negative entries.
The eigenvalues of

gr —2gr8y 0
Y'y=|—2g.8, 4g2 0 3.27)
0 0 gk +agk

are twice (g3 +4g7), and 0. The diagonal entries of N3,
and the diagonalizing matrix N is given by

1
V2
1

V2
0

(3.28)

Using Egs. (3.25) and (3.26), the physical neutralinos resulting from the first breaking are

—i(grA% —2gyAy)

V2(gk +4g2)?
Xz1=

+i(ggA % —2gyAy)

V2(gg +4gp)'

with mass=(1/2)vg (g3 +4g2)'"?,

V(g3 +4g3)"?
Xz2™

+i(grA % —2g,29)

\/i(g,% —i—4g,2,)1/2

with mass =(1/2)V(g3 +4g2)!/2, and

—i(ggAy+2g,A%)
(gF +ag})”
+i(grA Y +2g,A%)

X =

(gk +4gp)'"2

A%

v
Z% , (3.29)

v
(3.30)

A%

Y3
+Z% , (3.31)

V2
> (3.32)

with mass=0.

Thus the neutralino spectrum, at this mass scale, con-
sists of two Majorana fermions, degenerate in mass, and a
massless Majorana fermion. The two massive states can
be written as a single Dirac spinor:

AR
i(gr A% —2g,A %)
(g7 +4g))"”

EoO=" (3.33)

In the absence of supersymmetry-breaking terms, this
is exactly as expected: £ is the superpartner of Zg, and
X that of B,,. To complete the symmetry that exists be-
tween ordinary particles and their superpartners, £°
decouples from the low-energy theory, and the massless
X goes through to the next stage of symmetry breaking.

In view of the rearrangements that have taken place
among the fields at the high-energy scale, the particles
taking part in the low-energy interactions are no longer
those of Eq. (3.21). Specifically, A% and A% have to be
rewritten in terms of A2 and A%, which are defined by
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z = ( +4g )1/2 s (- )
_ grMy 28y AR 3.35

B:W , (3.35)

giving
O_gR)‘(z)+2gV)"(1)9 3.36)
B (ghtagh) >
A% —2g, A2
?/:gR B~ “8v (3.37)

(g3 +45})"

The mass Lagrangian of the light neutralinos, Ly, is
obtained by substituting for A% and A9, and removing the
contributions of the fields which have decoupled (i.e., A%
and A?). The result of this is

,L — _l}\‘o l_g « 50 i)\’%‘/ingRKu$(l)u
NML L5 8LKu® 1u (g1%+4g;%)l/2
a9 L g k 59, — irgV'28ygrKab 5
L ‘/2 L*dY 2d (312(+4g[2/)1/2
040 mpAgpAEAG | mygRA3Ay
+mLA,L)\,L+ > > 5 )
8z T4gv 8r T48y
+21,6°69 | +H.c. (3.38)

The identification of the mass eigenstates follows the now
familiar procedure.

IV. g —2 OF THE MUON

The collection of graphs not present in the supersym-
metric standard model, but occurring in the present mod-
el are displayed in Fig. 2. Consider the term calculated
from the graphs of the form

ie

2m, F(qz)ﬁaaﬂqﬁu 4.1)
Then the muon anomaly is defined by
a,=(g —2),/2=F(0) . 4.2)

The graph in Fig. 2 involving ¥ was first considered by
Fayet.? In addition, the graphs in Fig. 2(a) involving ¥
and Fig. 4(e) involving Z are considered by Ellis, Hagelin,

|

*
=
96m

i=1
gR

9672
L2

+

i=1

E Vil [F

=1

L2

DT F'(xy;) +
967T xl 2i ]
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Additional one-loop diagrams contributions to

and Nanopoulos!” and by Grifols and Mendez.!® Addi-
tionally, the graph in Fig. 2(f) is considered by Barbieri
and Maiani;'® the graphs in Figs. 2(h) and 2(c) involving ¥
by Kosower, Krauss, and Sakai,?® and finally Figs.
2(a)-2(d) involving N, and Fig. 2(b) by Frank and Kal-
man.” The new contributions in this paper are based on
Figs. 2(g), 2(i), and 2(j) and some modifications to these
based on Figs. 2(a)-2(c). Note that the graphs in Figs.
2(a)-2(d) involve a coupling of charginos to physical sca-
lar neutrinos ¥, ,. In the results given below, we use the
usual convention that

=79,cos0,

"\71‘ =y= vzsinev » (4.3)

vr =N =%sin0,+7,co0s6, . (4.4)

The contribution to (g —2), from Figs. 2(a)-2(d) is

2 |V;112[cos?0,F'(x ;) +sin?0 F'(x,, ) ]W, W,

4 ~ o~
2 | I/izlz[sinzevF'(xli )+00526VFI(X2,' )]WR WR

"(x )+ F'(xy) 1H ZFIZ+FI‘£§7«
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hL 4
9‘;; S (ReVV3)[cos?0,F'(x,,)—sin,F"(x ;) | W, H ¢
i=1
h 8L : 2 2 W, HY
Py zl(Re Vi) [cos?0,F'(x,;)—sin?0, F'(x,, ) W, H %
hng & 202 ' 2 ' (1) ﬁd
9672 > (ReViVi3)[sin“0 F'(x ;) +cos®0,F'(xy; ) ]Wr H
i=1
L ~
61T 2 (Re 14 [F (X|,)+F (x21 ] Hi
i=1
hugR < 20 20 Vi
T o6 > (ReViVi,)[sin0 F'(x;)+cos“0 F' (x5, ) ]Wr H %
i=1
4 ~ o~
ng" S (ReV}V,y)cos0,sind, [ F (x,;)+ F(xy )W, Wy
i=1
gL d h . . —
> (ReV1Vi3)cos0,sind,[F(x ;) +F(x,,) W, H ¢
i=1
KLl
u

4 o~ ~
) 2 (ReV3AVi4)cos0,sin0 [ F(x ;) +F(x,; ) ]W,_ H%

grhi & _
+ S (ReV4V;3)c080,sin0,[F(x,;)—F(xy; ) |Wr H ¢
7T i=1
grhy & . : 7 (4.5)
+—V > (ReV35Vi4)cos0,8in0,[F(x ;) —F(x,, ) ]WrH{ . .

i=1
From Fig. 2(g),

2 2
(Wp) _g S8R m

‘ (4.6)
K 967> mi,
R
From Fig. 2(i),
h2
a,=— 9672 [cos?6,G'(x,)+5in%0,G'(x,)] . @7
From Fig. 2(j),
- h?
a(® == [cos0,F!(x )+ sin0,F (x,)] , .
967
where
2
2 [245x, —x? 3x "a
G'(xy)= m2 : 3k ; 71nx; Xk = 2k ’ @
mi | 20—=x)  (1—x;) "3,
2 [ 1—5x,, —2x? 6x}
F'(xpp )= mz - 3km - - FInxg, | 1o
mi’m (1—x,) (1—xy,, )
1—3x 2x},
F (g )=—" kmz_ - TInxem | @
2, (=X ) (1=xy,)

Xpm =M ik /mf7 , and V is the unitary mixing matrix defined in Egs. (3.18)-(3.20). Based upon supergravity,?!

m

hiq =g 4.12)

with g =g; ~gp, and m everywhere refers to the muon mass. The contributions from Figs. 2(1) and 2(f)-2(h) are un-
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changed from Frank and Kalman,” but we repeat them here for completeness. In the following we use the usual con-

vention
Bir =Hcosa, —fysina,, , (4.13)
A =Hysina, +{cosa,, . (4.14)
From Fig. 2(1),
2
() — _ am 1 1 4.15
a‘u 127 m2 + mg @19
1 Hy
(Z) g’ 2 2
ap = _m{cos Blcos’a,G’(x ;) +sin’a,G’(x,;)]
+sin2[J’[cosza#G’(x12)+sin2a#G’(x22)]] [%—sin26w+2sin40W , (4.16)
where
2
2 [ 2+45x,, —x} 3x Mp
, m k k k _ k
G (ka )_ 2 5 = 3m = 4 Xem — 2 ) (4.17)
%, (l_ka) (I_ka) mi?,,
. g2+g? 4 2 2
alf’= 1118 22 [ Eg~ tan*6, [ cos’a,G'(x )]+ £ 2tan’0y, —1| [sin’a,G'(x, )+cos’a,G'(x,)] [, (4.18)
T 1 1
where
2 | 2+45x, —x} 3x ;
— i
G'(xy )= s otnxg |, xe=—5 (4.19)
m5 | 2(1—x) (I—xy) Z
From Fig. 2(f),
ag'g):—-—ghd—sinZﬁ'[(coﬁa 08260y, +sin’a,2 5in%0y, )[G (x ;) + G (x,)]
32m%cosOy, ® #
+(sin’a,,c0820  +cos’a, 2 sin?6 , )[ G (x4,)+ G (x,)]} , (4.20)
where
2
1+x 2x M p
m km km Py
G(x,, )= Inx y Xpy = . (4.21)
km ™ m (=X, (1=xg,)} km ] km m%
Based upon supergravity,?!
h,~ mn . .
a=8 mass of the most massive neutralino in the loop *-22)
Finally, from Fig. 4(h),
24,2 4 2
y_ 81182 m?
@Z'=2L_22M_ 1| & | ant9,+ |5 | tan26, — (4.23)
’ 4872 m2, 81 v 1 v

Since the anomalous magnetic moments are so accu-
rately measured, it is essential for any major change in
particle theory that one must check that the addition of
new particles will not adversely affect the present theoret-
ical success. The present experimental value?? from the
last CERN g —2 experiment is

a,(expt)=1165922(9)X 107?, (4.24)

[

where the number in parentheses represents the error in
the last significant figure. The Weinberg-Salam (WS)
standard-model contribution is*?

a,(WS)=1.95(1)x107"° . (4.25)

The most recent calculated total theoretical value of all
standard-model contributions?* is
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TABLE II. Different scenarios of supersymmetric particle masses in GeV chosen to cover values of a,, in the range ~+107%. The

contribution of the Z ' is very small, and the effect of its variation is not shown.

mili mizi ms ms, mi? mig my my, msz., a,

400 400 10 10 11 11 10 10 60 9.2x107%
35 200 10 10 11 11 10 10 60 9.0X10°%
35 100 10 10 11 11 10 10 60 8.4%x1073
40 40 10 10 11 11 10 10 60 6.2X1078
60 60 10 10 11 11 10 10 60 7.9%1078
60 60 30 30 11 11 10 10 60 8.0X1078
60 60 10 10 11 13 10 10 60 5.6X1078
60 60 10 10 13 13 12 12 60 52%X1078
60 60 10 10 15 15 12 12 60 3.8x1078
60 60 10 10 18 18 17 17 60 2.1X1078
60 60 10 10 25 25 17 17 60 5.8%X107°

200 200 201 201 202 202 203 203 60 1.5%x107°
60 60 10 10 25 30 20 20 60 49x1071°
50 60 10 10 25 30 20 20 60 —6.7x1071°
30 60 10 10 30 30 20 20 60 —4.8X107°
30 60 10 10 40 40 20 20 60 —12X1078
70 70 30 30 50 50 40 40 60 —3.0X107°
20 20 12 12 11 11 10 10 60 —1.4x1078
16.5 16.5 16 16 10.001 10.001 10 10 60 —2.4X1078

-2 =) au(total) < u
—25 |
3 Loy )
40 60 80 100 120 140 160 180 200 220 240
mi: (GeV)

2

FIG. 3. (a) Variation of a, =(g —2),/2 as the mass of the heavier chargino me+ is increased. The masses of the other supersym-
2
metric particles are kept at their lower bound: mii =40 GeV, m o =m)?o =30 GeV, mT,l =m;2 =25 GeV, mﬁ1 =mﬁ2 =40 GeV, and
1 1 2
m; =60 GeV. The components of a, contributing to the change in its value are also shown. (b) Same as (a) except that the masses of

both me and mo (set equal to each other) are increased. (c) The mass of the heavier neutralino, m .o is increased while all other
i 2 2
masses are kept at their lower bound. (d) Both the m 2o and m .o masses, set equal to each other, are increased. (e) The effect of in-
1 2

creasing the mass of one of the s muons. Only two of the components of a u affected by this change are shown; the others contribute
significantly less. (f) Same as (e), but with both s-muon masses, set equal to each other, increasing. (g) The effect of changing the mass
of one of the s-neutrinos. (h) Same as (g), with both s-neutrino masses (equal to each other) increasing.



a”(theory)=116591920(191))(10_“ , (4.26)

where the error comes predominantly from the hadronic
contribution. When the new muon g —2 experiment
(E821) which is in progress at the Brookhaven National
Laboratory (BNL) and associated experiments needed to
improve the hadronic contribution to a,(theory) are
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completed, it will be possible to test the prediction of the
standard model at the one-loop level. Any deviation
from that prediction [Eq. (4.25)] would most likely be due
to supersymmetry.*’

In calculating values of the supersymmetric contribu-
tion to the anomalous magnetic moment, it is immediate-
ly seen that the values of 6, and a,, are unimportant. The

maximum contribution for ¥;; occurs when they are all

wLy)

-2 0 a (total +
2 u(total) a, ¢a,
_.2.5 f—
-3 L 1 1 1 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 60 80 100 120 140 160 180 200 220 240
m~t = mz* (GeV)
%, X,
1.5
(c)
‘I | -
05 -
0 e SRR E S S E ST S S S S S SN S T
-0.5 |-
a
L]
o -1
2
-1.5 | o @ (i)
au(total) + au o au
_2 —
-2.5 - 8fH}EfH35€H}EfHH99{H}BE
Seaaee8880
-3 1 1 1L 1 1 1 1 1 1 1 1 1 1 1 ] 1 1 1 1 1 1 1
30 50 70 90 110 130 150 170 190 210 230
mic; (GeV)

FIG. 3. (Continued).
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group, V;; has the simple form

j17=1%).

*sing,

cos@ }

R. M. FRANCIS, M. FRANK, AND C. S. KALMAN

43

found in Frank and Kalman.” The value of 3 has little
effect on a'?), but has a maximum effect on a!Z#’ (and

thus on the total contribution from this model) for
B=45°. Using the maximum values of B and V;

I
ij> the
effect of the masses of the supersymmetric particles on
the anomalous magnetic moments was considered. The
first question that was posed was the effect of the present
1.5
“ -
05 |-
N I0000Saseseaaas st T es:
0.5 |
A
w
WA “’ -
l
2 .
- O a (total @ (2
15 | n al) + a o a,
..2 -
-25 SSBBE*EFBE&SEBEE
5}813EHE13{}E¥813EHBE}BiS{}E}E
-3 1 L 1 1 1 1 1 1 1 1 ] 1 1 ] 1 1 1 1 1 1 1 1
30 50 70 90 110 130 150 170 190 210 230
m-0 = m-o (GeV)
1 XZ
1.5
.
05 |
)
o -0.5 |
-
1
2
z Lk
-1.5
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a
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1
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FIG. 3. (Continued).
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experimental limits [Eq. (4.24)] on the masses of m _ and
m )?i' The idea was to see whether independent
confirmation of the present experimental limits on the
masses of i and ¥ * found at CERN LEP,2° KEK TRIS-
TAN,?” the CERN pp collider,?® and the Collider Detec-
torat Fermilab?® (CDF) could be obtained. This proved
to be impossible as seen in Table II and Fig. 3. For
sufficiently light ¥ and ¥ °, masses of i and X * as light as
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10 GeV can occur, consistent with present experimental
limits on the anomalous magnetic moment or indeed of
limits likely to be found by the BNL experiment. The
values of my and m,+ were then fixed to be bounded
below by their present experimental limits of ~40 GeV.
The value of m 7, Was taken to be bounded below by the

0
experimental limit*° of 30 GeV and m_, by the experimen-
tal limit3! of 25 GeV. (Based upon present experimental

1k
0.5 |-
s}
o -0.5 |-
“
j
2
Z oL
—-1.5 +
2|
-2.5

(i
a

100

120

140 160 180

mﬁi(GeV)

0% a

—-2.6

o a“(total)

1 1 1 1 1 L 1 1 1 1 1 1 1

100

120 140 160
mDI(GeV)

FIG. 3. (Continued).
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(1078 a

-25

-3 L ! 1 1 1 1 1 1

o au(total) + a W Oa“‘wm

1 1 i { 1 1 1 1 1 1 1 1 1

120 140 160 180 200 220

m~ = m- (GeV)
v, v,

FIG. 3. (Continued).

limits*? of M and m, +, the contribution to the anoma-

wE
lous magnetic moment from Z, and Wy is expected to
be <107° and is ignored in this analysis. Contributions
from A and A have also been ignored, although the value
of their contributions is an enigma as values of m; and
m , are unclear.)

The mass of each of the supersymmetric partners was
then varied individually, giving rise to total contributions
to the anomalous magnetic moment of the muon from
the supersymmetric left-right model and the standard
model shown in Fig. 3. These results imply that it is like-
ly that deviations from the anticipated contributions to
(g —2), from the standard model due to supersymmetry
will be measured in experiment E821 at BNL.

V. CONCLUSIONS AND PROSPECTS

Since there are many cogent reasons for extending the
standard model to a fully left-right-symmetry model, it is
imperative to consider a supersymmetric version of this

extension to solve the gauge hierarchy problem. Applica-
tion to the anomalous magnetic moment of the muon
opens many experimental possibilities for the future.
Also, as there are additional CP-violating phases in any
supersymmetric model, further investigations into B
physics and the electric dipole moment of the neutron are
in progress.
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