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Mass scales and symmetry breaking in SU(15) grand unification

Palash B.Pal
Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403

(Received 16 April 1990; revised manuscript received 11 June 1990)

We carefully analyze the recently suggested grand unified model based on the gauge group
SU(15). We discuss various bounds on the scales imposed by rare processes. We point out that
baryon number is part of the gauge symmetry of the model. We propose changes that get rid of a
massless gauge boson corresponding to the unbroken baryon-number symmetry present in the origi-
nal model.

I. INTRODUCTION

Recently, Frampton and Lee'(FL) have proposed a
grand unification model based on the gauge group
SU(15). All known left-handed fermions of a single gen-
eration transform like the fundamental representation of
this group. Thus, for example,

(u ]tt2tt d3]d2d3. tt 1u2tt3d)d2d3. e V e )L

for the first generation, and similarly for the higher ones.
The subscripts 1, 2, and 3 represent the color indices and
we have used the caret to denote antiparticles. The verti-
cal dotted lines put at various places are meant for con-
venience of the discussion.

It is obvious that all gauge bosons of this model have
well-defined values of baryon number (B) and lepton
number (L ). Thus, in the unbroken theory, exchange of
gauge bosons cannot break B or L. Proton decay is
therefore absent in the gauge sector. ' This is an interest-
ing property, which was present in partially unified mod-
els such as the Pati-Salam model based on the gauge
group SU(2)L X SU(2)z XSU(4)&, but not in popular
unified models such as those based on the gauge groups
SU(5), SO(1), or E6. However, in the literature there has
been some discussion '" about grand unified models based
on the gauge group SU(16), which shares this property.

For further discussions, one needs to know how the
grand unified symmetry group SU(15) breaks down to the
manifest symmetry of the low-energy world. FL con-
sidered' the following chain on which we base all the
analysis of the present article:

MG

SU(15)~SU(12) XSU(3)l

SU(6) X SU(6) XU(1)„XSU(3),

quarks transform under SU(12) whereas only leptons
and antileptons transform under SU(3)i. In the second
stage of symmetry breaking, the SU(12) &2~ subgroup
breaks into SU(6)L XSU(6)~ XU(1)h, under which the
left-handed quarks and antiquarks transform as (6, 1,h)
and (1,6, —h ), respectively. Finally, at the third stage,
one obtains the gauge group of the standard model,
which is followed by Weinberg-Salam symmetry break-
ing.

Based on this symmetry-breaking scheme, FL claim'
the following results.

(1) The grand unification scale MG can be as low as
10 —10 GeV.

(2) The intermediate scale M„, defined in Eq. (2), is low
enough to be within the reach of the Superconducting
Super Collider (SSC).

(3) The first two stages of symmetry breaking can be
performed by vacuum expectation values (VEV's) of two
adjoint 224 and one fundamental 15 representation of
Higgs bosons. The symmetry breaking at the scale Mz
can be realized by a number of 15 multiplets.

(4) In this scheme of symmetry breaking, baryon num-
ber is not violated even in the Higgs sector. In other
words, baryon number remains as a true symmetry of the
model even after all symmetry breaking.

(5) One can obtain exactly the experimentally obtained
values of the low-energy parameters sin 6P~, a, and a, at
the scale M~.

The last claim is true, and is not surprising since by ad-
justing the three unknown mass scales MG, Mz, and Mz,
one should be able to fit three low-energy parameters.
The validity of the other claims is what we discuss in this
article.

II. EVOLUTION OF GAUGE
COUPLING CONSTANTS

~SU(3), XSU(2)1 XU(1)).

w

~SU(3), XU(1)g . (2)

The fundamental representation of the subgroups
SU(12) and SU(3)i are given by the first twelve and the
last three entries of Eq. (1). Thus, only quarks and anti-

Tr( 7 ~Tb) = ~ $~b
2 (3)

in the fundamental representation. Introducing
nG=gG/4m for a subgroup G, we can write down the

We first examine the evolution of the gauge coupling
constants. At the SU(15) level, we normalize the genera-
tors T by the relation
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(4)

where M is an arbitrary mass scale. The solution is

one-loop renormalization-group (RG) equation for the
gauge coupling constant as

Bag BG
(XG

8 lnM 2m

Therefore,

a2L ™A) a3l (MA )+3a6L ™A)

Similarly, if we consider the U(1)h generator

1
h = —diag(1(6) 1(6) 0(3))2 6

(12)

BG M)
aG'(M2)=aG '(M() — 1

2m M~
(5) and a diagonal SU(3)& generator

1 —diag(0(6). 0(6) ..2, —1, —1),
2 3

we can write

Y= —(3%3)+&2h —3A6R ),v'5

In order to use this solution to find expressions for the
coupling constants at the scale M~ in terms of the unified
coupling constant, one needs the matching condition at
various symmetry-breaking scales. At the scale MG, this
is simply

(13)

(14)

where A6& is similar to A6L except that the nontrivial ele-
ments are in the second block of six elements. The Y
defined above is the normalized weak hypercharge, relat-
ed to the electric charge by the relation

a, 2 (MG)=a„(MG)=aU(MG), (6)

with an obvious notation. At Mz, similarly, we have

a6L MB ) a6R MB a)h ™Ba)2q(MB
Q=I2L+Q —,

' Y . (15)
To obtain the matching condition at M~, we need to

know how the standard model gauge group is embedded
in the grand unification group. In SU(6)I, there is a gen-
erator

From Eq. (14), we obtain the matching condition

a r- '(M~ ) =—,
' [9a,, '(M„)+2a) h'(M~ )+9a6R'(M~ ) ] .

(16)
1

A6I = —diag(1, 1, 1, —1, —1, —1:0(6),0(3))23/3 (8) Similarly, by looking at the color generators, we get

&3( = —,'diag(0(6) '..0(6):.0, 1, —1)

of SU(3)( to give the diagonal generator of SU(2)L ..

I2L = &3(+&3A6L

(9)

(10)

where 0~6~, for example, denotes six zeros along the diag-
onal. This generator combines with the generator

cx3 '(Mz ) =2a6I'(Mz ) +2a6R'(Mz ) (17)

Notice that, with their usual definitions, the standard-
model generators are not normalized according to Eq.
(3).'

Using the matching conditions and the solution of the
renormalization-group equations, we can deduce the fol-
lowing relations for the coupling constants at scale M~.

ln10
a3~ (Mg )=4aU — [4B)2&(nG —nB )+4B6(nB —nz )+B3,(nz —n~)]2&

In10
a2I (M~) =4aU — [3B,2~(nG nB )+B»—(nG nw )+3B6(nB—nw )+B2I (n„n~)]-,27T

ln10ar (M)i ) =4aU —
[ —", B,2 (nG nB )+ ', B3&(nG—n„)+—( —', B6+—

', B(6 )(nB— n„)+Br(n„n)i —)], —

(18)

where One can put these back in Eq. (18) and use the relations

n = log, o(M /1 GeV ) (19)
2 3 5 —1 —1sin 8)i, =—,

—
—,a( a - —a2I ),

(21)
for any mass scale M. In writing these relations, we have
assumed that B6I =B6& ——B6 which is certainly true if we
neglect the contribution of scalar fields in RG equations.
Neglecting scalar contribution, one obtains for Nf num-
ber of fermion families the following B coefficients:

B]zq 44 3&f B6 22 3+f

CX/CX3 —— a( —CX r- + —CX2L a3 )

which are valid for all quantities defined at the scale M~.
Assuming all fermions are lighter than the weak scale, it
is easily seen that the quantity Xf cancels out and we get
the following relations connecting different mass scales:

0.375 —sin e~(M~)
264ng —88n~ 3

Pl ~ 3 ng =
1.789X 10

(22)
B3I=11——3'Nf P B]$ ——3'Nf (2()) 792nG —440nB —220n „—132n ~

B3c 11——3' By= —4'
0.375 —[a(M~)/a3, (Mii, )]

1.789X 10
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FIG. 2. K -IC transition mediated by gauge bosons.
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group shown in Eq. (2). Therefore, the masses of these
gauge bosons are given by Mz. We can easily write down
the amplitude for the process shown in Fig. 2:

2

A(K K)= -(d ~Ly„d L )(s I y"sg)
B

2

, (d I.y"sl. )(d R y„sg»
8

(23)

FIG. 1. Values of different mass scales. The quantity n is
defined in Eq. (19). The shaded area is not acceptable since by
definition MG Mz M&.

where a and P are summed color indices. In deriving the
last step, we have used Fierz transformation and the
definition of an antiparticle. We now define the matrix
element

&K'(d I y sl )(d ~y„sg )lK'&= bfgm~— (24)
where we have used the value a '(M~)=128. Using
n~=log&O81, we have plotted in Fig. 1 the solutions for
these equations for sin 8~(M~)=0. 228 and a3, '=9.35.

The various scales in Fig. 1 are consistent with the
values given by FL.' Thus, the unification scale MG can
be as low as of order 10 GeV and the scale M~ can be
accessible to SSC energies. However, that is not a neces-
sity so far as the renormalization-group analysis alone is
concerned. The only constraint seems to be corning from
the fact that the definitions of the various scales imply
n~ ~ n~, which gives n„~ 10.6. Recalling Eq. (19), this
means that Mz 4 X 10' GeV. The corresponding max-
imum value of MG is about 2X10" GeV. This con-
clusion, of course, can be modified once we include the
Higgs-boson contributions in the RG equations. In addi-
tion, there can be other, phenomenological constraints on
the scales, which would we described later.

III. CONSTRAINTS ON THE MASS SCALES
FROM VARIOUS PROCESSES

Since the renormalization-group analysis can neither
predict the mass scales nor put any bound which can be
used as guidelines for forthcoming experiments, let us ex-
amine what constraints are put by various particle pro-
cesses.

The most important one in this respect is the K -A

transition amplitude. At the quark level, this arises from
the process ds —+sd. Within the standard model, this pro-
cess arises at the one-loop level and the amplitude is
suppressed by the Glashow-Iliopoulos-Maiani (GIM)
mechanism. In the SU(15) model of our present interest,
there are additional diagrams which mediate such a tran-
sition at the tree level, as shown in Fig. 2. The gauge bo-
son that mediates this process belongs to the SU(12) sub-

group of SU(15), but is outside the SU(6)I X SU(6)~ sub-

where b is a quantity which can be calculated only with a
proper understanding of hadronic physics. In absence of
that, we take it as a parameter whose estimate is given
later. The contribution of the operator in Eq. (24) to the
Kl -Kz mass difference is given by

g bf~m~
Am~ = (25)

Since the standard-model contribution gives roughly
the right magnitude and right sign for the experimentally
measured value of Am~ =3.5 X 10 ' GeV, we can say
that the magnitude of the contribution from Eq. (25) is
less than the experimental value. This gives

M ~ —'b' X 10 GeV, (26)

where we have used fI,.=114 MeV and ms. =493 MeV,
and have put g = —,', as a rough estimate. Putting the
vacuum-insertion estimate which gives b =2.6, we thus
predict M~ ~ OD 8X 10 GeV. This certainly does not rule
out any allowed values of the scales shown in Fig. 1.
However, it has to be borne in mind that this is a very
lenient constraint from the process. If the contribution
of the standard model can be known to a very good accu-
racy, one can probably put a more stringent and useful
constraint on the scale Mz. Also, once one considers the
contribution of the Higgs bosons in the RG equations,
the predictions of the scales changes somewhat from the
values in Fig. 1, and that might rule out some part of the
parameter space from consideration of the Kl -K& mass
difference.

Flavor-changing processes such as Kl ~p+ e are
mediated by the gauge bosons at the scale Mz and are
therefore very suppressed in this model. Observation of
such processes close to the present bounds can rule out
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this model.
Among the gauge bosons at the scale M„, there are the

broken SU(3)& gauge bosons which can mediate interest-
ing processes such as the muonium-antimuonium transi-
tion p+e ~p e+, as shown in Fig. 3. The strength of
this process in this model will thus be given by
G,ir=g /M~. The experimental bound on the process is
very weak, 6,& 76+. Improvement of this bound will
help constrain the scale M~. The other interesting sym-
metry which breaks at the scale M„ is U(1)i, . The nature
of this symmetry breaking is discussed in the next sec-
tion.

IV. THE QUESTION OF
BARYON-NUMBER CONSERVATION

Looking at the generator h in the fundamental repre-
sentation, as given in Eq. (12), it is immediately obvious
that h is very simply related to baryon number:

B=Q—'h .

This poses tough questions for the model of FL, ' which
we discuss in this section.

First, it must be remembered that if only the known
fermions are present in a model, baryon number is an
anomalous symmetry. This makes the model inconsistent
since baryon number is part of the gauge symmetry here.
Therefore, one must add more fermions in order for the
model to work. Mirror fermions can certainly cancel the
anomalies. Introduction of extra fermions would not
afFect Eq. (22) and therefore the predictions about the
mass scales as long as all the fermions are lighter than the
weak scale.

Secondly, FL claim that B is unbroken in their model.
As we see, B is part of the gauge symmetry. Thus, if it
remains unbroken in the entire chain of symmetry break-
ing, U(1)~ [or equivalently U(1)h] will be part of the
unbroken-symmetry group of the real world. Certainly,
this is not the case. Hence U(1)ii must be broken in order
to obtain a realistic theory. With this in mind, we want
to discuss the symmetry breaking of the SU(15) model at
some length.

As mentioned before, FL claimed that the symmetry
breaking from the grand group to the standard-model
group can be done by VEV's in a number of 15 and 224
multiplets of Higgs bosons. Particles in the 15 must have
the quantum numbers same as the fermions in Eq. (1).
Thus, the only particle which can develop a VEV is the
uncharged one which has quantum numbers of the v, . A

FIG. 3. Muonium-antimuonium transition mediated by
gauge bosons.

455=(220, 1)+(66,3)+(12,3)+(1,1) . (28)

Obviously, a VEV in the last component breaks the sym-
metry down to SU(12)z X SU(3)&.

We now examine what happens to U(l)ii at the weak
scale. FL argues' that the symmetry breaking can be per-
formed by VEV's of 120, with the option of adding 105
representations. The 120 decomposes under
SU(12) X SU(3)i as follows:

120=(78, 1)+(12,3)+(1,6) . (29)

Let us first see how the (78, 1) submultiplet decomposes
under SU(6)L XSU(6)z X SU( 3 )

&
X U( 1 )ii:

(78, 1)= [6,6, 1]o+[21,1, 1]2~3+[1,21, 1] (30)

where we have put the unnormalized baryon numbers
which correspond to B=

—,
' for a quark. VEV's in the last

two submultiplets can break B. However, a sextet of
SU(6)L or SU(6)~ contains only color triplets. The 21 of
SU(6), being the symmetric combination of two sextets,
contains nothing but the 6 and 3 representations of
SU(3), . Thus, any VEV here would break SU(3), . The
second submultiplet in Eq. (29) contains only color trip-
lets and antitriplets, as is obvious from the fact that in
Eq. (1), the first twelve components constitute a 12 repre-
sentation of SU(12) . Thus the only color singlets in the
decomposition of Eq. (29) are in the (1,6) submultiplet.
But any VEV in this part cannot break U(1)ii since U(l)ii
is part of the SU(12) subgroup.

One can similarly argue that even the 105 multiplet
cannot break U(1)~. Thus, FL correctly argued' that in
their scheme of symmetry breaking, baryon number
remains unbroken. However, this is definitely a problem
for the model since U(1)ii remains as an unbroken gauge
symmetry. One must therefore introduce other Higgs
multiplets to break symmetry. In that case, one will ob-
tain baryon-number-violating processes.

It is, of course, possible in principle that some part of a
gauge symmetry is broken, but the fermions do not know
about it. If such is the case of U(1)ii in this model, then
proton decay is still prohibited in absence of scalars
lighter than the proton. However, in order for this to
happen, all Higgs bosons that the fermions couple to
must carry zero baryon number. It is not easy to meet
this constraint. Indeed, in similar models based on the

VEV of this component breaks SU(2)L, and therefore
cannot be larger than of order M~. Moreover, even if a
15 of Higgs boson develops a VEV at or below the scale
M~, that cannot break U(1)~ since the v, component
does not carry any baryon number.

Turning now to the adjoint 224, it is well known that
the VEV's of the adjoint cannot reduce the rank of a
group. Therefore, a 224 can perform the symmetry
breaking at the scale Mz, but not any other stage of
breaking shown in Eq. (2). The smallest representation
that can perform the first stage of symmetry breaking is
the 455-dimensional rank-3 tensor @('~") (the square
brackets denote antisymmetrization), which decomposes
as
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FIG. 4. Tree-level diagram for n-8' oscillation generated
when 4„"-"develops a nonzero VEV. Here P denotes the funda-
mental representation, and 3 denotes rank-2 tensorial represen-
tations.

group SU(16), baryon-number-violating processes such as
proton decay and neutron-antineutron oscillation are in-
duced by gauge symmetry breaking. '

Rather than going into a detailed discussion of this to-
pic, let us just give two examples of Higgs representations
whose VEV can break U(1)ii. We already argued that the
representations with one or two SU(15) indices do not
work. One possibility is to use the @ ' mentioned ear-
lier. In the (220, 1) submultiplet of Eq. (28), there is a
singlet of the standard-model gauge group which carries
one unit of baryon number. A VEV of this component
can break U(1)ii. Alternatively, we can introduce the
multiplet 4&j'~), whose VEV of the component @z can
break U(1)ii without breaking the standard-model gauge
group. In both instances, the symmetry breaking intro-
duces n-n oscillations, for example. In the case of the
@I.'J) multiplet, this occurs through the diagram of Fig. 4.
A similar diagram for the other case can be trivially con-
structed. Taking the naive expectation that the Higgs-
boson masses as well as the trilinear coupling constant
are all of order MG, we obtain the eftective amplitude to
be of order M~ /MG, which should be less than —10

GeV in order to meet the experimental bounds on the
process. This is satisfied by all values of the scales al-
lowed by renormalization-group calculations. However,
if the Higgs-boson masses are lower than MG or if they
introduce proton decay, the bounds can be much more
stringent.

V. CONCLUSIONS

We have analyzed the grand unification model based
on the group SU(15). The model is interesting because
the RG analysis admits of very low unification scale, as
pointed out by FL.' Figure 1 of our paper suggests that
the unification scale MG can be as low as 6X10 GeV as
suggested by FL, ' and at any rate is lower than 2X10"
GeV. This is considerable lower than the unification
scales in more popular unification models such as those
based on SO(10) or E6. This is definitely an exciting pos-
sibility that can arise in this model.

However, the Higgs-boson sector of the original model
has to be modified to make the model viable. We have
shown that the Higgs-boson representations suggested'
by FL are not sufficient to break the gauge group to
SU(3), XU(1)&. One needs Higgs multiplets different
from the ones introduced' by FL in order to have a realis-
tic symmetry-breaking pattern. On the one hand, intro-
duction of these multiplets might substantially modify
the RG equations. On the other hand, the symmetry-
breaking mechanism introduces baryon-number-violating
processes. We emphasized that this is necessary since
baryon number is part of the gauge group. The precise
nature of these processes will be studied elsewhere.

Rote added in proof. U. Sarkar, A. Mann, and T. G.
Steele [Report No. PRL-TH-90-18, 1990 (unpublished)]
have independently discussed similar issues about
baryon-number violation in the model.
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