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We consider experimental limits on particles of small (not necessarily rational) electric charge.
Such particles are possible within the standard model, and may be a natural consequence of exten-
sions of the standard model incorporating an extra U(1) gauge group associated with a “mirror
universe” sector. For both these cases we examine the limits from low-energy quantum electro-
dynamics corrections, direct accelerator searches, stellar astrophysics, constraints on big-bang nu-
cleosynthesis, and relic cosmological densities. The combined results exclude significant regions of

the charge-mass parameter plane.

I. INTRODUCTION

The question of whether the electric charges of elemen-
tary particles are quantized as integral multiples of some
standard unit of electric charge is long standing and of
fundamental interest. To the present limit of experimen-
tal accuracy the charges of the elementary particles are
consistent with being integral multiples of a standard unit
whose value is (minus) one-third the charge of the elec-
tron. For example, the upper limit on the electron-
proton charge difference is (0.8+0.8) X 10~ !¢, !

This apparent quantization of electric charge has been
a mystery from the point of view of the quantum theory
of electromagnetism since its inception in the early part
of this century. The gauge group for electrodynamics is
an Abelian phase invariance. Because the Abelian theory
has no nontrivial commutation relations between its gen-
erators [indeed U(1) has only generator] there is no alge-
braic quantization of the charge eigenvalues. It was the
absence of an algebraic explanation of charge quantiza-
tion that led Dirac to explore possible topological ex-
planations in his seminal work? on magnetic monopoles.
However, with the continuing absence of experimental
evidence for monopoles, there is presently no explanation
for charge quantization in the quantum theory of electro-
dynamics.

This situation is not improved by the embedding of
electrodynamics within the standard model of the elec-
troweak interactions based on the SU(2), XU(1)y gauge
group. In this theory, we still have an Abelian factor in
the gauge group, the U(1)y of weak hypercharge. The
electrical charges of elementary particles are now related
to SU(2); and U(1)y eigenvalues

Qem = T3L + —%i
and, in the absence of quantization of the weak hyper-
charge Y, there is no quantization of electric charge.
Indeed it is easy to introduce, into the standard model,

(1.1)
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particles of arbitrary charge and mass. One need only
add a Dirac fermion that is an SU(2), singlet and of the
desired weak hypercharge. Such a Dirac fermion has a
gauge-invariant-mass term, and will contribute to neither
local nor global anomalies due to the vectorlike nature of
its coupling. So such new fermions of arbitrary mass and
electric charge may be introduced into the standard mod-
el (and scalars of arbitrary mass and charge likewise).

While some extensions of the standard model [super-
strings,? grand unified theories* (GUT’s),...] provide
mechanisms for enforcing charge quantization, other pos-
sible extensions suggest the existence of particles of small,
unquantized charge. Holdom® has recently emphasized
that such a possibility exists in theories with a “mirror”
sector, where the mirror symmetry is slightly broken. In
such theories, one introduces a mirror sector of particles
and interactions resembling our own; in particular one
arranges that at low energies there is a new unbroken
U(1)" in the mirror sector and matter charged under this
u(1).

We do not observe two U(1) interactions in our low-
energy world, so clearly ordinary particles do not carry
the charge of the second U(1)’. However, if, at some arbi-
trarily large mass scale, there are particles carrying both
charges (call them ¥ and W’), then the gauge boson of the
first U(1) (“photon”) can turn into a virtual pair of these
particles and then into the gauge boson of the second
U(1)" (“paraphoton”). This gives an effective interaction
between the two gauge bosons, and therefore between
particles carrying only the charge of the U(1) (call these
¥) and particles carrying only the charge of the U(1)
(paratons = f). This can be described by giving the f a
small effective U(1) charge. Intuitively, virtual pairs of ¥
and ¥’ formed around a ¥ or f give it a small interaction
with the gauge boson of the other U(1). It turns out that
one can always arrange to describe the ¥-f interaction by
only giving one particle a charge:>
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where M and M’ are the masses of the ¥ and W'. If
M,M’'>a few hundred GeV (which is likely), the
standard-model U(1) that the para-U(1) mixes with will
be hypercharge, so the fractional electric charge of the
paraton will be
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In this scenario the particles that appear to us to have
a small induced electric charge do so because of a small
rotation in the charge space of their paracharge. They
will have interactions through the paraphotons of essen-
tially normal electromagnetic strength. The paraphoton
interaction will affect the physics and astrophysics of
these particles, giving a somewhat different picture of
constraints on their existence.

In this paper we consider the experimental limits on
particles of mass i, and of small (not necessarily rational)
charge €, both in the minimal case of standard-model
electromagnetism, and when there is a second unbroken
U(1) paraphoton present. In Sec. II we examine the con-
straints arising from direct searches at accelerators. In
Sec. III we note the limits inherent in the experimental
validity of standard quantum electrodynamics, getting a
constraint from the agreement of theory and experiment
for the Lamb shift. Section IV discusses constraints aris-
ing from cosmology, both from the validity of big-bang
nucleosynthesis and the requirement that relic paratons
not overclose the Universe. Section V discusses astro-
physical limits coming from the standard understanding
of red giants and white dwarfs. In Sec. VI we present our
conclusions; more details may be found in Ref. 6.

As this manuscript was in preparation we received a
paper by Dobroliubov and Ignatiev’ which examines con-
straints on particles of small charge in the case of models
without extra U(1) paraphotons; in the case where their
results overlap those presented here, they are in agree-
ment.

II. ACCELERATORS

The most obvious place to look for particles with large
fractional charge (€>1072) is in high-energy experi-
ments. Such particles could have been seen in free quark
searches, at the anomalous single photon (ASP) detector
at the SLAC storage ring PEP and in beam-dump experi-
ments.

There have been a number of accelerator searches for
the production of free quark pairs.®” !> The most
stringent limits come from PEP,!! which has u > 14 GeV
for 0.2 <€<0.8 and from KEK TRISTAN, !° whose limit
is u>26 GeV for e=2,

One could hope that the width of the Z from CERN
LEP would give constraints on heavier paratons than the
free quark searches. However, since the paraton only
carries hypercharge, its coupling to the Z is suppressed
by etanfy,. The decay rate is therefore (neglecting the
paraton mass)

tan’6,, e2aM,

3 =€2X6.79X1072 GeV

NZ—ff)=
(2.1)
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TABLE 1. Values of the paraton mass u excluded by the ASP
experiment.

Mass (GeV) Charge
p<l €=0.08
n<s €=0.08

u<10 €=0.09
p<13 €=0.20

and the width from the ALEPH Collaboration is
[pt=2.68+0.15 GeV."* Subtracting the theoretical
width (I, =2.487+0.027 GeV with three neutrinos'®)
allows AT'=0.307 GeV for other particles. This rules out
€> 2.3, which is useless.

The ASP detector'*!> was designed to look for events
of the form e "e ~—y + weakly interacting particles at
PEP. The unseen particles presumably include three
flavors of neutrino and any other light ““ undetectables”
one cares to believe in. After subtracting the neutrinos,
the limit on the cross section for the production of other
weakly interacting particles (assumed in this case to be
paratons) is o, =0.049 pb. Using Bonneau and Martin’s
approximation to the cross section for e *e ~— ¥ +other
things, ! which neglects Z exchange and photon emission
by the paratons, one gets the results of Table 1.

Beam-dump experiments have often been used to con-
strain the parameters of weakly interacting particles (see
Ref. 17 for a list of some of these limits). In the case of
paratons, this calculation was done by Golowich and Ro-
binett.!” Their limit calculated from vector-meson decay
and direct Drell-Yan production is approximately u > 10e
GeV for 0.1>€>0.02. (See Ref. 17 for an accurate
graph.)

Trident processes'® provide one of the best accelerator
experiment limits on low-mass particles with small elec-
tric charges. Paraton-antiparaton pairs can be trident
produced by an electron in a beam dump, and the para-
tons can be detected if they trident produce an electron-
positron pair in a detector. (Trident processes are more
important than real photoproduction or bremmstrahlung
because the presence of electrons allows processes that
are first order in the paraton charge.) An electron beam-
dump experiment'® at SLAC has searched for new neutri-
nolike particles. Using trident production cross sections
based on Ref. 18, we estimate that this experiment con-
servatively excludes paratons with the charges and
masses of Table II.

TABLE II. Values of the paraton mass p excluded by the
SLAC electron beam-dump experiment.

Mass (GeV) Charge
pn<0.2 €=0.0003
p<l €=0.0006
n<2 €=0.001

p<10 €=0.003
u <100 €=0.01
un<10? €=0.03
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III. LAMB SHIFT

Another way of setting experimental limits on paratons
is to require that their contribution to g —2 and the
Lamb shift not disrupt the present agreement between
theory and experiment. The Lamb shift gives an interest-
ing constraint, but as noted by Golowich and Robinett!’
the g —2 limit is within the region ruled out by accelera-
tor experiments.

The Lamb shift separates the 2P, ,, and 25 states of the
hydrogen atom by approximately 1063 MHz, and is due
to QED corrections to the vertex and photon propagator.
To lowest order, the paratons only contribute to vacuum
polarization, and, in the low-momentum-transfer limit,
introduce a correction to the photon propagator of?°

8y 20 @

¢ 7 08 (3.1

This is just (e?m2)/u?X (the electron term), so the para-
ton contribution to the Lamb shift is AE,
=e?m?2/u*X27.13 MHz where 27.13 MHz is the
vacuum-polarization contribution from electrons. The
maximum difference between calculations and measure-
ments of the Lamb shift is approximately 0.09 MHz,?° so
this implies

1w>9X107 3% GeV (3.2)

which differs from Ref. 7 by a factor of 2. This is only
applicable if u?>>q* because it was derived on the as-
sumption that In(1+x)=x (where x xq?/u?). Bethe
et al.2 have calculated that the average momentum
transfer between a 2S-state electron and the proton is 226
eV, so this limit probably applies for u>1 keV, or
e>107%

IV. COSMOLOGY

Cosmological arguments provide two interesting con-
straints on the parameters of the neutrino:?* a limit on
the number of light neutrino flavors, and a limit on the
mass. Both of these can be transposed into constraints on
the paraton.

Big-bang nucleosynthesis calculations predict the ob-
served abundances of the light elements (“He, He, D, Li)
in the Universe today. These calculations depend, among
other things, on the number of light neutrino flavors (or
equivalently, on the energy density) at weak-interaction
freeze-out (T'~1 MeV). One can therefore get an upper
bound on N, by requiring that the predicted abundances
not disagree with observation. If the paratons were rela-
tivistic at T~ 1 MeV, they would count as “too many
neutrinos,” which gives the first cosmological limit on
paratons.

The second constraint on neutrinos and paratons
comes from requiring that the relic density in the
Universe today not exceed the critical density p. that
would make the Universe flat.

Both these limits are derived on the assumption that
the paratons are in thermal equilibrium with the rest of
the matter in the Universe. For sufficiently small €, this
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will clearly not be the case, so for each limit there will be
some value of € below which the paratons conceivably
could exist.

A. Limits on paratons from nucleosynthesis

If there were less than 4.6 Majorana neutrinos at nu-
cleosynthesis,?* the predicted abundances of light ele-
ments are compatible with observation. This allows 1.6
extra two-component neutrinos, or their equivalent in
other relativistic particles at 7~1 MeV.

In the model without a paraphoton, this rules out para-
tons with o <1 MeV (the paraton is a Dirac fermion and
so counts as two neutrinos), providing they are in thermal
equilibrium with the photons at nucleosynthesis. The im-
plications of needing to be in equilibrium will be dis-
cussed later. (A strong bound, 0.4 extra Majorana neutri-
nos at nucleosynthesis, has recently been calculated,?’ so
our calculation based on not more than 1.6 extra neutri-
nos is clearly conservative.)

In the model with a paraphoton, the mass limit is con-
siderably more stringent. The difference here is that the
paraphotons contribute £ of a neutrino to the energy den-
sity if they are at the same temperature as the photons.
Moreover, the paratons will annihilate principally to
paraphotons, which raises the paraphoton temperature
with respect to that of the photons. This means that a
number of ordinary particle species will need to annihi-
late into the photon gas between paraton annihilation and
nucleosynthesis. If g (p, T) is the effective number of de-
grees of freedom that particle p contributes to the energy
density at a photon temperature 7, then?

4

| 4.1)

T,

a

geﬁ'(’y,’Ta ):2

where T, is the photon temperature just after the para-
tons annihilate and T, (the paraphoton temperature) is
determined from entropy conservation to be

1/3
2+
—— | .- 4.2)

v

This gives g.g(y', T,)=7.7>>g.4(1.6v, 1 MeV)=2.8.
If at nucleosynthesis
4

Ty | <28

8exly'»T,)=2 (4.3)

n

then the photon temperature must increase with
respect to that of  the paraphotons by
(8e(V' s T,) /8y’ T, )14 But by entropy conservation
this is just

1/4 1/3

i T,)
Re , 4.4)

7.7 Dot Za)
neﬂ'( Tn )

2.8

where ng(T,) [n4(T,)] is the effective number of de-
grees of freedom of the gas of particles in equilibrium
with the photons just after the paratons annihilate [at nu-
cleosynthesis]. n.g(T,)=2+1+3X I (for photons, elec-

trons, and neutrinos) so n.(7,)=32 which implies
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T,>T,, where T, is the quark-hadron transition temper-
ature, 200 MeV <T,. <400 MeV. So nucleosynthesis
gives

u>1 MeV (without y'),
©>200 MeV  (with y') .

(4.5)
(4.6)

If only 0.4 extra neutrinos are allowed at nucleosynthesis,
the lower bound on u (with ') increases to the charmed-
quark mass, or u> 1.6 GeV.

This lower bound on u applies if the paratons are in
equilibrium with the electrons and photons at T'~a few
MeV. However, paraton cross sections decrease as the
temperature rises (o ~1/T?), so the paraton interaction
rate [see (4.8) and (4.10)] increases more slowly with tem-
perature than the expansion rate of the Universe
[H ~T?; see (4.18)]. This suggests that paratons will be
in equilibrium at low temperatures but not at high ones.
One can calculate a value of € below which the paratons
will not be in equilibrium at nucleosynthesis by assuming
that the paratons come into thermal equilibrium when
I'=H, and that this must happen before T=5 MeV for
the mass limit to apply.

At T ~a few MeV, the only charged particle available
for the paratons to interact with is the electron (collisions
with photons are unimportant), so the interaction rate is

nr r I
F~neo(fe—>fe)[3+—4—a(ff~>e e B, 4.7)

where n, is the number density for particles p and their
antiparticles. Assuming that the electrons and paratons
are relativistic (so n ~ T?), the interaction rate for annihi-
lations is?®

a’e?

ann ~ 2

r T . (4.8)
o(fe— fe) is infrared divergent, so must be dealt with
more carefully. A particle is defined to be in equilibrium
if T >> H because this means that it can change its energy
as fast as the Universe is cooling. However, in this argu-
ment, it is assumed that the energy exchanged in an in-
teraction is of order the energy of the particles, and it is
precisely because this is not true that the scattering cross
section diverges. For a fixed momentum transfer |Ap|, it
will take ~ |Ap|%/|p|? interactions (squared because it is
random process) to change the momentum by an order of
magnitude. One therefore needs

2dr
2Rl ey

4.9
lpl> dQ @9

to keep the particle in equilibrium. Taking the lower
bound on |Ap| to be eT ( ~effective mass of a photon in a
thermal bath) gives a scattering interaction rate of
[yon =2.6€20°T . (4.10)

An upper bound on can therefore be calculated by setting
H=T,,,+I, at T=5 MeV, which gives

ann

€<4X1077 . 4.11)
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B. Limits from <1

The second cosmological limit on paratons comes from
requiring that they not overclose the Universe, i.e., that
Q(=p;/p., where p, is the paraton energy density) be
less than 1. In the hot very early Universe, the paratons
are assumed to be in thermal equilibrium with ordinary
particles for T >pu (this assumption will be discussed
later). As the temperature drops to =pu, they become
nonrelativistic and their equilibrium number density will
drop very fast. Numerical calculations for heavy neutri-
nos?® and charged particles’’” show that when T ~(the
particle mass)/20, the expansion of the Universe has
sufficiently diluted the particle number density that they
freeze-out of equilibrium and the number per comoving
volume stays approximately constant until today.
Presumably paratons behave in the same way.

The more strongly interacting paratons are, the more
efficiently they will find each other to annihilate, so the
relic density today will be lower. Nonrelativistic paraton
annihilation cross sections go as ~€2/u?, so they become
more “weakly interacting” as € gets smaller or as u gets
larger. Requiring p, <p, therefore gives a lower bound
on € and an upper bound on u. The same argument for
neutrinos gives a lower bound on m, because (for
E, <My, the cross sections go as ~E2/M3,.

Using Lee and Weinberg’s?® analytic approximation to
the relic density today, the present mass density of para-
tons should be

= 3.2x107% 1
4 oBV gu(Ty) xF(1+1/x;)

g/cm3 s (4.12)

where o is in GeV ™2 and x,=T,/u is the freeze-out
temperature in units of the paraton mass:

—1

x,= |41+ |[£2E 1 “.13)
8eff

where pof is in GeV !, Paratons will annihilate to two

paraphotons in the model where these exist; otherwise
they will annihilate to charged particle pairs. The nonre-
lativistic cross section for ff —y'y’ is?®

_ ma’?

Bu’
so requiring that the paraton density today=p, be less
than p,=1.88X 10" %h? g/cm® [0.4<h <1 comes from
the wuncertainty in the Hubble parameter today:
H =100~ (km/sec)/Mpc] gives a rough limit u < 10%a’
GeV, in agreement with Ref. 29. Assuming a' < &, this
is

(4.14)

w<10* GeV (with y') . (4.15)

If there is no paraphoton, the paratons do not interact
as strongly, which gives a higher relic density today. The
upper bound on u from p, <p, should therefore be lower
than (4.15). A paraton with intrinsic fractional hyper-
charge should annihilate to a pair of charged particles,
providing u>m,, and since nucleosynthesis rules out
pn<1 MeV, this is a reasonable assumption. The cross
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section for a pair of nonrelativistic particles to annihilate
to a pair of relativistic ones is?’

1T62a2

u’B
where N(T,) is the effective number of relativistic
charged-particle species present when the paratons an-

nihilate. Requiring p, <p, therefore gives a rough upper
bound of

w<2X10% GeV .

N(T,), (4.16)

(4.17)

Using the correct values for x, and g.4 charges this by
less than a factor of 2.

The limits (4.15) and (4.17) assume that the paratons
are in thermal equilibrium with ordinary matter at 7' > pu,
so will only apply if I' > H, which gives [see (4.8) and
(4.10)]

T > 190 VigaT? .
mpL

3N( (4.18)

At temperatures satisfying (4.18) paratons with u<<T
will be in equilibrium. For pu>>T, the paratons are
presumably not in equilibrium when they annihilate, so
there is a tentative upper bound to the masses ruled out
by the p <p, limit; i.e., paratons may be allowed if they
are sufficiently heavy. The dividing line is p~ 7T, which
gives a lower bound on the paraton mass of

2
> €N 1 5% 10 Gev (4.19)
V' 8eal(T)
or roughly
w>10%€? GeV . (4.20)

The limits (4.20) and (4.17) are very similar to those
calculated by Dobroliubov and Ignatiev.

V. ASTROPHYSICS

Unless € is very small, a light paraton would remove
energy from red-giant cores more rapidly than it is pro-
duced by nuclear burning, and would cool white dwarfs
faster than is observed. The standard “undetectable par-
ticle” limit from red giants (Ref. 30 and references in 31)
can therefore be transposed into a limit on the paraton,
and one can require that the time scale on which para-
tons cool a hot white dwarf be comparable to that of pho-
ton cooling.

A. Red giants

The principal method of paraton production in stars
will be plasmon decay: a photon in a plasma (plasmon)
acquires an effective ‘“mass” from its constant interac-
tions with the electron gas, so can decay without violat-
ing gauge invariance or conservation of energy and
momentum.>? The decay rate of a massive vector boson
into a paraton pair is

_ €am, p3—p)
3 2

) (5.1)
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where S is the velocity of the outgoing paraton. This is
very large; essentially a plasmon will decay if it can. This
implies u>m, /2 down to very small values of ¢, provid-
ed that the paratons escape from the star. (If the charge
is large enough that they are trapped inside the star, this
limit no longer applies.)

The plasmon mass m, depends on the energy and
number density of electrons and positrons in a complicat-

ed way.>? However, in the limit of a nonrelativistic elec-
tron gas, T <<m,,
4man, 12
m,= =2 keV , (5.2)
me

where the numerical value has been calculated for p=10*
g/cm®. [The red giant is very naively assumed to have a
homogeneous helium core of density p=10* g/cm?, tem-
perature 7=102 K (8.6 keV), mass 0.5M, radius
r=3X10° cm, and energy generation rate R,=10°
ergs/(cm® sec); this follows Ref. 31.] This gives a
plasmon lifetime in red giants of 7=€ 2X10™'® sec,
which implies

p>1keV (5.3)

(unless € is small).

If € is very small, the plasmons will decay very slowly
and the star will not lose to much energy to paratons.
The upper bound on € is estimated by requiring that the
rate of energy loss per unit volume to paratons,

© 0] 3d k my
= r
dth fo (27)3 “’/T 1 o

~€e?X1.6X10% ergs/(cm’sec) ,

(5.4)

(where a)=\/mi+k2 is the plasmon energy, k is its
momentum and m, /o is the time dilation factor in the
decay rate) be less than the nuclear energy generation
rate per unit volume. This implies that

e<10™™ (5.5
is allowed. (This is an order of magnitude smaller than
the limit calculated by Bernstein, Ruderman and Fein-
berg®® and so is perhaps too optimistic.)

The lower bound on the mass assumes that the para-
tons escape the star when they are produced, which will
not be the case for large €. It should therefore be cut off
when this no longer happens. (The paraphotons are
trapped if the paratons are, so do not provide a mecha-
nism for the paraton energy to escape.) This is a conser-
vative upper bound on €, but since the region of u-€ space
in question is ruled out by nucleosynthesis, it is not im-
portant.

The principal interactions that should interfere with a
paraton’s escape from the star are scattering off electrons
and helium nuclei (assuming that all the protons are in
helium). The paraton mean free path is therefore

- 1

= 5.6
4 neae+nHeUHe ( )

where o, is the cross section for paraton-electron scatter-
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ing, and oy, is the cross section for paraton-helium
scattering. These are calculated using a screened
Coulomb potential, which gives

T~ ——=X3X10" cm (5.7)
€
with p in GeV.
If the paratons are assumed to be trapped if the core
radius is greater than 10 mean free paths, then the lower
bound on € is

€>107% for u=1keV ,

(5.8)
€>1073 for u=1eV.

B. White dwarfs

At first sight it is strange that a dying star should give
useful limits on paratons. However, the “mass” of a
plasmon in a degenerate electron gas is
172

4mran,
> (5.9

€F

where € is the Fermi energy (including rest mass) and n,
is the electron number density. In a pure carbon white
dwarf with M=one solar mass and a radius R of 5000
km, one has m ., ~=40 keV, which could increase the lower
bound on the paraton mass to u>20 keV: the present
theory of white dwarf cooling seems to agree with the ob-
served luminosity distribution of the white-dwarf popula-
tion,>* so white dwarfs cannot be losing substantial
amounts of energy to paratons.

Assuming that the plasmons can be treated as massive
bosons, their number density will be

m. T 1372
—m_ /T Y
=3 vl = 5.10
n,=3e oy (5.10)
Since m,, is greater than and independent of the tempera-

ture, the plasmon number density will be exponentially
suppressed as the star cools. Any limits on paratons from
plasmon decay must therefore come from the early stages
of white-dwarf cooling.

The rate at which the star loses energy to paratons can
be approximated as

L=n,I'm,V (5.11)
because the star is assumed to be a sphere of uniform
density and temperature. Setting this equal to the rate of
energy loss of the ions gives®

1/2

7Ty

2

oM my/Tf

TR , (5.12)
14

2mcem

where 7 is the time it takes to cool to Ty and m is the
mass of a carbon atom. Using T;=1.5keV (which corre-
sponds to L, =10"?Lg,), this gives 7=~e X 5X 107’ sec.
The observations require 7=3.4X10'% sec,* which im-
plies that the paraton mass must be greater than m, /2,
or that e> 10710,
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In this calculation, the cooling time increases exponen-
tially with the plasmon mass, so m, has been taken as
large as possible. This gives the weakest limit on €, but
perhaps makes the mass limit too high. It is safer to use
a smaller plasmon mass for the limit on u, which means
the white dwarf limit is

for €>10710 4> 10 keV . (5.13)

This calculation has been done more carefully by Dobro-
liubov and Ignatiev,” who get x> 25 keV for e > 10713,

As in the case of red giants, paratons with large € will
be trapped in the star. They are unlikely to interact with
the electrons, because these are degenerate, but will
scatter off the carbon ions. Using a screened Coulomb
potential with a screening length of*®

c 1/2
= Zl;#(; (5.14)
gives
_ —14
lf:ﬁél—(z)—m cm . (5.15)
€u

Assuming again that the paratons are trapped if their
mean free path is less than 1/10 of the white dwarf ra-
dius, one has that paratons are allowed for

u=10 keV, €>10"°,
(5.16)

u=1ev, e>10"2.

Dobroliubov and Ignatiev’ improved on the astrophys-
ical limits set here using white dwarfs and energy trans-
port in red giants. They rule out our red giant region
(but up to 25 MeV) using white dwarfs, and then use the
red giants to constrain paratons under our lower bound
for nucleosynthesis.

C. Dark matter

Our Galaxy is assumed to be surrounded by a halo of
nonluminous matter®> with a local density of approxi-
mately 0.3 GeV/cm®. If the halo is composed of (non-
baryonic) dark-matter particles, then there are experi-
mental bounds on the mass and cross section on nuclei of
these particles from their nonobservation in dark-matter
detection experiments.>®37 These constraints have been
calculated for heavy neutrinos and similar particles that
are weakly interacting because they exchange a massive
gauge boson.

Since electrically charged particles are not “dark,” and
interact via a long-range force, these limits must be tran-
sposed to paratons with some care. The dark-matter con-
straints will apply if the paraton could not have cooled
out of the halo within the age of the Universe, i.e.,*® if

e<7x10 1
ne

(5.17)

where p is in GeV, and n, is the free electron number
density in cm 3. (If all the electrons are free, n,~1.)
For large values of €, the paraton density in the solar sys-

tem should be at least (Q,/Q,)X (baryon density of the
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FIG. 1. Region of the mass-charge (u-€) plane ruled out for
the model without a paraphoton.

local interstellar medium), which would not be detect-
able. Q, () is the baryon (paraton) relic density divid-
ed by the critical density p,.

€ must also be small enough that the paratons reach
the detectors, but large enough to produce a detectable
signal. Since charged particles lose energy scattering off
electrons (long-range force) they travel considerably less
far in matter than ordinary weakly interacting particles
with the same cross section on nuclei. Using Holdom’s
approximation for the range of a paraton,?’ and assuming
that the paraton density is Q,X0.3 GeV/cm?, gives the
“teeth” in Fig. 2. (These are very rough estimates of
what the present dark-matter detectors could rule out.)
The small € tooth is the underground germanium detec-
tor of Caldwell et al.,?® and the other is the balloon ex-
periment of Rich, Rocchio, and Spiro;3’ in the second
case, the lower bound on € comes from (5.17) These
dark-matter direct detection experiments are clearly in-
teresting to pursue as they access a region of parameter
space not excluded by other considerations.

VI. CONCLUSION

One can get useful constraints on paratons from ac-
celerator experiments, stellar evolution, and cosmological
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FIG. 2. Region of the mass-charge (u-€) plane ruled out for
the model with a paraphoton.

arguments. The limits for the model without parapho-
tons are plotted in Fig. 1; those for the model with para-
photons are in Fig. 2.

It is unfortunate that these calculations leave a central
region where paratons are allowed, but there do not seem
to be any simple arguments to rule this area out.
Searches for anomalous nuclei, proton decay and galactic
y rays provide an upper limit on the number density of
paratons with parameters in the central region, but one
must be able to calculate “gold-plated” lower bounds to
use these experiments to rule paratons out. For a given
mass and charge, the relic abundance today can be calcu-
lated from (4.12), but this number density is averaged
over the whole Universe. The local density will depend
on how the paratons get through galaxy formation and
the magnetic field and atmosphere of the Earth, which
makes it very difficult to calculate.
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