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Exploring glueball wave functions on the lattice
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We calculate the string tension and 0++ and 2++ glueball masses in pure gauge QCD using an
improved lattice action. We compare various smearing methods, and find that the best glueball sig-
nal is obtained using smeared Wilson loops of a size of about 0.5 fm. Our results for mass ratios
m ++ /&o. =3.5(3) and m ++ /m ++ =1.6(2) are consistent with those computed with the simple0 2 0

plaquette action.

I. INTRODUCTION

Numerical lattice calculations provide strong evidence
for the existence of a mass gap in pure gauge QCD. '

Though straightforward in principle, these calculations
are hampered by large statistical errors, with the prob-
lems becoming more severe as the continuum limit is ap-
proached. In this paper we investigate methods to im-
prove the signal, and give new results for the scalar and
tensor glueball masses in pure gauge QCD.

Although the spectrum of pure gauge QCD cannot be
directly compared to experiment, it is important to pin it
down because we know so little about glueball properties.
The guidance from theoretical calculations in various
models is only qualitative. For example, models agree
that the lightest glueball is a scalar, but dieter substantial-
ly on its mass. Definite numbers for pure gauge QCD
would give a solid base from which to attempt phenome-
nological studies. Furthermore, it is important to study
methods for improving the signal, for they will be direct-
ly applicable to future calculations in full QCD.

The major progress in the last few years has come from
improving the operators used to couple to the glueballs.
The main innovation has been the use of smeared opera-
tors. This increases the overlap with the lowest state and
reduces contamination from higher states, resulting in
correlators which reach their asymptotic behavior at

K8 = —0. 12,
+F F

= —0. 12,K
&&X2 = —0.04,
EF

smaller time separations. In addition, the noise from ul-
traviolet fluctuations is reduced.

The two popular smearing methods are those proposed
by Teper" and DeGrand, and by the APE Collabora-
tion. The quality of the signal in two-point functions us-
ing these operators is significantly improved compared to
unsmeared operators. In this paper we propose an alter-
native way of constructing glueball operators using a
slight variation of the APE smearing method, and find
that our variant improves the signal for a fixed number of
smearing steps. We also subject the source method to a
critical analysis and make a detailed comparison of the
methods of Teper and DeGrand and APE. Finally we
present results for the string tension cr and the glueball
masses m ++ and m ++ from our runs with the largest
statistics. Our statistics are comparable to those of the
best previous calculations, ' and our results are in agree-
ment.

We use an improved gauge action consisting of four
terms: the plaquette in the fundamental (3), adjoint (8)
and 6 representations, and the 1X2 loop in the funda-
mental representation. The couplings are taken in the
proportion
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with the traces normalized to unity. All results reported
here are with KF =10.5. By matching the string tension,
we estimate that this corresponds to K„=5.96 for the
Wilson action (As=%6=K»2=0). Our improved ac-
tion was determined by a Monte Carlo renormalization-
group (MCRG) calculation to lie close to the renormal-
ized trajectory for the &3 renormalization group trans-
formation. The main advantage of this action over the
simple plaquette action is that it lies farther from the line
of phase transitions in the fundamental-adjoint coupling
plane. Although this line of phase transitions is a lattice
artifact, it does lower the 0++ glueball mass for Wilson
action with KF & 6.0. In a previous paper, we calculat-
ed o. and m ++, at K+=9.9 and 10.5, using a cold wall

source, and on fairly small lattices.

I (r —1)
m, ft(t) =in

r(r) (2.1)

In the case of A i++, the connected correlator may con-
tain a sizable constant term on a finite lattice. This is be-
cause the glueball can propagate around the lattice, with
the operators acting as scalar insertions. In such cases, to
ensure the validity of our results, we make checks using

r(r —1)—r(r)
r(r) —r(r +1) (2.2)

The signal in the connected 2-point correlators I (t) for
all three observables does not last long enough to make
fits to an exponential falloff. The data is therefore
presented in terms of the effective mass defined as

II. CALCULATIONAL DETAILS

Details of our data samples are given in Table I. The
lattice update is done using a combination of overrelaxed
and Metropolis methods. " For 12 X24 and 15 X24 lat-
tices every link update consists of an overrelaxed step fol-
lowed by a Metropolis hit. For 9 X24 lattices the update
consists of four overrelaxed sweeps followed by one
Metropolis sweep. In most cases we perform measure-
ments every five sweeps and divide the data into bins of
400—500 measurements to do the statistical analysis. We
typically have runs of 20—60 bins, and the final errors are
obtained using the single-elimination jackknife method
with each bin regarded as an independent data point.

We calculate masses of glueballs in the 3 i++ and E++
(2-dimensional) representations of the cubic group. The
former couples to the scalar glueball, the latter to the ten-
sor. For a given size of the loop, we construct these
operators by adding the various loop orientations in the
standard way. ' We do not calculate the mass for the
T2++ (3-dimensional) representation which along with
E++ makes up the continuum 2++ representation. The
string tension is calculated from correlations of spatial
Polyakov lines.

III. SMEARING METHODS

The operators commonly used for measuring glueball
masses are Wilson loops. The simplest choice —the pla-
quette, 1X2 loop, etc.—suffer from two problems. First,
they are much smaller than the glueballs, so that the sig-
nal in the correlators is weak. Second, they couple
strongly to ultraviolet fluctuations, increasing the noise in
the correlators. For a fixed loop size, both problems get
worse as the lattice spacing is decreased. For a detailed
discussion see Ref. 2. To resolve these problems one
needs to construct operators that are "fat." This both in-
creases the overlap with the lowest-lying states, and de-
creases the ultraviolet fIuctuations. All the methods dis-
cussed below have the following common features.

(a) Loops are made fat by using smeared links. The
smearing is done by averaging the gauge field associated
with a link over its local environment. A straight path on
the original lattice is replaced by a sum of paths with the
same starting and ending points. This sum has the same
gauge transformation property as the original "link, " so
that operators constructed from closed Wilson loops
made up of these smeared links are gauge invariant.

(b) The averaged link X, a sum of SU(3) matrices, is not
an element of SU(3). The glueball operators (Wilson

TABLE I. Description of data samples on the various lattices.

Lattice

Source

Smearing

Maximum N,
e Values

Measured
loops

Measurement
interval

Bin size

Bins
for e=l

Sweeps
for @=1

9'x 24

None
b=1

1X1 to 4X4
Squares

5 sweeps

500
23

57 500

12'x 24

Cold wall

b=2

0.5, 1.0,2.0

1x1,1x2
2X1,2X2
2 sweeps

400
20

16000

12 X24
None
b=2

0.8, 1.0, 1.2

1x1,1x2
2X1,2X2
2 sweeps

400

60

48 000

12 X24
None

b=1

1.0, 1.25

1X1 to 6X6
Squares

5 sweeps

500

43{%,=3,4)
20{%,=5,6)

107 500

15' x 24

None
b=1

0.25, 0.5,0.75

1.0, 1.25, 1.5
1X1 to 6X6

Squares

5 sweeps

500

30

75 000
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loops) can be constructed from these general 3X3 com-
plex matrices. It is common, however, to project the sum
back to SU(3), as part of the definition of smearing. We
perform this projection by determining the SU(3) matrix
V which maximizes Re Tr( V X).

(c) The smearing process is iterated N, times to define
increasingly obese links. In our notation X, =0 refers to
the original unsmeared lattice.

(d) Only spatial links participate in the averaging.
Thus the transfer matrix for the smeared operators
remains unaffected and is positive definite.

(e) One can construct operators of any size and shape
using these smeared links to study different spin-parity
states.

Teper and DeGrand use the scale factor 2 blocking in-
troduced by Swendsen for MCRG studies' as the tem-
plate for smearing. The construction of the fat link is
shown in Fig. 1. The smearing reduces the number of
points in a time slice by the factor 2, so for a given size
lattice the smearing operation can be repeated only a lim-
ited number of times. This is a quick and easy procedure
for making the link "fat" and for getting large loops be-
cause a loop of side L on level iV, corresponds to size

N,L X2 ' on the original lattice. Michael and Teper find
that their best results come from X, =2, i.e., large fat
loops have the best overlap with glueballs. In our runs
using this method, we average over all the 2 blocking
constructions at each level in order to improve the statis-
tics. We refer to this method as b =2 smearing.

The method proposed by the APE Collaboration is il-
lustrated in Fig. 2. Each link on the lattice is replaced by
the average of itself and the sum of the four staples in the
two spatial dimensions transverse to the link direction.
The staples are added with weight e. In contrast with the
method of Teper and Deorand, each individual link is
smeared, so that the number of points on a time slice
remains constant. The lattice made up of these fat links
is operationally identical to the original lattice. The
smearing process is easily iterated, using these fat links to
construct the next level of fat links, etc.

In actual applications the APE group began with the
plaquette, and smeared repeatedly using a small value of
the smearing parameter, e =0.2. This smearing builds up
a fat link with an approximate exp( —ski) behavior in
momentum space, with the length scale in lattice units
given by ~=N, e. With positive-definite correlators, one
expects that at a fixed t the mass estimate m, ~ would first
improve with X„asthe overlap with the lightest glueball
state improves. For X, too large, however, the scale
exceeds the size of the ground-state glueball and m, ~
should increase. This is indeed what the APE group

+ Q Ii o Ii+gt o Cl+ o +

FICx. 1. b =2 smearing for construction of fat links.

FIG. 2. b = 1 smearing for construction of fat links.

finds for @=0.2 there is a minimum in the 0++ mass
at X, =25.

The method we use is an extension of the APE method,
differing in two ways. First, we apply the smearing to
loops of varying sizes. In the present study we use square
loops of size up to 6X6. Given that studies of b =2
smearing find large loops give better signals, it is reason-
able to expect that the same will apply to APE smearing.
This is particularly true for nonzero spin representations,
for which one has to take the difference of smeared loops
oriented in diff'erent directions. If the starting loop is too
small, then, after many smearing steps, the resulting sum
of tangled loops will be almost spherical, and there will
be a large cancellation when one takes differences.

The second change in the method is that we extend the
calculation to larger values of e, using a range of values
between 0.25 and 1.50. For a=1, the calculation is simi-
lar to a blocking transformation. Compared to smearing
with small e, the resulting sum of loops has a sharper
profile and the smearing fattens the loops much more
quickly.

We refer to this method as b = 1 smearing. Whether or
not these extensions of the APE method improve the sig-
nal can only be decided by numerical tests. Our com-
parative study described in the following sections finds
that, for a '=2 GeV, the best glueball signal is obtained
using 5 X 5 loops and @=1,A, =5.

IV. TUNING THE SMEARING PARAMETERS

There are three parameters to be tuned when using the
smearing methods: the smearing weight e; the number of
times that smearing is repeated, 1V, ; and the size and
shape of the Wilson loop operators. We optimize these
parameters by studying the effective mass deduced from
t =0/1 and 1/2. We search for the operator that gives
the smallest m, z, for this has the largest overlap with the
lightest state and less contamination from the heavier
states. This amounts to a discrete search among varia-
tional wave functions. In addition, among the operators
with small m, z, we prefer those with the smallest error in
m ff In general the optimum choices depend on the
quantity being calculated; in fact we find optimal parame-
ters for the string tension and glueball masses to be simi-
lar.

As indicated in Table I, our most extensive tests are for
b=1 smearing on the 15 X24 lattices. The results for
oL, m ++, and m ++ are collected in Tables II(a), II(b),
and II(c), respectively. Table II(a) shows that the opera-
tor overlap improves significantly as N, increases. Look-
ing at the t =0/1 data, we see that for each fixed N, there
appears to be an optimal e. As N, increases, the optimal
e decreases; for N, =6 it is about @=1. The resulting
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TABLE II. (a) Comparison of the string tension as a function of the smearing weight e and the smearing level N, on 15 X24 lat-
tices. Weights v=0. 25, 0.50, 0.75, 1.5 data use the same 6000 configurations. The @=1.25 data uses only the last 3500 of these
configurations. Our estimate is 0L =0.72(4) from time separation 3—5 using the e= 1.0 large statistics (15000 configurations) data.
(b) Comparison of the 0++ glueball mass for the same runs as in (a). The data is for time separation 0—1. Our best estimate is
m ++ =0.78(4) from time separation 2—4. (c) Comparison of the 2++ glueball mass for the same runs as in (a). The data is for time

0

separation 0—1. Our best estimate is m ++ = 1.19(5) from time separation 2 —4.2++

(a)
0.L from time separation 0—1

N,

3
4
5
6

6=0.25

1.523 (10)
1.343(10)
1.226(09)
1.143(09)

6=0.50

1.332(09)
1.190(09)
1.097(09)
1.030(09)

e=0.75

1.266(09)
l.137(09)
1.052{09)
0.991(09)

e= 1.0
1.233(06)
1.109(06)
1.029(06)
0.975(06)

e= 1.25

1.216(08)
1.098(08)
1.025(09)
0.990(10)

v=1.5

1.200(09)
1.088(09)
1.026(10)
1.035(11)

N,

3
4
5

6

6=0.25

1.097(31)
1.051(27)
1.014(25)
0.985(24)

@=0.50
1.047(26)
1.000(24)
0.965(23)
0.938(22)

o.L from time separation

a=0.75

1.024(25)
0.979(24)
0.945(23)
0.919(22)

@=1.0
1.016(14)
0.971(13)
0.939(13)
0.913(13)

@=1.25

0.990(23)
0.950(24)
0.921(25)
0.897(27)

a=1.5

0.995(24)
0.950(23)
0.916(23)
0.887(24)

3
4
5

6

@=0.25

1.57(1)
1.42(1)
1.26(2)
1.18(1)

@=0.50

1.51(3)
1.38(1)
1.35(1)
1.12(3)

(b)
m ++ from 1 X 1 loop

0

@=0.75

3.0(1)
3.8(1)
4.8(3)
6.0(8)

e= 1.0
3.9{1)
4.7(2)
5.1(3)
5.2(3)

@=1.25 @=1.5

N,

3
4
5

6

@=0.25

1.40(1)
1.29(1)
1.21(1)
1.14(1)

@=0.50

1.29(1)
1.18(1)
1.10(1)
1.04(1)

m ++ from 2X2 loop
0

e =0.75

1.24(1)
1.14(1)
1.06(1)
1.00(1)

e= 1.0
1.21(1)
1.10(1)
1.03(1)
0.99(1)

@=1.25

1.20(1)
1.12(1)
1.10(1)
1.33(1)

@=1.5
1.22(1)
1.16(1)
1.34(1)
2.79(4)

N,

3
4
5
6

a=0.25

1.24(1)
1.16(1)
1.10(1)
1.05(1)

@=0.50

1.16(1)
1.08(1)
1.02(1)
0.98(1)

m ++ from 3X3 loop0

@=0.75

1.13(1)
1.05(1)
1.00(1)
0.96(1)

e= 1.0

1.10(1)
1.03(1)
1.00(1)
1.05(1)

e= 1.25

1.10(1)
1.06(1)
1.15(1)
1.80(1)

a=1.5

1.11(1)
1.11(1)
1.52(1)
3.28(8)

N,
3
4
5

6

E=0.25

1.14(1)
1.07(1)
1.01{1)
0.98(1)

a=0.50

1.06(1)
1.00(1)
0.95(1)
0.92(1)

m ++ from 4X4 loop0

@=0.75

1.04(1)
0.98(1)
0.93(1)
0.90(1)

@=1.0
1.01(1)
0.95(1)
0.91(1)
0.88(1)

e= 1.25

1.01(1)
0.96(1)
0.93(1)
0.94(1)

@=1.5
1.01{1)
0.96(1)
0.96(1)
1.27(1)

N,
3

5

6

e =0.25
1.18(2)
1.07(1)
1.00(1)
0.95(1)

a=0.50
1.07(1)
0.98(1)
0.93(1)
0.89(1)

m ++ from 5 X 5 loop
0

a=0.75
1.03(1)
0.95(1)
0.90(1)
0.87(l)

@=1.0
1.00(1)
0.93(1)
0.89(1)
0.86(1)

e= 1.25
1.00(1)
0.93(1)
0.90(1)
0.90(1)

e= 1.5
0.99(1)
0.93(1)
0.91(1)
1.07(1)
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TABLE II. (Continued).

N,
3
4
5
6

6=0.25

1.45(2)
1.25(2)
1.12(2)
1.04(2)

G=O. 50

1.24(2)
1.09(2)
1.00(2)
0.94(2)

(b)

m ++ from
0

6=0.75

1.17(2)
1.04(2)
0.96(2)
0.91(2)

6X6 loop

6= 1.0
1.14(1)
1.01(1)
0.94(1)
0.90(1)

6= 1.25

1.12(2)
1.01(2)
0.94(2)
0.92(2)

6—1.5
1.10(2)
0.99(2)
0.95(2)
1.01(1)

N,
3
4
5

6

N,
3
4
5

6

N,

3
4
5

6

N,
3
4
5

6

6 =0.25

2.06(2)
1.88(2)
1.78(1)
1.68(4)

E =0.25

1.85(1)
1.72(1)
1.63(1)
1.55(1)

6=0.25

1.64(1)
1.55(1)
1.49(1)
1.44(1)

6=0.25

1 ~ 51(1)
1.43(1)
1.38{1)
1.34(1)

6 =0.50

2.04(2)
1.83(1)
1.74(1)
1.79(5)

6=0.50

1.71(1)
1.59(1)
1.50(1)
1.44(1)

6=0.50

1.55(1)
1.47(1)
1.41(1)
1.36(1)

6=0.50

1.43(1)
1.36(1)
1.31(1)
1.28(1)

(~)
m ++ from 1X1 loop

2

6=0.75

3.8(1)
4.3(1)
4.7(2)
5.0(2)

m ++ from 2 X 2 loop
2

6=0.75

1.66(1)
1.55(1)
1.46(1)
1.40(1)

m ++ from 3X3 loop

6=0.75

1.52(1)
1.44(1)
1.38(1)
1.34(1)

m2++ from 4X4 loop
6=0.75

1.40(1)
1.34{1)
1.29(1)
1.26(1)

6= 1.0
5.2(2)
5.7(3)
5.8(4)
5.8(4)

6= 1.0
1.64(1)
1.53(1)
1.46(1)
1.43(1)

6= 1.0

1.50(1)
1.44(1)
1.42(1)
1.52(1)

6=1.0
1.38(1)
1.32(1)
1.28(1)
1.26(1)

6= 1.25

6= 1.25

1.64(1)
1.55(1)
1.55(1)
1.72{1)

6= 1.25

1.49(1)
1.46(1)
1.60(1)
2.26(3)

6= 1.25

1.37(1)
1.32(1)
1.29(1)
1.33(1)

6=1.5

6= 1.5
1.66(1)
1.63(1)
1.81(1)
2.53(2)

6= 1.5

1.51(1)
1.54(1)
2.00(1)
3.36(6)

6=1.5
1.38(1)
1.33(1)
1.35(1)
1.57(1)

N,
3
4
5
6

6=0.25

1.55(1)
1.42(1)
1.35(1)
1.30(1)

6'=0. 50

1.42(1)
1.33(1)
1.27(1)
1.24(1)

m ++ from
2

6=0.75

1.38(1)
1.30(1)
1.25(1)
1.22(1)

5X5 loop

6= 1.0
1.35(1)
1.28(1)
1.24(1)
1.22(1)

6= 1.25

1.34(1)
1.27(1)
1.25(1)
1.27(1)

6=1.5
1.34(1)
1.28(1)
1.28(1)
1.45(1)

3
4
5
6

E=0.25

1.80(1)
1.59(1)
1.46(1)
1.38(1)

6=0.50

1.58(1)
1.43{1)
1.33(1)
1.27(1)

m ++ from 6X6 loop

6=0.75

1.51(1)
1.37(1)
1.29(1)
1.24(1)

6= 1.0
1.47(1)
1.34(1)
1.27(1)
1.23(1)

6 = 1.25

1.45(1)
1.33(1)
1.27(1)
1.27(1)

6=1.5
1.44(1)
1.33(1)
1.30(1)
1.40(1)

operator improves as N, increases, suggesting that the
best operator will have large N, and small e, and thus be
smooth like the operators used by APE. It is costly,
however, to use too large an N„and our results show
that a reasonable alternative i$ to use moderate N, and a
large e.

Similar conclusions follow from our results for glueball
masses [Tables II(b) and II(c)]. Here we can vary the

loop sizes as weH, and we find that 5X5 loops are op-
timal, with 4X4 and 6X6 being almost indistinguishable.
For these loops, and for N, =6 the optimal e is again
close to 1. The signal in the 1X1 loop shows a very
different behavior: it exists only for @=0.25 and 0.5, and
the convergence with N, is slow. This is consistent with
the findings of APE that when using the 1X1 loop as a
template, the best signal with @=0.2 is obtained with
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TABLE III. (a) The o.L data for b =2 smearing with a=1.0 on 12 X24 lattices. The results in the
last column are with a cold wall source, while the rest of the data is without any source. (b) The data
for m '++ for the same runs as in (a). {c)The data for m ++ for the same runs as in (a).

0 2

N, =O

(a)
b =2 smearing: crL on 12 X24 lattices

N, =1 N, =2 N, =2

0—1

1 —2
2—3
3—4
4—5

5—6
6—7
7—8

8—9

3.643{033)
1.039(090)
0.574(218)

1.316(007)
0.848(011)
0.676(023)
0.629(032)
0.664(073)
0.619(130)

0.780(006)
0.700(009)
0.653(015)
0.642(026)
0.617(049)
0.609(089)
0.516(143)

0.744(004)
0.594(007)
0.554(014)
0.571(019)
0.579(030)
0.621(044)
0.642(082)
0.616(173)

(b)
b =2 smearing: m'++ on 12 X24 lattices

0

N, =O N, =1 N, =2 N, =2

0—1 —2
1 —2—3
2—3—4
3—4—5
4—5 —6
5 —6—7
6—7—8

0—1 —2
1 —2 —3
2 —3—4
3—4—5
4—5—6
5 —6—7

0—1 —2
1 —2—3
2 —3 —4
3—4—5

3.03(04)

2.82(03)

2.43(02)
1.68(11)

m'++ using 1X1 loop

1.69(01)
1.44(05)
1.18(13)
1.00(41)

m'++ using 1X2 loop

1.55(01)
1.30{04)
1.07(11)
1.24(35)

m '++ using 2 X 2 loop

1.43(01)
1.13(03)
0.95(09)
1.21(26)

0.98(01)
0.92(02)
0.93(05)
0.93(12)
0.90(25)
0.62(47)

1.04{01)
0.90(02)
0.90(04)
0.88(11)
0.84(21)
0.67(46)

1.64(01)
1.10(04)
1.07{10)
0.96(30)

1.23(01)
0.91(02)
0.68(04)
0.73(06)
0.73(17)
0.97(41)

b =2 smearing:

N, =O

(c)
m ++ on 12 X24 lattices

2

N, =1 N, =2

0—1

1 —2
2 —3
3—4

3.68(04)

)++
m using 1X1 loop

2.15(01)
1.88(06)
1.75(30)

1.39(01}
1.34(01)
1.24(06)
1.44(20)

0—1

1 —2
2 —3
3—4
4—5

m ++ using 1X2 loop (oblate)

3.40(02) 1.94(01)
3.02(55) 1.73(03)

1.46(14)

1.38{01)
1.30(01)
1.20(05)
1.14(13)
0.94(38)
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TABLE III. (Continued).

b =2 smearing:

N, =O

(c)
m ++ on 12 X24 lattices2++

N, =l N, =2

0—1

1 —2
2—3
3—4
4—5

m ++ using 2X1 loop (prolate)

3.40(02) 1.94(01)
3.05(57) 1.70(03)

1.48(15)

1.39(01)
1.29(01)
1.20(06)
1.29(17)
1.55(86)

0—1

1 —2
2—3
3—4

2.93(02)
2.34(19)

m ++ using 2X2 loop

1.74(01)
1.50(02)
1.42(10)
2.02(64)

1.73(01)
1.39(02)
1.21(07)
1.38(27)

-25 smearing steps. '

Runs on 9 X24 and 12 X24 lattices yield similar con-
clusions, so there is little volume dependence in the tun-
ing. Based on these results, and our choice that N, "=6,
we use @=1 for our large statistics runs. The results for
12 X24 and 15 X24 lattices are given in Tables IV and
V, respectively.

Our tests of b =2 smearing have been done on 12 X 24
lattices (see Table I). Partial results are shown in Tables
III(a) —III(c). Looking at the t =0/I results, we see a
marked improvement with increasing N, . For N, =2 (the
largest possible value) we find e= l to be optimal.

V. COMPARISON
WITH THE COLD WALL SOURCE METHOD

The source method is useful because it extends the time
range of the signal. It has, however, two disadvantages.
The first is the need for optimizing the source for each
state of interest, e.g. , the commonly used cold wall source
couples strongly only to the torelon (of energy crL) and
the 0 + glueball. (By modifying the cold wall source so

that links in only two space directions are set to identity
at t =0, one can generate a coupling to the 2++ glueball
as well. ) The more important problem is that correlators
are not positive definite; they can, and often do, approach
the asymptotic result from below. On the contrary, simu-
lations without external sources have the advantages that
(a) diff'erent spin-parity states can be studied using the
same set of lattice configuration, and (b) the correlators
are positive definite so that mass estimates approach their
asymptotic values from above. The disadvantage is that
the signals are noisier.

For b =2 smearing, we have compared the signals ob-
tained with and without a cold wall source on 12 X24
lattices using @=1. The effective masses are given in
Tables III. Figure 3 shows the effective string tension as
a function of time in the two cases. In the absence of a
source the approach to the asymptotic value is from
above as expected. In the presence of a cold wall, the
effective string tension quickly drops below the asymptot-
ic result and then shows a small rise. The signal for the
0++ glueball shown in Fig. 4 appears to have a similar
trend. These graphs show clearly both the advantages

.8 I I
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FICx. 3. Comparison of o.L results with and without a cold
wall source on 12 X24 lattices. The data is for b =2 smearing,
@=1.0 and N, =2.

FIG. 4. Comparison of m '++ results with and without a cold
0

wall source on 12'X 24 lattices. The data is for b =2 smearing,
e = 1.0, N, =2 and 1 X 1 loop.
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and disadvantages of wall sources. The errors at given
fixed t are smaller (this is particularly striking considering
that the wall source calculation uses three times fewer
lattices —see Table I), but the non-uniform convergence
can give rise to misleading interpretations. This undesir-
able behavior negates the advantages of a cold wall
source.

VI. COMPARISON OF b = 1 AND b =2 SMEARING

We can use the high-statistics runs on 12 X24 lattices
to compare the b =1 and b =2 smearing methods with
a=1. The results are given in Tables III and IV. Note
that the two runs have similar statistics, so that in assess-
ing differences one can directly compare the statistical er-
rors. We note the following.

(a) There is good agreement at all time separations be-
tween the b =2 string tension data for X, =2 and the
b =1 data on level X, =4. These correspond to fat Po-
lyakov lines of similar thickness. As discussed above, for
small t the b =1 data shows further convergence with in-
creasing N, . We cannot check this with the b =2
method since %, =2 is the highest smearing level on a
12 X24 lattice.

(b) The b =2 smearing results for m ++ (N, =2 and

1X2 loops) agree very well with the b =1 results for

loops of similar size and thickness (N, 4 and loop size
~ 3 X 3). In both cases the results appear to have reached
their asymptotic values.

(c) Within larger errors, the results for m ++ from the

two smearing methods agree for loops of similar size and
thickness. In this case, however, the numbers do not ap-
pear to be asymptotic.

(d) For the same time separations, the statistical errors
on loops of similar size and thickness are comparable.

Clearly there is little difference between the two smear-
ing methods. This means that the precise way one builds
up the fat loops is not important. The advantage of b =2
smearing is that it takes less computer time to build up a
loop of given size and thicknesses: one requires fewer
smearing steps and the measured loops are smaller (in
blocked lattice units). In the present comparison the
computation time per measurement for b =1 smearing
was about 1.5 times that for b =2. On the other hand,
with a larger number of lattice points, b =1 smearing al-
lows greater flexibility in constructing loops of different
size and shape. Since the b =2 method requires less com-
puter time and memory, the optimal combination may be
a hybrid of the two methods, ' with a few b =2 smearing
steps followed by some b = 1 smearing steps after which
loop correlations are measured.

TABLE IV. (a) The o.L data for b = 1 smearing with e = 1.0 on 12' X 24 lattices as a function of time separation and smearing lev-
el. The statistics is shown as (numbers of bins) X {configuration per bin). (b) The data for m ++ for the same runs as in (a). (c) The

0

data for m ++ for the same runs as in (a).
2

N, =O
23 X 500

N, =2
23 X 500

(a)
b =1 smearing: o.L on 12'X24 lattices

N, =3 N, =4
43 X 500 43 X 500

N, =5
20 X 500

N, =6
20 X 500

0-1
1 —2
2 —3
3—4
4—5

3.752(63)
1.022(53)
0.661(54)

0.999(06)
0.780(09)
0.671(17)
0.627(34)
0.626(64)

0.861(03)
0.734(06)
0.668(11)
0.617(21)
0.584(36)

(b)

0.783(03)
0.706(06)
0.657(10)
0.616(19)
0.584(32)

0.730 (04)
0.680(07)
0.657(13)
0.605(25)
0.570(45)

0.696{04)
0.665(07)
0.649(12)
0.601(24)
0.570(43)

N, =O
23 X 500

N, =2
23 X 500

b =1 smearing: m ++ on 12'X24 lattices
0

N, =3
43 X 500

N, =5
20 X 500

N, =6
20 X 500

0—1

1 —2
2 —3
3—4
4—5

0—1

1 —2
2 —3
3—4
4—5

2.32(02)
1.54(08)
1.59(50)

2.35{02)
1.30(06)
1.71(34)
0.96(97)

1.35(01)
1 ~ 18(02)
0.98(08)
0.78{13)
0.75(31)

1.19(01)
1.08(02)
0.90(06)
0.79(10)
0.82(21)

I ++ using 2X2 loops
0

1.20(00)
1.08(02)
0.95(04)
0.92(09)
0.96(25)

I ++ using 3X3 loops
0

1.09(00)
1.01(01)
0.90(04)
0.90(07)
0.91(18)

1.09(00)
1.01(01)
0.92(04)
0.89(08)
0.90(19)

1.02(00)
0.96(01)
0.88(03)
0.88(07)
0.87(14)

1.03(01)
0.95(02)
0.95(05)
0.96(13)
1.03(38)

0.99(01)
0.91(02)
0.91(05)
0.92(10)
0.92(24)

0.98(01)
0.91(02)
0.93{05)
0.93(12)
0.90(27)

1.06(01)
0.88(02)
0.89{05)
0.90(10)
0.81(17)
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TABLE IV. (Continued).

N, =O
23 X 500

(b)
b =1 smearing: m ++ on 12 X24 lattices

0

N, =2 N, =3 N, =4
23 X 500 43 X 500 43 X 500

N, =5
20 X 500

N, =6
20 X 500

0—1

1 —2
2 —3
3—4
4—5

0—1

1 —2
2 —3
3—4
4—5

0—1

1 —2
2—3
3—4
4—5

3.27(04)
1.00(12)
0.92(33)
0.26(42)

1.09(01)
0.99(02)
0.82(05)
0.82(09)
0.72(16)

m + + using 4 X 4 loops
0

1.00(00)
0.94(01)
0.85{03)
0.88(06)
0.84(13)

m ++ using 5X5 loops

0.99(01)
0.91(02)
0.87(05)
0.92(09)
1.07(25)

m ++ using 6X6 loops0

1.12(01)
0.93(03)
0.87(06)
0.91(09)
1.20(28)

0.94(00)
0.91(01)
0.85(03)
0.87(06)
0.83(11)

0.92(01)
0.88{02)
0.86(05)
0.90(08)
0.98(20)

1.00(01)
0.89(02)
0.85(05)
0.90(08)
1.04(19)

0.90(01)
0.88{02)
0.87(04)
0.89(09)
0.89(19)

0.88(01)
0.86(02)
o.86(os)
0.88(08)
0.91(17)

0.93(01)
0.86(02)
0.84(05)
0.88(07)
0.95(16)

0.87(01)
0.86(02)
0.86(04)
0.87(08)
0.83(16)

0.85(01)
0.85(02)
0.85(05)
0.87(08)
0.86(15)

0.88(01)
0.85(02)
0.83(05)
0.88(07)
0.89(14)

N, =O
23 X 500

(c)

N, =2
23 X 500

b = 1 smearing: m ++ on 12 X 24 lattices

N, =3 N, =4
43 X 500 43 X 500

N, =5
20 X 500

N, =6
20 X 500

0—1

1 —2
2 —3
3 —4

2.89(02)
2.10(17)

1.81(01)
1.66(04)
1.44(19)

m ++ using 2 X 2 loops

1.64(01)
1.54(02)
1.51(11)

1.53(01)
1.46(02)
1.44(08)
1.64(49)

1.46(01)
1.40(02)
1.40(09)
1 ~ 13(35)

1.42(01)
1.35(02)
1.33(08)
1.06(28)

0—1

1 —2
2—3
3—4

0—1

1 —2
2—3
3—4

0—1

1 —2
2 —3
3—4

0—1

1 —2
2—3
3—4

3.00{03)
1.95(22)
1.61(97)

3.91(05)
2.06(43)

1.61(01)
1.53(03)
1.37(15)

1.48(01)
1.41(02)
1.23(09)
1.74(66)

m ++ using
2

1.50(01)
1.45(02)
1.40(08)
1.54(42)

m ++ using
2

1.38(00)
1.36(01)
1.25(06)
1.27(23)

m ++ using
2

1.35(01)
1.27(02)
1.16(07)
0.96(17)

m ++ using
2

1.47(01)
1.25(02)
1.09(07)
1.12(26)

3X3 loops

4X4 loops

5X5 loops

6X6 loops

1.44(0 1. )

1.39(O2)
1.34(07)
1.38(30)

1.32(00)
1.32(01)
1.23(05)
1.20(18)

1.28(01)
1.24(02)
1.15(06)
1.00(16)

1.34(01)
1.22(02)
1.11(06)
1.10(21)

1.42(01)
1.34(02)
1.31(07)
1.07(26)

1.28(01)
1.29{02)
1.21(06)
1.04(19)

1.24(01)
1.22{02)
1.14(06)
1.02(15)

1.27(01)
1.20{02)
1.11(06)
1.09(18)

1.s2(o1)
1.29(02)
1.28(07)
1.00(24)

1.26(01)
1.26(02)
1.19(06)
1.02(17)

1.21(01)
1.21(02)
1.14(06)
1.03(16)

1.23(01)
1.19(02)
1.11(06)
1.09(17)
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VII. RESULTS

In addition to the runs on 12 X24 lattices just de-
scribed, we have long runs on 9 X24 and 15 X24 lattices
using b =1 smearing and a=1. The results from the
largest lattice are given in Tables V.

It is interesting to observe how the dependence of the
signal on N, varies with time separation. The e6'ective

mass should tend to the same asymptotic value for all N„
as contributions from higher states die away. Neverthe-
less, the errors should be larger for small N, because
these operators couple more strongly to ultraviolet Auc-
tuations. These expectations are borne out by our results.
For example, Table V(a) shows that by t =4/5 the results
from all our values for N, agree, but the error increases

TABLE V. (a) The o.L data for b =1 smearing with @=1.0 on 15'X24 lattices as a function of time
separation and smearing level. (b) The data for m ++ for the same runs as in (a). (c) The data for

0
m ++ for the same runs as in (a).

2

N, =3
30X 500

(a)
b = 1 smearing: o L on 15' X 24 lattices

N, =4 N, =5
30 X 500 30X 500

N, =6
30 X 500

0—1

1 —2
2—3
3—4
4—5

1.2333(004)
1.016(011)
0.894(027)
0.762(068)
0.623(106)

1.109(004)
0.971(010)
0.884(023)
0.759(057)
0.659(087)

1.029{004)
0.939(009)
0.873(021)
0.759(051)
0.674(080)

0.975(004)
0.913(008)
0.863(020)
0.761(047)
0.678(077)

N, =3
30 X 500

(b)
b =1 smearing: rn ++ on 15'X24 lattices

0

N, =4 N, =5
30 X 500 30 X 500

N, =6
30X 500

0—1

1 —2
2 —3

3—4
4—5

1.21(01)
1.08(02)
0.88(04)
0.78(08)
0.89(19)

m ++ using 2 X 2 loops

1.10(01)
1.01(01)
0.86(03)
0.78(07)
0.83(15)

1.03(00)
0.97(01)
0.85(03)
0.78(07)
0.80(14)

0.99(00)
0.93(01)
0.84(03)
0.78(06)
0.78(12)

0—1

1 —2
2 —3
3—4
4—5

0—1

1 —2
2—3
3—4
4—5

0—1

1 —2
2—3
3—4
4—5

0—1

1 —2
2—3
3—4
4—5

1.10(01)
1.01(01)
0.86(03)
0.76(07)
0.82(15)

1.01(00)
0.95(01)
0.83(03)
0.75(06)
0.75(12)

1.00(01)
0.91(01)
0.81{03)
0.72(06)
0.69(10)

1.14(01)
0.94(01)
0.82(03)
0.69(06)
0.68{11)

m ++ using 3X3
0

1.03(00)
0.96(01)
0.85(03)
0.76(06)
0.80{13)

m ++ using 4X4

0.95(00)
0.92(01)
0.82(03)
0.75(05)
0.74(11)

m ++ using 5X5
0

0.93(01)
0.89(01)
0.80(02)
0.72(05)
0.71(09)

m ++ using 6X6
0

1.01(01)
0.90(01)
0.81(03)
0.69(05)
0.69(10)

loops

loops

loops

loops

1.00(00)
0.92(01)
0.84(03)
0.76(06)
0.78(12)

0.91(00)
0.89(01)
0.82(02)
0.75(05)
0.74(10)

0.89(01)
0.87(01)
0.80(02)
0.72(05)
0.72(09)

0.94(01)
0.88(01)
0.80(03)
0.70{05)
0.71{09)

1.05(01)
0.89(01)
0.83(03)
0.75(06)
0.77(12)

0.88(00)
0.87(01)
0.81(02)
0.75(05)
0.74{10)

0.86(01)
0.85(01)
0.80{02)
0.72(05)
0.72(09)

0.90(01)
0.86(01)
0.80(02)
0.70(05)
0.72(09)
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TABLE V. (Continued).

N, =3
30X 500

(c)
m ++ on 15'X24 lattices2++

N, =4
30X 500

N, =5
30 X 500

N, =6
30 X 500

0—1

1-2
2—3
3—4

1.64(01)
1.53(04)
1.37(13)
1.34(40)

b =1 smearing: m ++ using 2X2
2

1.53(01)
1.45(03)
1.30(10)
1.27(27)

loops

1.46(01)
1.40(03)
1.26(08)
1.27(24)

1.43(01)
1.36(03)
1.22(07)
1.24(22)

0—1

1 —2
2 —3
3—4

0—1

1 —2
2 —3
3—4

0—1

1 —2
2—3
3—4

1.50(01}
1.44(03)
1.33(10)
1.30(28)

1.38(01)
1.36(03)
1.26(06)
1.30(21)

1.35(01)
1.31(02)
1.20(05)
1.15(17)

m ++ using
2

1.44(01)
1.39(03)
1.29(08)
1.23(22)

m ++ using
2

1.32(01)
1 ~ 33(02)
1.22(06)
1.27(19)

m + + using
2

1.28(01)
1.28(02)
1.19(05)
1.16(16)

3X3 loops

4X4 loops

5X5 loops

1.42(01)
1.35(03)
1.26(07)
1.16(21)

1.28(01)
1.30(02)
1.20(05)
1.25(19)

1.24(00)
1.25(02)
1.18(OS)
1.17(16)

1.52(01)
1.32(03)
1.25(08)
1.07(22)

1.26(01)
1.28(02)
1.19(05)
1.23(19)

1.22(00)
1.24(02)
1.18(05}
1.17(17)

0—1

1 —2
2—3
3—4

1.47(01)
1.32(02)
1.21(06)
0.97(18)

m ++ using 6 X 6 loops
2

1.34(01)
1.28(02)
1.20(05)
1.03(15)

1.27(00)
1.25(02)
1.19(05)
1.08(14)

1.23(00)
1.23(02)
1.18(04)
1.12(14)

as N, decreases. Thus large values of N, are preferred
both because the asymptotic mass is approached more
quickly, and because the errors are smaller. Similar re-
sults are expected for the loop size dependence of glueball
signals: smaller loops should yield effective masses with
larger errors even when they have reached their asymp-
totic value. This is indeed the pattern we see.

We expect the absolute errors in the correlation func-
tions to be independent of t for large t, while the signa1
drops exponentially. Thus the errors in m, z should grow
as exp(mt), where m is the asymptotic mass in the chan-
nel. Our errors are consistent with this expectation.

As discussed above, large loops have the greatest over-
lap with scalar and tensor glueballs. The optimization
analysis at t =0/1 found very little difference between
4X4, 5X5, and 6X6 loops, though 5X5 loops were
shghtly favored. From Tables V(b) and V(c) [and also
IV(b) and IV(c)j, we see that there is no significant
difference between these three loop sizes at longer times.
For b =2 smearing, however, Tables III(b) and III(c)
show that, for N, =2, the signals from 2 X 2 loops are
much poorer than those from 1X2 loops. Thus the fat-
tened 8X8 loop has a smaller overlap with the glueball
than fattened loops of size 4—6, suggesting that the glue-

o~ =o.„—+O(L ),
3L

(7.1)

where Qo is the infinite-volume result. The resulting

balls have a size of -5a. Using v'o =420 MeV to set the
lattice scale, we get 1/a =2 GeV and 5a =0.5 fm. This
rough measure of glueball size finds them to be compara-
ble in extend to other hadrons.

The lack of signal in 1X 1 loop (see Tables IV and V)
suggests that the wave function is small at the origin. A
possible shape for the 0++ glueball consistent with this
behavior is a spherically symmetrized doughnut of chro-
moelectric flux.

The best estimates for masses from all our long runs
are collected in Table VI. Since in many cases the signal
does not persist long enough to demonstrate convergence
to the asymptotic value, we quote results for the two
longest time separations having statistically significant
data.

The results for o. on the smallest lattice are
significantly less than those on the 12 X24 lattices, al-
though consistent within errors with the results from the
largest lattices. The finite-size scaling form suggested by
integration of string fluctuations is'
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TABLE VI. Our best estimates for &o., m ++ and m ++ from the various data samples. We give
0 2++

time separation t, smearing level N„and loop size Sl from which these numbers have been extracted.

Qo„
m

0

m
2

3—4
4—5

4—5

3 —4

2 —3

3—4

9 X24
b =1(@=1.0)

0.206(3)
0.204(4)
N, =6

0.234(4}

0.76(2)

0.74(5)
N, =6

S, =3,4
1.20(7)

1.11(19)
N, =6
SL =4

Best estimates
12'X 24

b =2(e = 1.0)

0.231(4)
0.228(8)
N, =2

0.243(8)

0.90(4)

0.88(11)
N, =2

S, =1X2
1.20(5)

1.22(15)
N, =2

S, =1X2

12' X 24
b =1(@=1.0)

0.224(4)
0.218(7)
N, =5,6

0.234(7)

0.86(4)

0.88(8)
N, =4, 5, 6
SL =4, 5, 6

1.13(6)

1.06(17)
N, =5,6

15 X24
b= 1(e= 1.0)

0.225(7)
0.212(12)

N, =4, 5, 6

0.223(12)

0.81(2)

0.74(5)
N, =4, 5, 6
S, =4, 5

1.19(5)

1.20(18)
N, =5,6
S, =4, 5

m ~~/&o. =3.5(3),

m ~ ~ /m ~ ~ = l. 6( 2 ) .
(7.2)

values of Qo are shown in the table. The shifts bring
the three volumes into reasonable agreement.

The scalar glueball mass shows a perplexing finite-
volurne dependence, the mass first increasing and then
decreasing as the volume gets larger. This is in contrast
with results at EF=6.0 on the Wilson axis, which has a
similar lattice spacing to our lattices. Michael and
Teper find that o. and m ++ are almost unchanged as

the lattice size increases from 10 to 20. We do not have
enough data to check whether the difference is due to sta-
tistical errors and incomplete convergence, or whether
there is a significant difference between the two lattice ac-
tions. Michael and Teper also find that m ++ increases

by -20% from 10 to 16 lattices, while our data for
m ++ is consistent with no finite volume dependence.

Another factor clouding the issue is that, for small lat-
tices, the glueball signal may be contaminated by a
torelon-antitorelon pair. This can happen if 2o.L is less
than the glueball mass, as pointed out by Michael. ' In
our data this crossover occurs at L =9 for the 0++ glue-
ball, and at L =12 for the 2++ glueball. Given this, we
simply use the results from the 15 X24 lattices as our
best estimates:

competitive with only moderate numbers of smearing
steps (X, =5), as long as one uses large values of the
smearing parameter (e'=1) and uses large loops as the
starting template. The use of small value of N, is impor-
tant in order to reduce computer usage.

We find that fat 5 X 5 loops give the best signal for both
0++ and 2++ states at a lattice scale of 1/a =2 GeV.
This implies that the glueballs are of typical hadronic
size, =0.5 fm.

We find that the results obtained using the cold wall
source show a non-uniform convergence as a function of
the time separation. Consequently, if the signal does not
extend far enough, one cannot extract reliable answers.

The iterative smearing procedures discussed here are
easy to implement, but do not give detailed information
about the glueball wave function. A better approach may
be to construct an elaborate smearing procedure that
maps onto the wave function in one step (i.e., including
many more paths of longer length in the smearing step
than those shown in Figs. 1 and 2).

Finally we note that it will be difficult to improve mass
estimates using the variational method, since for time
separation 2/3 and larger the glueball results are insensi-
tive to loop size for loops bigger than 2X2. Thus, even if
we tune the variational operator using time separation
0/1, the mass estimate will not improve for time separa-
tion greater than 1/2.

These results are consistent with those obtained with the
Wilson action. It is encouraging that the results are,
within 10—15% errors, independent of the lattice action
at scale 1/a =2 GeV. The main caveat is that all masses
are of order 1 in lattice units. The only way to check
scaling is to work at weaker coupling.

VIII. CONCLUSIONS

We have introduced and tested a variant of previous
smearing methods. We find that b =1 smearing can be
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