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SU(3)-symmetry breaking and configuration mixing in baryon semileptonic decays
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We discuss small contributions to baryon semileptonic decays which provide corrections to the
simplest SU(3)-symmetric formulas. In particular, we consider (1) SU(3)-symmetry breaking result-

ing from the wave-function deformations due to the s-u, d quark mass difference and (2) the effects of
the configuration mixing of Sst and Ss states, originating from QCD hyperfine interactions. Both
effects are treated in combination with the form-factor suppression effect which is operative if the
three-momentum transfer between the initial and final hadron is nonzero. Our estimates are per-
formed in the framework of the harmonic-oscillator quark model. While the inclusion of the s-u, d
quark mass difference leads to an unacceptable g& /g& ratio for A~pe v semileptonic decay, the
corrections due to configuration mixing do not lead to disagreement with the data. Better measure-
ments of the =~ne v and:- —+ Ae v decays are needed if a choice is to be made between the stan-
dard SU(3)-symmetric parametrization and the pattern of SU(3) breaking resulting from
configuration mixing.

I. INTRODUCTION

One of the early successes of the quark model was its
ability to describe baryon magnetic moments better than
the SU(3) parametrization. ' Since precisely such an
SU(3) parametrization is still used for the description of
baryon semileptonic decays, its validity might and should
be questioned. Although there appears to be no experi-
mental evidence for departures from the exact SU(3)-
symmetric description as yet, the question of the
relevance of the SU(3) parametrization has become even
more important recently. Indeed, at present a lot of at-
tention is being paid to the question of the origin of pro-
ton spin, a problem that is closely connected with the
questions of the applicability and experimental deter-
mination of F and D, " the standard two parameters of the
SU(3) approach to baryon semileptonic decays. Thus, it
is interesting to have some idea as to what level of accu-
racy the determination of F and D parameters might be
considered meaningful and what should be the most im-
portant corrections to the naive SU(3) picture.

In this paper we try to address these questions within
the framework of the potential quark model. We discuss
here two kinds of previously neglected quark-model
effects which invalidate the SU(3) parametrization. One
of these effects consists of SU(3)-symmetry breaking re-
sulting from the wave-function deformations due to the
m, -m„(m„=m„d ) quark mass difference; the other is
configuration mixing. Both are combined with the form-
factor suppression effect (and isospin mixing). We also
estimate nonstatic corrections to the predictions of the
nonrelativistic quark model. To this end, in the case of
wave-function deformation we use Dirac quark spinors as
originally proposed in Ref. 6, while in the case of
configuration mixing we neglect the wave-function defor-
mation effect and estimate all nonstatic corrections sim-

ply by rescaling our predictions so that (g~ /gv)„~ agrees
with experiment. Although the existence of all effects

under consideration should be quite model independent,
the precise values of SU(3)-breaking corrections must de-
pend on the (unknown) details of baryon wave functions.
Thus, this paper should be regarded as an attempt to find
the direction and a rough estimate of the size of such
corrections only. It should also be noted that, at present,
no model can satisfactorily explain the peculiar nonaddi-
tive SU(3)-breaking pattern observed in baryon magnetic
moments. Thus, there is no reason to expect our calcu-
lations of related semileptonic decays to work to a better
than —10% accuracy level.

II. WAVE-FUNCTION DEFORMATION

+oo= exp[ —
—,'(a~ +axe, )],

where

p=(r, —r2)/+2, A, =(r, +r2 —2r3)/&6

are the two relative coordinates

a,'= QM'm„a', =+3J:m,
and for equal-mass quarks 1,2 we have

m =m =m =m
p 1 2

m&=3mm3/(2m +m&) .

(la)

(lb)

(lc)

The existence of the SU(3)-breaking quark mass terms
results in the deformation of baryon wave functions. In
excited strange baryons this deformation leads to an
effect of "kinematic mixing" first proposed by Isgur and
Karl as an explanation of the X-A splitting in the
J =

—,
' sector. Because of the presence of quarks of un-

equal mass, the two oscillators, present in the harmonic-
oscillator quark model of baryons, have difFerent frequen-
cies. For the ground-state baryons the relevant wave
function is

' 3/2
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q'=(mf —m;) [1+(mf —m, )/(2m, )]2, (2)

where m; (mf ) is the mass of the initial (final) baryon.
Thus, to compare models with experimental data we

should evaluate our theoretical formulas at q given in
Eq. (2). Since q depends on the masses of initial and
final baryons we obtain an SU(3)-breaking multiplicative
correction to standard formulas. As seen from Eq. (2)
this SU(3) breaking enters gv in second order only and
thus its effect is not big. Still, it is bigger than it was es-
timated in the bag model by Donoghue and Holstein, '

who evaluated the wave-function-mismatch suppression
factor but neglected the (more important) form-factor
effect altogether. Apart from the form-factor correction,
the axial-vector couplings are additionally suppressed due
to the contribution from the "small" components of
quark Dirac spinors. Within the framework of the
harmonic-oscillator quark-model corrections of this type
were originally considered [in the SU(3)-symmetry case]
by Le Yaouanc, Oliver, Pene, and Raynal. Since the ex-
pressions for small components of Dirac spinors involve
the mass of the quark in question, in reality these (relativ-
istic) corrections are SU(3) breaking as well. Within the
harmonic-oscillator model of baryons with Dirac quark
spinors (as in Ref. 6) it is straightforward to find the ex-
pressions for the vector and axial-vector couplings be-
tween the octet members of the (56,0+) multiplet of

For the S =0 sector we then set m =m3=m„, for the
S = —1 sector m =m„, m 3

=m, and for S = —2 sector
m =m„m3=m„.

Baryon semileptonic decays are characterized by vec-
tor and axial-vector couplings gz and gz. It is straight-
forward to calculate in the quark model the factors which
modify standard SU(6) values of these couplings. Such
factors result from a possible mismatch between the wave
functions of the initial and final baryons (which may
diff'er in the number of strange quarks) as well as the pres-
ence of a factor of exp( —iq r) with q being the three-
momentum transfer from the electron neutrino to the
hadron system (nonvanishing on account of the diff'erence
in masses of the two baryons) and r being the position of
the quark undergoing the weak transition. As a result
both the vector and axial-vector couplings are modified
by a q -dependent form factor which suppresses the two
couplings by a factor of order of exp [

—q /( 6a ) ] (witha:—a for m =m„). The values of the two coupling con-
stants, as used nowadays, are extracted from the data as
the values of the corresponding form factors at four-
momentum transfer equal zero (q =0). This corre-
sponds to a generally nonzero three-momentum transfer

SU(6)XO(3). Assuming that the SU(3)-breaking parame-
ter 5=(m, —m„)/m„ is small we obtain the following
formulas:

g v =g v"'"expl —q'/(6a') ],
gg /gv =(gg /gv)'"'"I:1 —a'/(3m. ')]

X ~n, A~p

(q'=0); (3a)

gv=gv ' 'exp[ —(1—5/6)q /(6a )],
g~/gv=(g„/gv) ' '[1—(1—55/6)a /(3m„)]

(q %0); (3b)

g =g ' 'exp[ —(1—5/6)q /(6a2)],

gg /gv (gw /gv) ' '[1 —(1+5/6)a /(3m„)]

(q =0);

g v =g v exp[1 —(1—5/4)q'/(6a') ],
gw/gv=(gg/gv) ' '[1—(1—35/4)a /(3m„)]

(q %0) . (3d)

In the above formulas the A-X mixing is still unac-
counted for. The physical states A, X are obtained
from A, X by

lA ) =cosOlA)+sin8lX ),
lX„)= —sin9lA)+cosOlX ) .

(4)

Estimates of the mixing angle 0 give sin0=0. 02,
which is the value we use in our numerical evaluation
below. We fix the value of the parameter a /(3m„) by
requiring the (g„/gv)„ratio of Eq. (3a) to fit the ex-
perimental value of 1.258. For m„=330 MeV (and
m, =500 MeV) this amounts to using a=0.29 GeV, a
reasonable value corresponding to Rb, ——0.8 fm. This
value of a is only 10%%uo smaller than the one used by Isgur
and Karl in their description of ground-state baryons. "

With the help of (3) and (4) we can now estimate the
combined effects of quark motion and X -A mixing in the
presence of an SU(3)-breaking mass term. Comparison of
our numerical results with experiment is given in Table I.

From Table I we see that the (g„/gv)~ ratio is not

TABLE I. Ratio of axial-vector-to-vector couplings (g& /gz) for semileptonic decays. The under-
lined entry is a fit to experiment.

Process

n —+pe v
X ~ne v
A~pe v

v
~Ae v

:- ~X e v

SU(6)

1.67
—0.33

1.00
—0.33

0.33
1.67

Model of Sec. II

1.25
—0.28

0.84
—0.24

0.29
1.38

Experiment

1.25
+ (0.36+0.04)

0.696+0.025

0.25-+ 0.05
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modified by effects under consideration in a satisfactory
way. The quark-motion-induced suppression of this ratio
is significantly smaller than in the n ~pe v case.
Indeed, for (heavier) strange quarks, the relativistic
corrections must be smaller as can be also seen from Eq.
(3b) for 5 ~ 0. Thus, the mass-term-induced SU(3)-
breaking effect works here in the wrong direction. Below
we shall therefore turn our attention to the second of the
discussed effects.

III. CONFIGURATION MIXING

It has been argued' that many violations of SU(6)
selection rules have their origin in configuration mixing
in the ground-state baryon wave functions. This
configuration mixing is a consequence of color hyperfine

interactions. In the framework of the harmonic-
oscillator quark model it was originally discussed by
Isgur and Karl. "' The same authors discussed later its
effect on baryon magnetic moments. '" In this section we
shall be concerned with the effects of configuration mix-
ing on vector and axial-vector couplings of ground-state
baryons.

We consider mixing between N, A, X, :- states of the
(8s', 56,0+), (8z ,'56', 0+) and (1M, 8M, 10M', 70,0+) multi-
plets of the symmetric quark model. We neglect D-wave
impurities, which are also induced by color hyperfine in-
teractions, because calculations indicate they are very
small. ' We shall not give here any details of our calcula-
tions since they proceed exactly along the lines of Ref. 11.
All our sign conventions are in agreement with Refs. 11
and 13. We obtain the following decompositions of
ground-state baryons:

IN & =cosg(cos8+ IN+ &+sinO„INs & )+sing&INM &,

IA& =cosg~[cosg~(coso~IAs &+sinO~IAs & )+sinP~IAM & ]+sin(()~IAM &,

IX& =cosPz [cospx(cos8zIXs &+sin6zIXs &)+sinpzIXM &]+sing@ IXM &,

I:- & =cosp-' [cosP-(cos6)-I:-s &+sin8-:-s & )+sin(t -:-M & ]+sing-' I:-M &,

(5)

where the mixing angles are computed to be

sinO

—0.25
—0.24—0.19
—0.19

sin(t

—0.22
—0.16—0.12—0.13

sing'

0.05

sing'

0.0—0.02

(6)

We have performed our estimates independently of
those of Ref. 14. Our angles are systematically smaller by
=20% from those given there but the overall patterns of
mixing found in Ref. 14 and in this paper are in full
agreement. The actual values of mixing angles must de-
pend on several decisions concerning the treatment of re-
sults of Ref. 13, i.e., the way these results are tailored to
our needs (omission of D wave impurities-, etc.) and the

choice of the strength of hyperfine interactions (see also
Ref. 11). Thus, we consider the agreement of our esti-
mates and those of Ref. 11 satisfactory. The discrepan-
cies show the extent to which numerical results of such
calculations may be trusted.

Calculation of the values of vector and axial-vector
couplings between the states of Eq. (5) is briefiy sketched
in the Appendix. The presence of the factor exp( —iq r)
with (in general) nonzero three-momentum transfer q re-
sults in nonvanishing of the (interference) cross terms be-
tween Bz, Bz, and BM. Because of the smallness of
sing' for X and:- ground states we have neglected the
contribution of these admixtures in our numerical results.
On the other hand, we kept the contribution from the ad-
mixture of (1M, 70,0+) to the ground-state A particle.
Using then the compositions of Eqs. (5) and (6) and carry-
ing out the calculations sketched in the Appendix we ob-
tain the results gathered in Table II.

TABLE II. Configuration-mixing-induced factors modifying the SU(6) values of g„and g v.

[g~ v=(g„~) "' 'X(modifying factor). ]

Process gv
SU(6)

gv
Modifying factors

nappe v
X ~Ae v

A —+pe v
—+Ae v
~X'e v

1

0
—1

—&3/2
—&3/2
—1/&2

5/3
&2/3

1/3
—&3/2

—5/(3&2)

1.0
—0.08Bg~'

0.99 A g„+0.29B~„
0.997 A pp +0.08B~p
0.987 A =~ +0.22B=~

A =~+0.023B=~

0.96
0.95 A g~ +0. 17Bg~
0.95 A ~„+0.32B~„
0.94A ~p +0.15B~p

0.987 A =A +0.075B=~
0.987A =~+0.125B=q

'Term to be added to gv"' '=0.
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TABLE III. Ratios of axial-vector-to-vector couplings g&/g& modified by configuration mixing.
The underlined entry constitutes a fit to the experimental number.

Process

n ~pe v

X ~ne v

(g /g )SU(6)

5/3
—1/3

1/3

5/3

g~ /sv
modified

1.60
—0.32

0.93

0.35

1.70

+ relativistic
effects

1.258
—0.25

0.73

0.28

1.34

Experiment

1.258 +0.004
+ (0.36+0.04)

0.696+0.025

0.25+ 0.05

SU(3)
param.

F —D
DF+—
3
D
3

F+D

In Table II we introduced

A =exp[ —q„/(6a )],
B„=—q„/(6a )exp[ —q„/(6a )],

where q„ is the momentum corresponding to the process
x in question. No X -A mixing was yet considered in the
evaluation of entries of Table II. Estimating the effect of
X -A mixing and using a =0.29 GeV, the predictions for
(g~ /gv) modified by configuration mixing are easily ob-
tainable from Table II. They are collected in column 3 of
Table III.

We have included relativistic effects on all static results
by simply multiplying entries of column 3 with the ratio
1.258/1. 60 appropriate to neutron P decay (see Ref. 5).
These corrected ratios are given in column 4. It can be
seen from Table III that (g„/gi, )~ ~ is quite acceptable
here. The overall agreement with experiment is reason-
able. At the same time attempts to describe numbers
given in column 4 with the standard F and D SU(3) pa-
rameters (as in the last column) fail: obviously
configuration mixing does not yield to an SU(3)-invariant
description. The values of F and D parameters extracted
from columns 4 and 6 of Table III are meaningful only to
about 10—15% accuracy level. This strengthens our
doubts on the unconcerned use of the SU(3) parametriza-
tion and highlights the importance of an accurate experi-
mental determination of the axial-vector-to-vector ratios
in semileptonic decays.
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APPENDIX

The wave functions of the states of the symmetric
quark model are taken from Appendix B of Ref. 13.
Thus, e.g.,

~8s) —= ~8;56,0+) = —(y~P~+g P )$00,
2

~8, & -=~8;56', 0 &
= —(X~~~+X'~')~0'0, (Al)+=1

2

~
8 )

~

8.70 0+ ) ( PyP i,yi. )yk
3/2 3/2

1
l 00

5

p A exp[ —a (p +A, )/2],
5

(p +A,
—3a )exp[ —a (p +A, ) /2] .

[In our estimates of the effects due to configuration mix-
ing, we neglect SU(3) breaking in spatial wave functions
and thus we use a single a parameter. ]

Calculation of the values of vector and axial-vector
couplings between the states of Eq. (5) requires the com-
putation of the spin-Aavor and spatial matrix elements
separately. Because of the symmetry of the wave func-
tions it suffices to consider contributions from the third
quark only. The evaluation of the spin-flavor part is
straightforward: we evaluate the matrix elements of
0 3Rd ( ) ( 0 0A d ( ) ) acting on the third quark in
between the spin-fiavor wave functions as in (Al). The
sPatial wave functions $00, @00, $00, and $00 are orthogo-
nal. Thus, if the factor exp( —iq r3) were equal to 1 (as it
happens for q=0) the interference terms between (say)
XM and Xz would vanish. In general, however, because
of SU(3) breaking exhibited by Eq. (2), the value of three-
momentum q is significantly different from zero. Conse-
quently, the interference terms do appear. Calculating
the spatial parts of the matrix elements we obtain the di-
agonal overlaps,

Ioo—= 00 ooexp —iq. r& = A,

Io.o. —— 00 Ooexp —iq r& = 2 ——', B,

I =— 00 Ooexp
—iq. r& = 2 ——', B,

Igg: 00 Ooexp
—iq r~ = 3 ——', B

where g and y~ are spin-wave functions, respectively,
symmetric and antisymmetric under the interchange of
the first two quarks, P (P~) are the fiavor wave functions
of similar symmetry properties (for more details, see Ap-
pendix B of Ref. 13), $00 is given in Eq. (1) and itoo, +00,
and $00 are spatial wave functions for (N =2) excited
states:

5

(p —
A, )exp[ —a (p +A, )/2],3/2

+ ~- (&'0"+X'0')Woov'2 and the off-diagonal overlaps, (A3)
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1
Ipp =— pp ppexp —iq r3 = — —B,

3

1Ipg: pp ppexp —i q r3 B
3

Ip g
=

pp ppexp —iq. r3 =
3
B

I =I ~ =I g=0pp

where

A:—exp[ —q /(6a )],
B —=q /(6a )exp[ —q /(6a )]

and we have neglected terms of order [q /
(6a )] exp[ —q /(6a )] since q /(6a ) is of order 0.05 at
most.

Using the compositions of Eq. (5) and combining spin-
Aavor matrix elements with the spatial overlaps given
above, one obtains results presented in Table II.
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