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Large CP-violation effects can occur for time-evolved B decays into definite CP eigenstates. The
rates into these unique CP eigenmodes are tiny. This article advocates the use of many additional
modes that are not CP eigenstates because of mixtures of angular momenta. Naively, for those
modes a partial and sometimes large cancellation of the CP asymmetry occurs. However, a detailed

study of their angular correlations enables the projection onto definite CP eigenstates, and thus re-

covers the full CP asymmetry.

I. INTRODUCTION

The focus of the study of CP violation in neutral-B de-
cays' is considerably broadened if we study modes where
different partial waves contribute with different CP pari-
ties. Many such modes exit, for example, those where
the B decays to two particles with spin, such as gK' or
D*+D* . The asymmetry in the total rate from such a
channel suffers from a partial cancellation or dilution of
the asymmetry from the two different CP contributions.
Hence such modes require an angular analysis of the de-
cays of the spinning particles to separate out definite CP
contributions and thus obtain asymmetry measurements
that probe the basic standard-model predictions. Of
course, if nature is kind and a single CP channel dom-
inates the decay, then the CP asymmetry may be approxi-
mately measured without any angular analysis. However
in these cases an angular analysis can be performed
without any loss in statistical accuracy and without any
error from the small opposite CP contribution to yield a
more precise measurement of the CP asymmetry.

The particle content of all the modes discussed here is
such that one can construct CP eigenstates from a super-
position of helicity states, without invoking a different
particle content. Thus, for example, the modes QKstr
and D*+D' are considered here, but not modes such as
D *+p . This article presents several different ap-
proaches to the angular analysis. All are based on stan-
dard helicity formalism. ' The merits of the various
approaches depend on a number of factors, many of
which are not yet known, such as the relative strengths of
the different helicity amplitudes. By the time sufficient
data are accumulated to attempt any of these analyses, a
great deal more will be known about these factors. For
any given channel, the preferred method will be clear.
We present here four approaches and briefly discuss the
merits of each.

The first approach analyzes events in terms of a quanti-
ty we call transversity, which characterizes the spin pro-
jections of a three-body intermediate state in a direction
transverse to the plane of the three-body system. This

approach requires the minimum amount of angular
analysis to arrive at definite CP quantities. %"e show
that, in certain cases, moments of the data with respect to
a single polar angle can achieve the required separation.
This method has the advantage that it allows us to sum
resonant and nonresonant contributions to certain final
states, whereas the more detailed angular analysis re-
quires reconstruction of a specific two-body parent sys-
tern for the three-body state. For another simple method
applicable for some modes, see Ref. 4.

The second method uses a more complete angular
analysis and forms all possible independent angular mo-
ments of the data. This allows the study of additional
channels not amenable to the transversity treatment.
Like the transversity moment analysis it has the advan-
tage that it allows asymmetries to be extracted without
a priori knowledge of the relative strengths of the
different helicity contributions. In both cases this can be
done by combining results from both B and B decays.

The remaining two methods use a maximum-likelihood
fit to the angular structure of the CP-violating decay and
to a set of isospin-related channels that are not influenced
by CP-violating effects. This can be done either using
only the transversity polar-angle distributions or using
the full angular distributions. For a transversity analysis
of this type, one needs to know the relative strengths of
the contributions for each possible absolute value of the
transversity. This can frequently be determined from
isospin-related channels. " For the full angular analysis,
one needs to determine the full set of helicity amplitudes
and their relative strong-interaction phases. Again data
from isospin-related channels may make this possible.
This method will provide the most accurate measure of
the asyrnrnetry for those modes where sufficient data is
available to determine all the necessary quantities well.

The plan of this report is as follows. In Sec. II we in-
troduce some general notation and review the dilution of
asyrnrnetry that occurs when two different CP channels
contribute to a given final state. Section III presents a
discussion of transversity analysis. Section IV reviews
the many channels for which it can be used, and Sec. V
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presents as an example the transversity analysis for the
case of two spin-one particles. Results from more com-
plete angular analyses are discussed in Sec. VI. Section
VII reviews the accuracy of the asymmetry measure-
ments obtained by each of the methods and discusses the
relative advantage of maximum-likelihood methods com-
pared to moment analyses. Section VIII contains some
concluding observations. Appendix A contains a proof
that transversity is a projector for definite CP, Appendix
B contains the details of the full angular analysis and
time dependences, and Appendix C presents a summary
of an analysis of the sensitivity of results to various mea-
surement errors.

II. PRELIMINARIES —DILUTION
OF CP VIOLATION

This section introduces some notation and discusses
the dilution in the CP-violating asymmetry when the final
state is a mixture of different angular momenta which
contribute with different parity and hence different CP.
One can most readily treat these processes using the heli-
city formalism, which gives a correct relativistic analysis
of the angular momentum in the decay process. This is a
well-established formalism which provides the basis for
analysis of angular structure in the subsequent decays of
the two spinning particles. ' '

We begin by discussing the results obtained for such
processes without any angular analysis. We show that
the asymmetries thus measured depend on the ratio of
CP-even to CP-odd contributions and are diluted, that is,
reduced in magnitude, relative to the asymmetry of a
pure CP state. We denote a time evolved, initially pure
8 as 8 phy Any rate difference between the process
B h„,~f and the CP-conjugated process B ~&„,~f sig-
nals CP violation. The rate difference comes about be-
cause the processes have each two interfering contribu-
tions to each partial wave or helicity amplitude, see Fig.
1. The CP-violating interference term is denoted by Imk, .
The rate of B to f is

I (B h„, f)=I+(1+a)+I (1—a)

and for the B to f is

I (B h„, f ) = I +(1—a)+ I (1+a) .

The CP-even and CP-odd rates are parametrized by the
widths I + and I, respectively. The parameter a is pro-
portional to Imk, , and would be the asymmetry if the CP-
even state dominated. The rates of Eqs. (1) and (2) could
be time dependent or time integrated. In the former
case'

a = —Iml, sin(hmt ),
and I + and I contain a factor e ', where I is the
width of the 8 .' In this case the analysis of angular dis-
tributions must be made for each time bin separately.
since the asymmetry is different at diff'erent times. Be-
cause the angular dependence and the time dependence
factorize this introduces no particular complication for
the extraction of the CP asymmetry from the angular in-
formation; the method is the same for every time-bin data

0
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B

FIG. 1. Schematic representation of two paths (a) from 8 to
the final state f, direct or via mixing to the B followed by de-

cay, and (b) from B to the final state f, the CP conjugate of f,
via direct decay or via mixing to B followed by decay.

set. For an experiment which measures a time-integrated
asymmetry, the prediction is

—x Imk,

1+x (4)

where x:—Am /I, and I + denote time-integrated quanti-
ties.

The measured asymmetry is

III. TRANSVERSE PROJECTION
AS AN ANALYZER OF CP PARITIES

Consider the decay of a spinless neutral particle 8
into unstable particles A and C. (We require A and C to
be unstable so that spin information can be learned from
their subsequent decay. ) All the subsequent discussion
holds equally for decays of any neutral spin-zero particle,
in particular for B, and D which we will discuss later.
Let the particles A and C have spins s„s„helicities
A,„A,, and intrinsic (refiection) parities ir„ir„respective-
ly. We consider cases where C is seen in a two-body
mode C —+C, C2, with spins s, and sz..

8 AC

:C)C2 '

A simple example to keep in mind is the case A =P,
C —SC' C —Z C —~'

Let us define the transverse axis as the normal to the
plane containing the threee particles AC, C2 in either the
B or C rest frame (or in the A rest frame where the
plane is defined by the particles Ci and Cz). The CP
parity eigenstates of the mode AC, C2 can be classified by
the spin projection of the particles along this transverse
axis, which we call the transversity. The state of
transversity ~; of each particle is defined as that linear
combination of helicity states which represents a spin
component ~; along the transverse axis in the rest frame
of particle i. This definition is invariant with respect to
boosts between the C rest frame, in which we analyze C

I (B „„, f)—I (B „, f) I —I

1(Bo„„, f)+I (B „„, f) I +I
The last factor gives a dilution when the final state f is an
admixture of CP-even and CP-odd parities. Presently no
information exists on the ratio I +/I and large dilu-
tions could occur. Study of angular distributions allows
us to avoid such dilutions regardless of the I +/I ratio.
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decay, and the particle's own rest frame, which will be
used to analyze its decay.

In Appendix A we prove, using the helicity formalism,
that projection onto states of definite transversity
7 —7 +7 i+72 projects out quantities of definite CP. The
following argument gives a more intuitive understanding
of this result. First consider three particles moving in a
plane, and let the y axis be chosen transverse to the plane.
A reAection about that plane can be written as a product
of a space inversion P and a 180 rotation about the trans-
verse axis:

ivrJ
R =—Pe ~ =P e'"P= int (7)

where P;„, denotes the total intrinsic parity of the three-
particle system, J denotes the projection of the total an-
gular momentum of the three-particle state on the y axis
and ~ denotes sum of the transversities of the three parti-
cles. ' The three-body state can be viewed as a product
of three one-body plane-wave states, the reflection acts
independently on each particle.

The operator R has been used extensively in applying
the consequences of space-time symmetries to four-point
functions, i.e., processes characterized by three indepen-
dent momenta. ' In the relativistic group-theoretical
description, the operator R is seen to be the generator of
the "coplanar little group"; i.e., the subgroup of the inho-
mogeneous Lorentz group which leaves three momenta
invariant. '

To evaluate the action of the reAection operation on
any one particle, we can use the fact that reAection com-
mutes with boosts in the plane. We thus go to the rest
frame of the particle under consideration. In that frame
one readily sees from the definition of the reAection
operator that its eigenvalue for the particle j is the prod-

' 777
uct of intrinsic parity times e, where ~ is defined as
the spin projection along the transverse axis. Equation
(7) simply combines the result of each of the three parti-
cles to give the eigenvalue for a three-particle state of
definite transversity.

In decays like Bd~J/QKsvr and Bd~rkKsvr, each
of the three particles in the final state has a definite in-
trinsic CP. For such cases one can define the operation of
the product of charge conjugation and the reAection in
the plane:

Rcp—=CR~—= CPe '=CP=(CP);„,e' ', (8)

where (CP);„, denotes the product of the intrinsic CP of
three particles. The first equality of Eq. (8) is true since
the initial state has spin zero; hence, the final state must
also have spin zero and be invariant under rotations in
the center-of-mass system, and the second equality fol-
lows from Eq. (7).

Thus, for example, any J=0 state of the type
~(cc )Ks~,' J =0) in which the (cc) has a definite intrin-
sic CP and is in an eigenstate of transversity ~ can be
shown to be a CP eigenstate with CP parity given by the
relation
CP~(cc)K&vr; J=O) =Re&~(cc)K&~;J=O)

CP =g( —1)' . (10)

Examples for each class of decay defined in Table I are
shown in Tables II—IV. Whenever decays of the spinning
particles allow projection of the magnitude of the trans-
verse spin, the data can be separated into definite-CP
classes. The errors on the various transversity projec-
tions are correlated, so care must be taken when combin-
ing results.

For class 1, the CP does not depend on the spin of par-
ticle C. Thus it is not necessary to determine that C, C2
arise from the decay of a well-defined particle C. Hence,

TABLE I. The CP parity for the mode AC& C2 with transver-
sity ~. The first column defines possible classes. The symbol
X~X denotes that particle X is either a CP eigenstate or is ob-
served via its decay into a CP eigenstate. q(X) denotes the in-
trinsic CP parity of particle X.

Class

(&)

C, + C, C~~C2

Example of AC, Cz CP parity—:g( —1)'

g( A)g(C, )g(C )( —1)'

(2) A~A C~C D* (m+~ )
S +1

Cl =C2
~c, =Sc,=O

Relation (8) applies to any three-body system with a
well-defined intrinsic CP for each particle. It also applies
if particle A does not have definite intrinsic CP but de-
cays to a state of definite CP, for example, D —+m+m
In this case we define the intrinsic CP of particle 3 to be
the CP of its decay channel. This allows a considerable
extension of the class of channels that can be used for CP
analysis. Modes such as g,Ezm. , with three spinless par-
ticles have ~=0 and the CP is the intrinsic CP of the
three particles. For the final state J/QKsvr, for which
the intrinsic CP is odd, the total CP is odd if ~ is zero and
even if ~ is +1. Note also that similar results apply also
to all radial excitations of the charmonium states.

For each of the three particles, the polar angular distri-
bution of its decay with respect to the transverse axis can
be used to separate contributions for each r; ~, integrated
over all other decay angles. From each set of ~~,. ~

one can
then extract a measurement of the undiluted asymmetry.
These measurements can be combined to give an im-
proved value but their errors are highly correlated and
must be treated correctly, as is discussed in Sec. VII.

When particles Ci and C2 are spinless, two further
classes of decays can be analyzed using transversity.
Table I summarizes the situation, similar results for the
full angular analysis have been tabulated by Dell'Aquila
and Nelson. The first column of Table I defines the
classes of decays of a spinless neutral particle that can be
analyzed for CP asymmetries using transversity projec-
tions. For each class, Table I defines the quantity g such
that the CP is given by

= (CP);„,( —I )'i(cc )K ~;J=0) .
(9)

(3) DQ+Dg— S +7
(
—&)'
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TABLE II. Examples of Bd modes, which are mixtures of CP eigenstates, that can be studied with an angular analysis. Here fD
denotes any CP eigenmode of D and (C& C2)c denotes particles CI and C2 coming from a parent particle C.

Quark subprocess

b aces

b ~cud

b ~ccd

Class 1

ttKs~', q"Its~'

Ci)'J7 fD,p 77 fD

~~fD~p p fD
COACT f g, p 7T f

leap CO

0 0

Class 2

(Ksm ) ~(DD)g-

f e(vr n ) o
P

t((m+~ ) o

Class 3 Full angular analysis

t('(pits )g,

~(yfD)
&i()'fD), *

(yD) (yD)-

a&

b~uud COCOP, COP TT

COC07T, &COCO

CO(m. +~ 0) 0

a, (n+m )

p p

pp a+a &,a&a
&

cuba, , Ah

in this class of decays, the resonant and nonresonant pro-
duction of C&C2 can be combined in the data sample,
since all events of a given ~ contribute with the same CP.
This may allow the transversity analysis for such a chan-
nel in cases where the full angular analysis cannot be reli-
ably used because of wrong spin backgrounds. This will
probably be the most useful application of transversity
analysis. In class I the particles C& and C2 may have any
integer spin as long as their subsequent decay allows
reconstruction of their transversity.

In class 2, C, C2 must have a well-measured total spin
(modulo 2), but not necessarily a unique parent particle
C. In this situation the helicities of particles C, and C2
are interchanged as well as sign reversed under CP.
Hence we must require that particles C, and Cz have
spin zero in order to form definite-CP quantities using
transversity projections.

For class 3, particle C must be identified as the antipar-
ticle of A, and again the transversity analysis can only be
applied when both C, and C2 have spin zero.

One last comment on Table I. Whereas X~X
demands that X is seen in a CP eigenmode, Y=X puts no
constraints on the decay products of either X or K For
example, class 3 allows any decay mode for particle 3
provided it allows transversity projections to be made,
and requires only that C decay to two spinless particles.

by the many modes given in Table II. This table is not
exhaustive, the reader will see obvious extension of the
list presented here.

In the standard model with three generations of
quarks, we can study the three angles of the unitarity tri-
angle, see Fig. 2. Modes of Bd driven by the quark sub-
processes

b —+s+qq, c+cs, c+cd, c+ud

are all governed by sin(2P). The b~s transition via a
penguin is denoted by b~s+qq. The interference term
is sin(2a) for processes governed by the b~u+ud quark
subprocess. Again several modes can be analyzed. How-
ever, for this quark subprocess, because only light quarks
occur in the final state, there may be competing contribu-
tions from penguin amplitudes which have similar
Cabibbo-Kobayashi-Maskawa (CKM) strength but
different CKM phases. ' These must be considered in as-
sessing the standard-model prediction.

Some further comments on the processes listed in
Table II follow.

For the class-1 process, it is irrelevant whether the
K~m arises from K* or nonresonant production, as dis-
cussed above. In fact, for any three-body mode of class 1,

IV. SOME MODES WHICH CAN BEANALYZED
USING TRANSVERSITY

Equipped with Table I and its interpretation, we can
increase the number of modes that can be used for CP-
violation studies, without dependence on any specific
model. The particle content of all the modes discussed
here is such that one can construct CP eigenstates from a
superposition of helicity states, without invoking a
different particle content. Thus, for example, the modes
PKsn and D D* are considered here, but not modes
such as D *

p . The pure CP eigenmodes of Bd, such as
QICs, D+D, D p, and D vr, ' can now be augmented

Ks

Bs =PKS

FICx. 2. The unitarity triangle for the three-generation stan-
dard model, showing the definitions of the angles a, P, and y
and some processes that could be used to measure each angle.
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TABLE III. Examples of B, modes which are admixtures of CP eigenstates that can be studied with an angular analysis. Here

f ~o (fD) denotes any CP eigenmode of D (D ).

Quark subprocess

b ~ccs, s

Class 1 Class 2

t((K K )~, f"P, . . .

Class 3 Full angular analysis

b ~cud
b ~ccd

b ~uud

f 0077 Ks

Wrr'Ks q"~'Ks

s p'~'Xs, a 1
~'Ks

s ~po&s

(1'fD ) eo(p Ks ~tc,

4(p'Ks)»,

~(p +s )~,p E ),a]E].. .

AC] C2 there is no need to find a pseudo-two-body mode
AC. The C, C2 could come from nonresonant as well as
resonant production.

For class 2, the D* of the mode D* p must be seen in
a CP eigenmode. Either of two decay chains qualify:

D Ilco yf D IL0 ~of

where fD denotes any CP eigenstate produced from D
decay. Both processes occur through L =1, because of
parity conservation. Note however that it is important in
such cases to be able to distinguish between the photon
and the ~ as these have opposite intrinsic CP, and hence
give opposite CP contributions for the same transversity.

In the class-3 processes D*+D*,D * D' the D "s
can be studied in all decay modes. We do not require the
neutral D, which could arise in the decays D ~~D or
D ~yD, to decay to a CP eigenmode. However, we do
need at least one of the D*'s to decay to two spin-zero
particles (usually rrD).

The final column of Table II lists a few of the many ad-
ditional modes that can be analyzed using full angular
analysis, which we will discuss in Sec. VI. The modes
listed here are not accessible via transversity analysis
alone. In contrast, any quasi-two-body mode that can be
analyzed using transversity can also be treated by the
more complete angular analysis which we will discuss
later.

Table III presents a similar list for the decays of the
B, . For all modes of B, of the type studied here that are
driven by the quark subprocesses of Eq. (11), the CP
asymmetries are predicted to be tiny in the standard
model. In contrast modes mediated by the b~uud sub-
processes have a CP asymmetry proportional to sin(2y)
which could be large. Any modes of type X Y Kz or
X Y (Ksrr ) ~ belong to class 1 of Table I and can be
used to study CP-violating asymmetries. Here X Y is
any pair of light neutral mesons of zero total strangeness

which decay in such a way that transversity can be recon-
structed. The transversity analysis thus also can consid-
erably enrich the possibilities for a measurement of
sin(2y ). However, here again the contributions of
penguin amplitudes may complicate the theoretical pre-
dictions.

Consider now B decays which are driven by b ~cud
and produce a neutral D. Such modes can be used for
CP-violation studies when this neutral D decays into a CP
eigenstate. ' It is therefore advantageous to increase the
data sample for D decays into CP eigenstates. Hence in
Table IV we list modes that can be analyzed by applying
the same type of transversity analysis to the D decay it-
self. This may in turn allow significant increase in the
analyzable data sample of B decays. The Mark III Colla-
boration has already determined that the D —+p E' is
dominated by the s and d waves. That means that this
mode is dominated by a single CP when the K decays to
Kzm, and hence this mode can be readily treated with
this analysis without significant loss of statistical accura-
cy compared to a pure CP channel.

V. EXTRACTION OF DEFINITE CP QUANTITIES
FROM TRANSVERSITY

We now turn to the transversity analysis which we
present for the case of spin one for particle A. For
higher spins the method is similar; the separation of each

~
r

~
can always be made from the polar-angle distribution

about the transversity axis. If particles C& or C2 have
spin, a similar analysis is needed also for their decays.

To analyze the decay of 2, we go to the 3 rest frame.
In Table V we present the results. The first column
defines two readily analyzed groups of possible decays.
Group (a) includes all decays of a spin-1 particle to two
spinless particles and also decays of a vector particle to
three pseudoscalar ones. Group (b) includes the decay of
an axial-vector particle to three pseudoscalars, the decay

TABLE IV. D Modes which are admixtures of CP eigenstates that can be studied with an angular analysis.

Class 1

con' K,p m K

p(Ks~) 0

Class 2

P(~+rr ) o,p (K+K )p, co(K+K )p

Class 3

~+0~ QO ~Q —~++ +
~p

pp

Full angular analysis
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TABLE V. Angular structure as a function of the polar angle
about the transverse axis.

Group

(a) 1 0+0
or

1 —+3(0 )

(b) 1+ 3(0 )

or
1 —+@+0

or
1+1

Example

D —+ m.D

CO ~7T 7? 7T

f, ~qvr~

D otic

+~e e+

r, (0)

—sin 0

8(1 +cos 0)

rp(0)

2
cos'0

—sin 0

of any spin-1 particle to a photon plus a spinless particle,
and the decay of a spin-one particle to a pair of
negligible-mass spin- —, particles via a vector or axial-
vector coupling. The second column presents examples
for decays of particle A. (We implicitly assume that this
decay proceeds through parity-conserving interactions).
Columns 3 and 4 present the angular distributions for
each

~
r~, r, (0), normalized so that

f d cosHr, (0)=1 . (12)—1

Here 0 is an angle that describes the angular distribution
of the decaying particle 3, in the rest frame of A, relative
to the transverse axis. When 2 decays into two particles,
the angle 0 is the polar angle for one of the particles.
When 3 decays to three spinless particles, the angle 0 is
the polar angle of the normal to the plane containing the
three decay products. In all cases all other decay angles
have been integrated out.

Using the angular distributions r, (0) one can then
define the quantities

The state
~fe ) means the state CP

~fe ). Hence in Eq.
(18) the quantity 0 is sometimes vr —0 and sometimes 0
depending on the particle content of the state. Since the
angular dependence is such that r, (rr 0)—=r, (0) this in-
troduces no complication in the analysis. Thus we can
extract

and

Mo = f d cosH I (0)=I +(1—a)+ I (1+a)—1

1

M2 =— d cos0P2 cos0 I 0—1

= I +(1—a)co++I ( I+a)n

(19)

(20)

The moments Mp Mp M2 M2 derived from both the
B and B data samples, can be combined in many
different ways to construct ratios which each give an un-
diluted measurement of the CP-violating asymmetry a.
First construct the combinations

w+ Mp —M2
W'+ = I +( 1+a ) = +- (21)

+( W+ —W+ )

W++ W+
(22)

Note that neither of these results requires prior
knowledge of the ratio of I + to I . Furthermore each
measures the intrinsic CP asymmetry of the underlying
quark process without dilution. To obtain the most accu-
rate value of asymmetry from this analysis, one takes a
linear combination

from the B data and the similar quantities W+ obtained
from the B data. These then allow two determinations of
the asymmetry a:

r+(0) =ro(0)(1+/)/2+ r, (0)(1+/) l2,
a =aa+ +( I —a)a (23)

where g is given in Table I. The rate for a B~h~, to fe can
be written

I (0)=1 (B h„,~fe)=l +(I+a)r+(0)+I (1—a)r (0),

where a and I + may be time-dependent or time-
integrated quantities [see Eqs. (3) and (4)j. Let us now
define the weighted integrals

1

Mo = f d cos01 (0)=I +(1+a)+1 (1—a),—1

and

with a chosen to minimize the error on the result. The
optimal choice of o. does depend on the actual values of
the I 's. We will return to a discussion of the best choice
of a in Sec. VII.

With a limited amount of data one could alternatively
begin by dividing the angular distribution into two angu-
lar bins, commonly called polar and equatorial, with a
cut at some appropriate angle. Let us cut at 0=~/3
where cos0=1/2 and define the equatorial and polar
components E and P by the relations

E =2 d cos0 I 0
p

1M2:—f d cosHPz(cos0)l (0)

=1 +(I+a)co++ I (1—a)co

where co+ are defined by
i

co+= d cosHP2(cos0)r+(0) .—1

Similarly the rate for a B oh„, to f is—
=1+(1—a)r+(0)+1 (1+a)r (0) .

(17)

(18)

=I +(1+a)e++1 (1—a)e

P=2 f d cosOI (0)
1/2

=I +(1+a)p++1 (1—a)p (25)

where the numbers e+ and p+ are defined by
1/2

e+ —=2 d cosHr+(0), (26)
p

1

p+ —=2 d cosOr+(0) . (27)
1/2

The quantities W+ and W+ can now be extracted using
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E and P and the corresponding quantities E and P con-
structed from the B data sample, just as was done above
using MO, M2, Mo, and M2. The asymmetries a+ can
then be determined as before. The only differences be-
tween the two procedures will be in the errors on the esti-
mates of a, which will be reduced by the moment treat-
ment. However the simpler binning procedure could be
used for a preliminary look. If a CP-violation effect is
present, it should show up as a statistically significant
nonvanishing value for a even in this simpler analysis.
Once such an asymmetry is found, the treatment of the
data can be refined.

In either of these analyses the result for the asymmetry
a does not depend on I + or I, or, in principle, on the
choice of a. However the error on a can be minimized by
choosing e in a way that depends on I + and I . The
values of I + and I can be determined from examina-
tion of channels related to the channel under study by
isospin symmetry. In many cases these channels will pro-
vide much more data than the channel used for the CP
analysis and so the errors on I +/I will have little
effect on the error on the asymmetry.

VI. FULL ANGULAR ANALYSIS

For classes 2 and 3, a full angular analysis will usually
prove superior to the simple moment treatments de-
scribed above, since the error on the asymmetry measure-
ment from a given set of data can be reduced by more ful-
ly exploiting the known angular structure to extract
several measurements of the asymmetry a with different
correlations among their errors. Such analysis also al-
lows study of modes for which the transversity is not
applicable, for example, modes where neither particle A
nor C decay to two spin-zero particles.

Appendix B presents the general helicity formalism
and develops a method based on using the Y& functions
to perform angular projections. The treatment of the
case of AC=WE* is given as an example. The results
for D*D * are also tabulated. The angular analysis of the
decay of each particle is most simply carried out in the
rest frame of that particle. One needs to specify a choice
of coordinates for each decay of a spinning particle, once
this is done the angular projections can be used to
separate out the combinations of helicity amplitudes that
have a definite CP and hence to measure asymmetries.
As in the case of the transversity analysis this can be
achieved by combining B and B data, without any
a priori knowledge of the various amplitudes involved.
One can obtain an asymmetry measurement for each pos-
sible combination of helicities. These results can then be
combined for an improved measurement as discussed in
Sec. VII.

This analysis can be applied for any of the modes dis-
cussed previously, provided the system (C, Cz) has a
well-defined total angular momentum. In addition,
modes where the transversity analysis cannot readily be
used can also be analyzed; some such modes are listed in
Tables II—IV. For example, consider the case

B ~Ah,

where each 6 subsequently decays to a proton and a pion.
Although the proton spin cannot be measured, it is still
possible to use the angular projections of these decays to
extract quantities of definite CP. This analysis is also
presented in Appendix B. We find for this case that two
definite-CP quantities Re&'3~+ 0]/2+ and Re&'3/p 0i/p
where Qz+=(Az+A z)/&2 can be isolated using angu-
lar projections. Each of these provides a possible mea-
surement of the intrinsic CP asymmetry. This result ap-
plies for any pair of spin-3/2 resonances, both of which
decay to per (or pet). For the case of two spin-1/2 reso-
nances which both decay to per (or per), the averaging
over the proton spins removes all possibility of separating
the different CP contributions by angular analysis as only
a uniform angular distribution survives.

VII. MINIMIZING THE ERROR
ON THE MEASURED ASYMMETRY

derived in Appendix B, the separation of the weak depen-
dence from the strong phases is not as clean in this case.
For the pure CP terms such as

a, +af+=lG, + [1—elm(A, &M)sin(hm t)]e

the time and asymmetry dependence is much simpler.
From such a term one can readily form the combination

~i+ &f+ —&i+ ~3+
a++ =

~i+ &f++ &i+ ~i+

(29)= —q Im(A~M)sin(b m t ) .
In either analysis the errors on the various measure-

ments of the asymmetry are correlated, and these correla-
tions must be treated properly in determining the error
on any value of the asymmetry extracted by combining
them. All this is standard statistical analysis, we review
it briefly here for completeness.

Consider first the case where we have only the two
measurements a+ extracted from the single moment
transversity analysis. We choose'

a =aa+ +(1—a)a (30)

Minimizing the g with respect to a gives, for small
asymmetry,

The methods described above each give more than one
measurement of the asymmetry. With the transversity
analysis we had a+ or in the more general case one mea-
surement for each set of lr; l. Consider for instance for
integer spin particles 3 and C the full angular analysis
gives effectively (s + 1) measurements, one from the
square of each of the 2s+1 definite-CP combinations of
helicity amplitudes and one from each interference term
between any two such amplitudes with the same CP.
Here s =min(s„s, ). Interference terms between opposite
CP contributions depend only quadratically on the asym-
metry and hence do not provide as sensitive a measure-
ment. Furthermore, as can be seen from the example of

Img&+0& =e "'[Re(G&+ 6& )g Rek, &Msin(b. m t)

+Im(G&+G& )cos(b, m t)] (28)
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o.++po. +o.2

2 20 +0 ++po +cT
(31)

(32)

where 0.+ are the standard errors in 8'+ and p measures
the correlation of these errors. This result of this treat-
ment is shown as the solid curve in Fig. 3 as a function of

Q) 3
CL

2b
b

—Transversity

&i+ = ko
go -O

&o ='&i.

Q) 3
CL

2b

Fixed o.
o. =1/2

Max
Likelihood

0
-1 ~ 0 -0.5 1.0

(r,-r)~(r, +r )
FICx. 3. The ratio of the expected error on the CP-violating

asymmetry extracted using transversity from the mixed CP state
PK* to that obtainable with an equal number of decays to a
pure CP state. The curve labeled "a=1/2" is based on equal
weightings of a+, while that labeled "a fit" uses the optimal
choice for each e. The lowest curve is obtained from a
maximum-likelihood fit to the asymmetry, assuming I +/I is
known.

for the case of two spin-one particles one of which decays
to two spin-zero particles while the other decays to an
e+e pair, e.g. , gK* . We plot the ratio of the expected
error from this analysis to that obtainable with an equal
number of decays to a pure CP state. ' For comparison
we also show the errors obtained for a fixed value a= —,',
this gives the upper curve on Fig. 3. One sees, that, in
the worst case, where I + and I are equal, this analysis
requires approximately nine times more data than a pure
CP channel to achieve equal accuracy for the asymmetry
measurement.

This measurement can be improved by making a
maximum-likelihood fit for the asymmetry using expres-
sion for the 8 angular distribution given by Eq. (14). This
analysis requires further parameters, namely, the quanti-
ties I + which we assume can be extracted from isospin-
related channels. The result of this treatment for the er-
ror on the asymmetry is shown as the dashed curve in
Fig. 3.

Another way to improve the result is by making a
more complete angular analysis. Again we have two op-
tions, an analysis based on moments that does not require
knowledge of the relative strengths and phases of the
various amplitudes, and a maximum-likelihood fit to the
full set of parameters. Where sui5cient information is
available, the latter method is superior. Figure 4 shows
the result for the errors on the asymmetry from using a
maximum-likelihood fit to the angular dependence of the

0
-1 0 -0.5 0.5

(r —r)i(r, +r )
FICx. 4. The ratio of expected error on asymmetries obtained

using maximum-likelihood fits for a mixed CP (PK*) channel to
that for a pure CP channel with equal number of decays. The
top curve is the transversity based result, shown also on Fig. 3.
The remaining curves represent different assumed values for
0&+/Qo, with Q~+ and 9& taken to be relatively real.

data where it is assumed that the quantities G, + and Go
defined in Appendix 8, are all known from measurements
on isospin-related channels. For simplicity we assumed
a «1 in making this error analysis. For comparison we
plot the result against the same combination of variables
as were available in the transversity analysis. The various
cases shown are chosen to indicate the range of possibili-
ties. It can be seen that even in the worst case that we
studied this type of analysis provides a more accurate
value for the asymmetry than the best transversity treat-
ment. Figure 4 also shows that in the fortunate situation
where a single CP contribution dominates either treat-
ment gives accuracy comparable to that obtained for a
pure CP channel.

We have also carried out a study of the sensitivity of
the asymmetry measurement in a maximum-likelihood-fit
procedure to errors in the estimated values and phases of
the various amplitudes. This analysis is summarized in
Appendix C. The results are encouraging, the asym-
metry measurement errors will most likely be dominated
by the statistics of the channel for which the asymmetry
measurement is made and is relatively insensitive to small
errors in the amplitude values or phases. However, if
these quantities are poorly determined, one can fall back
to the moment analysis to extract asymmetry measure-
ments that do not depend on them.

To summarize the situation we remark again that the
value of the transversity analysis is greatest in the chan-
nels described by class 1 of Table I, namely, three CP-
self-conjugate particles, where it allows combination of
resonant and nonresonant production of the particles C&

and C2. It also has the feature of being particularly in-
sensitive to the non-CP-violating asymmetries that arise
between the rates 8 and 8 into identical final states,
both in their particle content as well as angular depen-
dence. This non-CP violating asymmetry occurs here be-
cause the rate of B h„,~f is not compared to its CP
conjugate process B h, ~f but rather to the process
B h„, +f, and is due to an interfe—rence between CPeven-
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and CP-odd amplitudes. Here the final state f is defined
by particle content and by a set of angles and f is the
CP-conjugated state with the set of CP-conjuated angles.
However whenever there is not a single dominant CP
contribution, the most accurate results for asymmetries
will come from the use of a maximum-likelihood fit to the
parameters that define the angular distributions, rather
than any of the analyses which depend on projecting out
specific moments to identify definite-CP contributions.
Whenever possible, such a treatment will include
isospin-related channels in the fitting procedure. Since
the isospin-related channels typically have higher rates
than the CP eigenstate channels, the additional parame-
ters needed for this type of analysis will be well measured
for many modes by the time one has sufficient data to
measure the asymmetry, so this method will be the one
used for most channels.

VIII SUMMARY AND CONCLUSIONS

We have shown that there are many channels for
which one can study CP violations in 8 decays if one
uses angular analysis to separate the different CP contri-
butions which arise from different helicity terms. Some
of these modes will compete in accuracy with the modes
with unique CP which have already been much discussed.
In general, to carry out the angular analysis accurately
somewhat more data is needed for these modes than for
the unique-CP modes; in the worst case that we have ana-
lyzed this requires approximately ten times as much data
for an equally accurate measurement of asymmetry, the
degradation will possibly be even greater for higher spin
channels.

We have presented several different approaches to the
angular analysis, each of which has merit in different situ-
ations.

In summary, transversity analysis is most useful in the
case of decays to three self-conjugate particles, class 1 of
Table I, where it allows the combination of resonant and
nonresonant production of the particles C& and C2. If
the relative strengths of the two CP contributions (I +)
are not known, then a moment analysis of the type de-
scribed in Sec. V should be used. Whenever the values of
I + can be determined using data from isospin-related
channels then a maximum-likelihood fit to the transversi-
ty polar-angle distributions will provide a more accurate
result. For all other modes, including those listed as
classes 2 and 3 in Table I which could be analyzed using
the transversity method, the full angular distribution
analysis will prove superior. Again there are two choices,
a moment analysis of the type described in Appendix B
or a maximum-likelihood fit to the full angular distribu-
tions. Wherever suf5cient information on the various
helicity amplitudes can be extracted from data on
isospin-related channels, the latter method will again give
more accurate results. Clearly what this means is that in

such cases one should make a global fit of all parameters,
the helicity amplitudes and the asymmetry, to the data
from all related channels, to obtain the most accurate
asymmetry measurement.

This discussion makes no distinction between time-
integrated experiment or one that measures time depen-
dencies of the 8 and 8 decays. In the latter case the an-
gular structure and the time dependence factorize in a
simple way, as demonstrated in Appendix B. In a time-
dependent experiment one simply performs the angular
analysis for each time bin separately, or in a maximum-
likelihood-fitting procedure one includes the predicted
time dependence in the fitting prescription, and treats the
data as a function of time as well as angles.

However the angular analysis so enriches the sample of
modes to study that we expect it will play an important
role in the extraction of the CP-violating physics at a 8
factory. Among the many channels listed in Tables II
and III there well may be some that provide as accurate
or more accurate asymmetry measurements as the
unique-CP modes. Since we do not yet have much infor-
mation on branching fractions to the various modes, it is
too early to be certain which of the many modes will pro-
vide the best measurements. Hence we have simply
presented summary tables of some of the modes which,
according to the standard model, will measure the vari-
ous angles of the unitarity triangle. We have not found
any one mode for which the currently measured branch-
ing fractions suggest it would be markedly superior to the
unique-CP modes, but several may be comparable, espe-
cially in the fortunate circumstance that a single CP
channel dominates the process. Our knowledge of these
branching fractions will certainly be much better by the
time any 8 factory capable of measuring CP asymmetries
is built, so at that time it will be obvious which of these
modes is most readily used, and which method of analysis
to apply to it.
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APPENDIX A: HELICITY AND TRANSVERSITY

This appendix gives the general proof that transversity
projections can be used to select definite CP quantities.
When a spin-zero particle 8, at rest, decays into two par-
ticles (A and C), they must have equal helicities (A.). Now
we consider the case where the particle C decays to two
integer-spin particles C& and C2, which have spins s& and

s2 and helicities A, , and A,2. In the rest frame of particle C
we can write the state formed by the decay of 8 as

(A1)

where we define
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~x, x„x„.e& =
~
~(x;0,0),c,(x„e,o)c,(x„~—e, ~) & . (A2)

We use Jackson conventions to define our angles and axes. In addition we have chosen to define the C decay angles so
that pc =0, thus Rc=(o, e,o). The choice pc =0 is made event by event without any loss of generality. It is a con-

venient choice for the transversity discussion since it identifies the y axis of these coordinates with the direction trans-
verse to the plane. In appendix B we will use a different convention for P in the full angular analysis. Of course these
choices are merely a matter of convenience for each analysis and have no physical content.

It is important to note that for three self-conjugate particles we can here avoid the assumption of a specific particle C
and simply sum over all possible angular momenta for the system Ci C2 in its rest frame, in which case A, is the projec-
tion of this angular momentum along the direction opposite to particle A. Then Eq. (Al) generalizes to

1/2

f(e)&=
4~ (A3)

We now wish to use the decays of A, Ci and C2 to analyze their transversity. To do this for each particle we go to its
rest frame. The transversity for each particle is defined as the spin component along the y axis in the particle's rest
frame. With the choice Pc =0 all three y axes are parallel. However we must choose the same direction for the

1

definition of transversity for all three particles, so that we can define the total transversity as the sum of the three pro-
jections. We will fix this as the direction of the positive y axis for the decay of particle C. Then we can relate transver-
sity states to helicity states for a particle of integer spin s by

~s, r &
= g Dz, (~~/2, 7r/2, 0) ~s, k, &,

= g (1—
—,'5q 0)Dq, (1~~/2, ~/2, 0)[~s, k, &, +( —1)' '~s, —

A, &, j.
X~O

(A4)

The rotations are defined with respect to the axes just described, and ~=1 for particle C, and ~= —1 for particles 3
and C2 in order to achieve the required matching of positive transversity direction. The phase factor on the negative-
helicity term arises from redefining the D function for —k in terms of that for k.

Now let us first consider decays in which the three particles 3, C„and C2 all are neutral bosons self-conjugate under
CP (class 1 in Table I). Then

cp~x, x„x,;e&=g( —1)" " " ' '~ —x, —x„—x„.e&, (A5)

where g is the product of the intrinsic CP parities of the three particles. Notice that the angle e is unchanged under CP,
since it is defined to be the angle between particle Ci and the direction opposite particle 3 in the C rest frame, and
hence is unaltered by the reversal of all momenta. Now we use the property of the D function,

D~„(o,e, o)=d~„(e)=(—1) "d'
~ „(e),

to rewrite Eq. (A3) as

1If(e)&= — & (1 —
—,'&g, ,)(I—

—,'&p, ,,)(i ——,'&~, ,, )(l+~,~, , ~, &+I+~,~, , g, &+I&~, ~, , ~, &+I+~, ~, , ~, &

A. ,X(,l~, ~0

(A6)

where

+
l &g, g, , g, &+ &g, g, , g, &+

l ~g, g, , g, &+
l &g, g, , g, & ), (A7)

(A8)

and we have introduced the amplitudes
J + J

(A9)

which correspond to definite CP contributions. Under CI',

(A 10)

where we have used Eq. (A5).
Now let us project out the contribution obtained by requiring the transversities ~„~i,~2 for the particles 2, C] Cp.

We can write the result in the form
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A(r„ri, rq)=(r„r„r2;O~f(8)) =[1+(—1) +']0++[1—(
—1) +']g

where S=s, +s
&
+s2, ~=r, +~&+~2, and

1/2

(A 1 1)

(A12)

Here p is

1
Pi., i, i. ~—[(1 &~i,o)(1 2~i 0)(1 &~i 0)] (1+~oi5pi tip' )( 1) (i) ' 'dI', (m/2)dI', (7r/2)d~', (n/2) .

. (A13)

In Eq. (All) we have used the fact that

d'i, (rr/2)=( —1)' 'd' i,(~/2) . (A14)

APPENDIX B: FULL ANGULAR ANALYSIS
AND TIME DEPENDENCE

In this appendix we will present a method for using the
full angular distribution to define a set of moments from
which all measurable combinations of helicity amplitudes
can be extracted. The method is a standard helicity
analysis which we present here for completeness. We an-
alyze here the B decays into two spin-one particles, one
of which decays to two spin-zero particles and the other
to an e+e pair, for example, the mode fK* where

Equation (Al 1) clearly shows that for any fixed r we have
projected out a definite-CP contribution. Combining Eq.
(A12) and Eq. (A10) we see that the nonvanishing contri-
butions all have CP parity g'( —1)'.

Examination of Eq. (All) clearly shows that only the
absolute values of 7 'Ti 72 need be definite, since they are
all integers. This then indicates that the simplest experi-
mental procedure to separate definite-CP quantities will
be to integrate over the azimuthal dependence of the de-
cays with respect to the transverse axis and to project for
definite ~r; ~

using the distribution polar angle about this
axis. We thus need only take nontrivial moments of a
single angular dependence for each particle to recon-
struct the magnitude of its transversity. We then can
combine B and B data to obtain a measurement of the CP
asymmetry for each set of ~r~, ~r, ~, ~r2~, as discussed for
the example in Sec. V. These results can then be com-
bined to yield an improved estimate as discussed in Sec.
VII.

If C& and C2 are not self-conjugate particles, as in
classes 2 and 3 of Table I, then Eq. (A5) does not apply
since CP interchanges particles. However, if we require
both C, and C2 to be spin-zero particles, then the
transversity of particle 3 will again allow separation of
CP-odd and CP-even contributions. The proof can readi-
ly be seen from the case discussed above, with the sums
over J reduced to the single term J=sz and with
si =A) =0 and sq =Aq=0.

I

itj~e+e and K*~K,~ . A similar analysis for B de-
cays into two spin-1 particles which each subsequently
decay to two spin-zero particles is also presented. An
analysis for the case of two spin-3/2 particles is also
briefly discussed. We further present here the explicit
structure of the time dependence of the various quantities
that can be measured and discuss the extraction of time-
dependent CP asymmetries.

The first step in this analysis requires the definition of
some conventions. We use here the conventions of Jack-
son for the definition of the rotation D functions. The de-
cay angles for the process B~QK *,(~ice +e
E * ~K&~ are shown in Fig. 5. We assume the B,
Y(4s), J/g and the K* are in the plane of the paper. The
Z axis in the respective helicity frames are opposite to the
parent particle. The Y axes are in the direction of the
cross production of the Z axis of the parent and the Z
axis of the helicity frame. This causes the Y axis of the
K* to be out of the paper and the Y axis of the g to be
into the paper. Hence the X axes are both pointing up-
ward. This will cause the P angle of the e and the vr to
be going in opposite directions such that their sum will
yield the relative angle between the two decay planes. In
this drawing neither the e+,e, m nor the K need to lie
in the plane of the paper.

The matrix element of the decay of
K* ~K&vr can be written using the helicity formalism
as

Ks

Z

FIG. 5. Schematic drawing of the kinematics of B produc-
tion and decay showing definitions of the various axes and an-

gles. Each decay is considered in the rest frame of the parent
particle.
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a=+1 X=O, +1

2J~+ 1 2J~+ 1

4m 4~ Ai.D~.,'. «]]»i., o «z) (81)

The amplitudes Az in (81) contain implicit time dependence which we will discuss later. The important point is that
the time dependence and the angular dependence factorize in this way, so one can perform the angular analysis for each
time bin and thus extract time-dependent asymmetries. For the Jackson convention R =($,8,0) lthis differs froin the
Jacob-Wick convention where R =($,8, —P)]. Expanding Eq. (Bl) gives

2J~+ 1 2J~+ 1
IMI = g g A]„A]*D]~ (R~)D]~ (Rg)D]„o (Rx. )D] o(R]r) ..=+1 ~,~ =O, +1

Changing the charge conjugate to real

(82)

and inserting the double D summations

gives

1 1 2 2

J, +J,

J3 =/Jl J2]
& J]M] y JUMP I J3M3 & & J]M] y JUMP I J3M3 }DM M (R )

3 3
(83)

2Jg+ I 2 ' + I

4~ 4~ i., i.'=o, +]
AqA]. g ( —1)

a=+1 JL,JR =0, 1,2
& la, 1 —a

I JL 0 ) & 1A, , 1 —A.
'

I JI ML )D, (R
& )

L'

x &10, 10IJ]]0)& li, , 1 A, 'IJ„M—J'] )D ~ (RK) .
R'

(84)After a little rearranging, we have
T '2

IMI = —2
3

4m
A A

A,

A, , A.'=0, +1
& 11,1 —1IJI0)& lk, 1 —

A, 'I JL A, —A, ')Dz z o(R&)
=O, 2

x&10,10IJ,O)&1A, , 1 —I,'IJ, A,
—

A, ')D,', „(R~) . (85)

The JI = 1 terms vanish because of the sum over a on the Clebsch-Gordan coefficient & la 1 —a
I JL 0) and the JR = 1

terms vanish because of the coefficient & 10, lol Jz 0). We now simplify with the relations
1/2

DM, o(4' ~ x)= YI'.M (~*4'»

where YLM=( —1) YI M and JY]' (n)Y] (n)dn=5]]5 ., to obtain
2

IMI'= —2
3

4m
A, , A.'=0, +1 J~,J~ ——o p +2JL + 1+2J~ + 1

x & lo, IOIJ, O) & lx, 1 —x'IJ„x—x'& Y,*, ,(n ) .

Let us now define the moments

TJ g M= II IMI'Yg, ,M(nq)Y~ M«yc)dnxdnq

and thus

(n~)Y,* (n ).
JL =0,2 JR =0,2M=0, +1,+2

and TJ J ~= TJ J ~. The relation between the helicity amplitudes and the moments is

(88)

—9 1 1
TJL JR —M +2JI +1 +2J]]+1

& ll 1 1IJLO)&1A,, 1 A IJLM)&10, 10IJ~—O)&1A, 1 X IJgM&AgA]„
A, , A,'=0, +1

(89)
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TABLE VI. Moments for B ~(e+e )&(Ezm ) ~ in terms of helicity amplitudes.

JL JM 4mTJ J ML R

2(A, A,*+A,A*, +A, A,*)
—(2A0A0 —A1A1 —A 1A *1)

v'5

~—( A1 A1 + A -1 A *-1 —2A0 A 0 )v'5

5
——( A1A 1*+A 1A *1+4A0A0 )

(
5

——A1A
5

4~TJ J ML R

2(91+5',*++91 91* +g0g0 )

+—(2OO 1+ 1+v'5

—(~1+~1*++~1. 0( —29090*)v'5

5
(g g4 +g gQ +4@ gQ)

3v'2
5

(ReQ1+90 +i Img1 g0 )

5
——[I&i+I'—l~ I'+2tlm(&, &,

* )]

Depending on the relative strengths of different CP
contributions the various moments TJ J ~ will show

L R

different asymmetries. Linear combinations of moments
can always be found which give undiluted asymmetry
measurements. The various moments are given in Table
VI, where we have defined the definite-CP quantities
Qq+ =( 2 &+ A q)/&2 and Qo= Qo+/&2 = Ao. Table
VII presents the results of a similar analysis for the decay
into two spin-1 particles which each in turn decay to two
spin-zero particles; for example, the mode D*+D*
where both D*'s decay to D~. Clearly in either case we
can extract the quantities

1+~1+~ ~1—~l —~ ~0~0 ~

and

ImQ, +9; and ImQ, Qo .

ly, we introduce the pararnetrization

g (t) =gG e ~m'e

bmt . . AmtX cos +igkKMsin
2 2

(810)

where g =g( —1)' and g is given in Table I. For the mode
QK, m we have g= —g=+ 1. The quantity g is the phase
of the CKM matrix elements and the quantity 6 con-J
tains any phases from Anal-state interactions and other
strong-interaction effects as well as the magnitude of the
time-zero amplitude. The CP-violating quantities are
contained in the kKM, in the standard model A.KM=e '~

where P = —P or a or —y is one of the angles of the uni-
tarity triangle; see Fig. 2.

The equivalent quantities for the Bphys decays are

The first four of these are each definite-CP quantities,
combining 8 and B data they can each be used to give an
asymmetry measurement. The last two quantities
represent interference terms between CP-odd and CP-
even amplitudes, which have a more complicated time
dependence. They depend only quadratically on the CP
asymmetry and so are less sensitive for small asym-
metries.

To display the time-dependent phase structure explicit-

9&+( t) =+ tjg *Gz+e

pt/2 Am t+. „) . Am
X e cos +i gn, KMsin

2
—

2

One then sees that

I &g+I = IGg+ I
e '[1+rI ImkKMsin(b, m t) j

(B1 1)

(B12)

TABLE VII. Moments for the B decay to two spin-one particles, each of which subsequently decays to two spin-zero particles.

JL 4mTJ J ML R

(A1A1 + A 1A *1+A0A0 )

(2A A Q A A g A A
)fc

)v'5

(2AA AA A A )v'5

5
( A A g + A A &ac +4A A g

)

5
—(A, A*, +A, A,*)

—'A, A*,
5

4m'TJ J ML R

(~1+~1++1 —1 —+ ~0~0 )

—(29090 —Q1+ Q1+ —91 0) )v'5

(29090 —Q, + S'1+ —91 0) )v'5

5
—'(g,.g',.+g, g,* +49.g.*)

3v'2
5

(Reg, + Q0 +i ImQ1 Q0 )

5
—[l&i~l' —I&i I'+&t &m(si ~i+)]
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TABLE VIII. Moments for 8 ~(pm)z(pm)~ in terms of helicity amplitudes.

4m.

JLJR M

~ 3/2 ~ 3/2 + ~ —3/2 ~ —3/2 + ~ 1/2 ~ 1/2 + ~ —1/2 ~ —1/2
1 )fc~ 3/2 ~ 3/2 ~ —3/2 ~ —3/2 + ~ 1/2 ~ 1/2 + ~ —1/2 ~ —1/2 )v'5

5
~ ~ —3/2 ~ —1/2 + ~ 1/2 ~ 3/2 )

5
~ ~ —3/2 ~ + 1/2 + ~ —1/2 ~ 3/2 )

l~z/z+l + l~z/z —
I

+ l~)/z+I + I&(/z —
I

+l~ +l'+l~v'5

5
—[Re(Q)/z Q,*/z ) +Re(Q, /z+9 *)/z+) ~~ ™(9(/z9,*/z+) ~ ™(g3/z—9(/z+)]

5
[Re( Q3/z~ 0(/z~ )+i Im( 93/z/ 0(/z —)+i Im( 0) /z~ Q3/z —) Re( 93/z —9(/z —) ]

and the equivalent quantity extracted from B decays give
a simple time-dependent asymmetry. For example,

We find

"'[Re(G,+ 6*, )zI Rel ~Msin(hm t )

a(1+,1+ ) =
~)+ &)++~)+&)+

zI ImA, ~MslI1(km t ) (813)

Similarly the interference term between two same-CP am-
plitudes gives a direct asymmetry measurement; for ex-
ample,

+ Im(G, + 6) )cos(hm t ) ] (815)

which is not particularly useful for extracting the value of
~KM'

Experimentally we obtain the moments by weighting
the experimental events with the Y& . For example, the
Tz22 moment is extracted from the data by calculating

Ref(+ Qo =Re( 6 (+ Go ) [ 1 —
z) ImkKMsin(b m t ) ]e

(814)

evt

Tzzz= g Yz z(AI()Yz z(Qx. ) .
&evt, =)

(816)

Thus we have several asymmetry measurements, one for
each possible pair of same-CP contributions. A best
asymmetry can be obtained by minimizing the error on
an arbitrary linear sum of these values. This requires
some knowledge of the relative sizes of the various 9's.
The even-odd interference terms are less readily used.

I

The M = 1,2 terms will have a P&+(())r dependence, with
our definition of axes this is the phase between the planes
of the two two-particle decay states in the B rest frame.
To predict the time dependence of the moments, one
needs to substitute Eq. (810) in Eq. (89). The relevant
time-dependent expression has the form

gq/I q, =
—,'e "'[(Gq+ Gq+ +Gq 6)*„)+(Gz+Gz. +Gz Gz + )cos(bm t )

+iz)(G&+6~ —6& 6&.+ )Re(X&M)sin(bm t) —zI(G&+6&+ —Gz„Gz )Im(XKM)sin(bm t)],
(817)

where 60+ =&26o. Thus we see that the general mo-
ment has three terms with distinct-time dependent behav-
iors e "', e "'cos(hm t), and e "'sin(b, m t). Extracting
the moments requires convolution with the relevant reso-
lution function.

A similar analysis for the decay

I

p&

l

dition T2oo=To2o and T22o= —,'Tooo. From this one can
identify the definite-CP quantities.

( ~(3/2)+ ~(1/2)+ ) a ( ~(3/2) — () /z) —)

and thus this mode can be used to measure the CP-
violating asymmetry. A similar analysis can be applied to
any spin 3/2,

l-'p 7T — -'p ~
can be carried out. In this case the proton (or antiproton)
helicity is not observed. Summing over the possible heli-
city values once again eliminates odd values for JL and
Jz. The distinct moments are given in Table VIII, in ad-

or

X X
1 . l'p~ 'pm. '



HOW TO EXTRACT CP-VIOLATING ASYMMETRIES FROM. . .

channels. For two spin-1/2 particles which each decay
strongly to a nucleon and a spin-zero meson, only Tooo
survives after summing over nucleon and antinucleon
spins; hence, one cannot construct undiluted CP asym-
metries in these cases. We have not studied the situation
for weak decays of such particles.

APPENDIX C: SENSITIVITY ANALYSIS

G5 X
CPM

O
im

(1+ 1 )

For the maximum-likelihood fits we have assumed that
the amplitudes of the decay, except for the CP-violating
part, are understood from study of the untagged and
isospin-related channels. The question of the sensitivity
of the results to this assumption naturally arises;
specifically an error on the even-to-odd ratio (I +/I ) in
the transversity case or the amplitudes (0&+, Qo, 0& ) in
the case of the full angular distribution analysis will lead
to an error in the measured value of asymmetry.

The transversity analysis is relatively simple. We
parametrize the error as follows:

-2
-1.0 1.0

FIG. 6. The fractional derivative of the asymmetry with
respect to an angle (x), which describes the confusion between
the amplitudes. The derivative was obtained numerically.

5a/a =(1/a)(da/de)&e, (Cl)

I ~(+ I

=
I &)+ I cos(x)+

I ~, l»n(x), (C2)

I 0 I

=
I
9 Icos(x)

I ~y+ l sin(x),

where the 9"s represent the estimated values and the
plain 9"s represent the true values. Similar relationships

(C&)

where e=(I + —I )/(I ++ I ). Evaluating the deriva-

tive numerically we find ~(1/a)(da/de)l & 1.2 for»1 ~.
For fE* one can estimate that the data sample that

will be available for evaluating e from untagged and
isospin-related channels will be =20 times larger than
the tagged sample. This implies that typical errors on e
will be =&20 smaller than the error on a. Thus consid-
ering Eq. (Cl) it is clear that the effect of a typical 5e on
5a is negligible.

In the case of the full angular analysis, the situation is
more complex. Three amplitudes (9,+, Qo, 9, ) are need-
ed. Two of the amplitudes (9,+ and Qo) are CP even and
the third (0& ) is CP odd. We parametrize the errors on
these amplitudes by rotations between the magnitudes of
two amplitudes and by errors on the relative phases. For
example, our estimate for the magnitudes of the Q, + and
9o amplitudes might be related to the true values as fol-
lows:

can be used to quantify the possible experimental con-
fusion between ~Q, +~ and ~9, ~, and between ~Qo~ and
~Q& ~. Figure 6 shows (1/a)(da/dx) for each possible
angle of confusion. Note that confusion between the two
CP-even states (9&+ and Qo) has little effect but that con-
fusion between either CP-even and the CP-odd ampli-
tudes typically produces noticeable effects. Thus it ap-
pears that the overall CP-even to CP-odd ratio is the
most sensitive parameter. As seen above it should be pos-
sible to determine this parameter to an accuracy much
better than needed using the untagged and isospin-related
channels. We have also investigated the effect of phase
errors in 0&+ and we And them to be small. For example,
a phase error of 30 changes the asymmetry by only 0.003
when the true asymmetry is 0.15 and I + =I (the worst
case).

The final analysis will probably be a maximum-
likelihood fit of all the parameters (the three amplitudes
and the CP-violating asymmetry) to all the data samples
(tagged, untagged, isospin related). This analysis of sensi-
tivity of the measured asymmetry to assumed values of
the parameters indicates that the resulting errors will be
only marginally worse than single parameter analysis
used in this paper for illustrative purposes.
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